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Abstract

In the spirit of the famous Komlós (1967) theorem, every sequence of nonnegative,

measurable functions {fn}n∈N on a probability space, contains a subsequence which—

along with all its subsequences—converges a.e. in Cesàro mean to some measurable

f : Ω → [0,∞]. This result of von Weizsäcker (2004) is proved here from scratch,

with minimal tools. The methodology we develop sharpens a result of Delbaen &

Schachermayer (1994), replacing general convex combinations by Cesàro means;

and leads to an elementary proof of the original Komlós theorem (which allows the

functions {fn}n∈N to be real-valued, but imposes boundedness in L1).
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1 Introduction

On a probability space (Ω,F ,P), consider independent, real-valued measurable functions

f1, f2, · · · with the same distribution, and E(|f1|) < ∞ . The celebrated Kolmogorov

strong law of large numbers ([7], p. 126) states that the “sample average” (f1+· · ·+fN )/N

converges P−a.e. to the “ensemble average” E(f1) =
∫

Ω f1 dP , as N →∞.

A deep result of Komlós [16], already 55 years old but always very striking, says that

such averaging occurs within any sequence f1, f2, · · · of measurable, real-valued functions

satisfying supn∈N E(|fn|) < ∞ . More precisely, there exist then a function f and a sub-

sequence fn1 , fn2 , · · · , such that (fn1 + · · ·+ fnK )/K converges to f , P−a.e. as K →∞;

and the same is true for any further subsequence of
{
fnk

}
k∈N .
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This result inspired further deep, foundational work in probability theory ([11], [6]),

culminating with that of Aldous (1977) where exchangeability plays a crucial rôle. It,

and its ramifications involving forward convex combinations in [9]–[10], have been very

useful in the context of convex optimization; and more generally, when one seeks objects

with specific properties, and tries to ascertain their existence using weak compactness ar-

guments. Stochastic control, optimal stopping and hypothesis testing are examples of the

former (e.g., [18], [15], [8], [19]); whereas the Doob-Meyer and Bichteler-Dellacherie

theorems in stochastic analysis provide instances of the latter (e.g., [12], [2], [3]).

We develop here a very simple argument for the Komlós theorem, starting with

the important case of nonnegative f1, f2, · · · treated by von Weizsäcker (2004). The

proof dispenses with boundedness in L1, at the cost of allowing the function f to take

infinite values. When the sequence {fn}n∈N is bounded in L1, the method leads also to

an elementary proof for the original Komlós result.

2 Background

We place ourselves on a given, fixed probability space (Ω,F ,P), and consider a sequence

{fn}n∈N of measurable, real-valued functions defined on it.

We say that this sequence converges hereditarily in Cesàro mean to some measurable

f : Ω → R ∪ {±∞}, and write fn
hC−−−→

n→∞
f, P − a.e., if, for every subsequence

{
fnk

}
k∈N

of the original sequence, we have

lim
K→∞

1

K

K∑
k=1

fnk
= f, P− a.e. (2.1)

Clearly then, every other such sequence {gn}n∈N which is Borel-Cantelli equivalent to

{fn}n∈N , in the sense
∑

n∈N P(fn 6= gn) <∞ , also has this property.

In 1967, Komlós proved the following remarkable result. The argument in [16] is very

clear, but also long and quite involved. Simpler proofs and extensions have appeared since

(e.g., [21], [23]; [4]); we provide another such proof in § 5.5.

Theorem 2.1 (Komlós (1967)). If the sequence {fn}n∈N is bounded in L1, i.e., satisfies

supn∈N E(|fn|) < ∞ , there exist an integrable f : Ω → R and a subsequence
{
fnk

}
k∈N of

{fn}n∈N , which converges hereditarily in Cesàro mean to f :

fnk

hC−−−→
k→∞

f, P− a.e. (2.2)

This result was motivated by an earlier one in [20]. For the convenience of the reader,

we provide in § 5.1 its proof (after [5], pp. 137-141), which proceeds by extracting a martin-

gale difference subsequence. This crucial idea makes the connection to martingale theory,

and appears in such a context for the first time in [16] (for related results, see [17]).
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Theorem 2.2 (Révész (1965)). If the sequence {fn}n∈N satisfies supn∈N E(f2
n) < ∞ ,

there exist a function f ∈ L2 and a subsequence {fnk
}k∈N , such that

∑
k∈N ak

(
fnk
− f

)
converges P−a.e., for any sequence {an}n∈N ⊂ R with

∑
n∈N a

2
n <∞.

In a related development, Delbaen & Schachermayer ([9], Lemma A1.1; [10]) showed

with very simple arguments that, from every sequence {fn}n∈N of nonnegative, measur-

able functions, a sequence of convex combinations gn ∈ conv(fn, fn+1 · · · ), n ∈ N of its

elements can be extracted, which converges P−a.e. to a measurable f : Ω → [0,∞]. This

result was called “a somewhat vulgar version of Komlós’s theorem” in [10], and is im-

plied by Theorem 3.1 below. Indeed, the assertion of convergence is much more precise

for Cesàro averages, than it is for unspecified forward convex combinations.

In several contexts, including optimization problems treated via convex duality, non-

negativity is often no restriction at all, but rather the natural setting (e.g., [18]; [19]; [13]; [14],

Chapter 3 and Appendix). Then, in the presence of convexity, Lemma A1.1 in [9], or The-

orem 3.1 here, are very useful analogues of Theorem 2.1: they lead to limit functions f

in convex sets (such as the positive orthant in L0, or the unit ball in L1) which are not

compact in the usual sense, but are “convexly compact” as in Žitković [25].

3 Results

The purpose of this note is to prove with elementary tools the following version of Theorem

2.1 and its companion result, Theorem 3.2 below.

Theorem 3.1. Given a sequence {fn}n∈N of nonnegative, measurable functions on a prob-

ability space (Ω,F ,P), there exist a measurable function f : Ω→ [0,∞] and a subsequence{
fnk

}
k∈N of the original sequence, such that (2.2) holds.

We observe that the result imposes no condition on the functions f1, f2, · · · , apart from

measurability and nonnegativity. This comes at a price: the function f , constructed here

carefully starting with (4.3) below, can take the value +∞ on a set of positive measure.

We formulate now our second result, a direct consequence of the first, recalling the notation

x± = max(±x, 0) for the positive and negative parts of a real number x.

Theorem 3.2. Given a sequence {fn}n∈N of real-valued, measurable functions on a prob-

ability space (Ω,F ,P) with supn∈N E
(
f−n
)
<∞ , there exist a measurable function f : Ω→

(−∞,∞] and a subsequence
{
fnk

}
k∈N of the original sequence, such that (2.2) holds.

Remark 3.3. The function f in Theorem 3.2 is integrable if, in addition to the condi-

tions there, supn∈N E
(
f+
n

)
< ∞ (equivalently, supn∈N E

(
|fn|
)
< ∞) holds as well. Thus,

Theorem 2.1 emerges as a consequence of Theorem 3.2.

Theorem 3.1 is not new. It was established by von Weizsäcker in [24] using the

Komlós Theorem 2.1, and was studied further in [23]; see also § 5.2.3 of [13]. Our proofs

for Theorems 3.1, 3.2 appear in Section 5; they are new and, we believe, not without

methodological/paedagogical merit. They proceed from scratch, and lead to the original

Komlós theorem as well (cf. Remark 3.3) using tools minimal and simple.
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4 Preparation

We place ourselves in the setting of Theorem 3.1. In the arguments that follow we shall

pass often to subsequences, and to diagonal subsequences, of a given {fn}n∈N. To simplify

typography, we denote frequently such subsequences by the same symbols, {fn}n∈N.

For each integer k ∈ N, we introduce now the truncated functions

f (k)
n := 1[k−1,k)(fn) · fn , n ∈ N (4.1)

and note the partition of unity
∑

k∈N f
(k)
n = fn , ∀ n ∈ N .

Lemma 4.1. For the sequence of functions {fn}n∈N in Theorem 3.1, there exists a sub-

sequence, denoted by the same symbols and such that the functions of (4.1) converge for

every k ∈ N to an appropriate measurable function f (k) : Ω→ [0,∞) , in the sense

f (k)
n

hC−−−→
n→∞

f (k), P− a.e. (4.2)

Proof (after [5], pp. 145–146): For arbitrary, fixed k ∈ N , the sequence
{
f

(k)
n

}
n∈N of (4.1)

is bounded in L∞, thus also in L2. Theorem 2.2 provides a function f (k) ∈ L2 and a

subsequence
{
f

(k)
nj

}
j∈N of

{
f

(k)
n

}
n∈N , such that

∑
j∈N

(
f

(k)
nj − f (k)

)
/j converges P−a.e.

The Kronecker Lemma ([7], p. 123) gives

0 = lim
J→∞

1

J

J∑
j=1

(
f (k)
nj
− f (k)

)
= lim

J→∞

1

J

J∑
j=1

f (k)
nj
− f (k), P− a.e.

for the sequence
{
f

(k)
nj

}
j∈N and all its subsequences. We pass now to a diagonal subse-

quence, denoted
{
fn
}
n∈N again, and such that (4.2) holds for every k ∈ N .

With these ingredients, we introduce the measurable function f : Ω→ [0,∞] via

f :=
∑
k∈N

f (k), and consider the set A∞ := {f =∞}. (4.3)

With the help of Fatou’s Lemma, and the notation of (4.1)–(4.3), we obtain then

lim
N→∞

1

N

N∑
n=1

fn ≥ f , P− a.e. (4.4)

lim
N→∞

1

N

N∑
n=1

fn =∞ = f , P− a.e. on A∞ (4.5)

from Lemma 4.1, for a suitable subsequence (denoted by the same symbols) of the original

sequence {fn}n∈N and for all further subsequences of this subsequence.

The inequality in (4.4) can easily be strict. Consider, for instance, fn ≡ n , so that

f
(k)
n = 0 holds in (4.1) for every fixed k ∈ N and all n ∈ N sufficiently large. This leads to

f (k) = 0 in (4.2), thus f = 0 in (4.3); but 1
N

∑N
n=1 fn →∞ as N →∞.

This preparation allows us to formulate a somewhat more technical and precise version

of Theorem 3.1, as follows. The familiar convention ∞ · 0 = 0 is employed throughout.
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Proposition 4.2. Fix a sequence {fn}n∈N of nonnegative, measurable functions on the

probability space (Ω,F ,P), and recall the notation (4.1)–(4.3). There exist then a subse-

quence, denoted again as {fn}n∈N , and a set A ⊇ A∞ , such that

fn
hC−−−→

n→∞
fA := max

(
f, ∞ · 1A

)
, P− a.e. (4.6)

It is clear that Theorem 3.1 will be established, once Proposition 4.2 is. When C :=

supn∈N E(fn) <∞ holds, f in (4.3) is integrable, namely E(f) ≤ C from (4.4) and Fatou.

In particular, f is then real-valued, thus fA ≡ f in (4.6).

5 Proofs

We shall need a couple of auxiliary results. First, and always with the notation of (4.1)–

(4.3), we note the following consequence of monotone and dominated convergence.

Lemma 5.1. Suppose the set D ⊆ Ω\A∞ = {f <∞} satisfies E
(
f 1D

)
<∞ . Then, for

any ε ∈ (0, 1), there exists, after passing to a suitable subsequence, an integer K ∈ N with

lim
n→∞

E
[
fn 1{K≤fn<L}∩D

]
= lim

n→∞
E
[
f [K,L)
n 1D

]
< ε , ∀ L = K + 1,K + 2, · · · . (5.1)

We are using, here and throughout, the notation

f [K,L)
n :=

L∑
k=K+1

f (k)
n = fn 1[K,L)(fn) , f [K,∞)

n :=
∑

k≥K+1

f (k)
n = fn 1[K,∞)(fn) , (5.2)

and in an analogous manner f [K,L) :=
∑L

k=K+1 f
(k) , f [K,∞) :=

∑
k≥K+1 f

(k).

Secondly, we recall (4.5) and observe the following dichotomy.

Lemma 5.2. In the setting of Proposition 4.2, consider any measurable set B ⊇ A∞ such

that the property fn
hC−−−→

n→∞
∞ of (4.5) holds P−a.e. on B. Then, either

(i) there exist a set C ⊇ B with P(C) > P(B) and a subsequence, still denoted {fn }n∈N ,
such that

fn
hC−−−→

n→∞
∞ holds P− a.e. on C ; or (5.3)

(ii) the Cesàro convergence fn
hC−−−→

n→∞
f <∞ holds P− a.e. on Ω \B ⊆ {f <∞}.

Under Case (ii), the set B ⊇ A∞ is maximal for the P−a.e. property fn
hC−→ ∞: it

cannot be “inflated” to a set C ⊇ B, which satisfies (5.3) and has bigger measure. This

leads then to Proposition 4.2, and thus to Theorem 3.1 as well.

5.1 Proof of Theorem 2.2

Because {fn}n∈N is bounded in L2, we can extract a subsequence that converges to some

f ∈ L2 weakly in L2. Thus, it suffices to prove the result for a sequence {gn}n∈N bounded

in L2, and with gn → 0 weakly in L2. We take such a sequence, then, and approximate

each gn by a simple hn ∈ L2 with ‖gn − hn‖2 ≤ 2−n, ∀n ∈ N. This gives, in particular,
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∑
n∈N
|gn − hn| <∞ , P− a.e. ; hn → 0 weakly in L2. (5.4)

We construct now by induction a sequence 1 = n1 < n2 < · · · of integers, such that

|ϑk| < 2−k holds P− a.e., for ϑk := E
(
hnk

∣∣hn1 , · · · , hnk−1

)
, k = 2, 3, · · · , (5.5)

thus: hn1 = h1 is simple, and E(hn|h1) =
∑J

j=1 γ
(n)
j 1Aj a linear combination of indicators

with P(Aj) > 0, γ
(n)
j =

(
1/P(Aj)

)
· E
(
hn 1Aj

)
. This last expectation tends to zero as

n→∞ from (5.4), for every fixed j; so we can choose n2 > n1 = 1 with |γ(n2)
j | < 2−2, for

j = 1, · · · , J ; i.e., |ϑ2| < 2−2, P−a.e. We can keep repeating this argument since, at each

stage,
(
hn1 , · · · , hnk−1

)
generates a finite partition of the space; and arrive at (5.5).

The sequence {hn}n∈N is bounded in L2, and thus the same is true of the martingale

Xn :=
∑n

k=0 ak
(
hnk
−ϑk

)
, n ∈ N0 for any {an}n∈N0 ⊂ R with

∑
n∈N a

2
n <∞. Martingale

convergence theory ([7], p. 334) shows that the series
∑

k∈N ak
(
hnk
−ϑk

)
converges P−a.e.

But we have also
∑

k∈N
(∣∣ϑk∣∣ +

∣∣gnk
− hnk

∣∣) < ∞, P−a.e. from (5.4)–(5.5), and deduce

that
∑

k∈N ak gnk
converges P−a.e., the claim of the theorem.

5.2 Proof of Lemma 5.1

We shall argue by contradiction, assuming the existence of an ε ∈ (0, 1) with the property

that, for every K ∈ N, there exists an integer L > K such that

E
[ L∑
k=K+1

f (k)
n 1D

]
= E

(
f [K,L)
n 1D

)
≥ ε (5.6)

holds for infinitely many integers n ∈ N. But this means that there is a subsequence,

again denoted by {fn}n∈N , along which we have (5.6) for every n ∈ N. As a result, also

E
[ L∑
k=K+1

( 1

N

N∑
n=1

f (k)
n

)
1D

]
≥ ε (5.7)

holds for every N ∈ N. Now all the truncated functions f
(k)
n as in (4.1), for k = K+1, . . . , L

and n ∈ N, take values “on the Procrustean bed” {0}∪[K,L); and limN→∞
1
N

∑N
n=1 f

(k)
n =

f (k) holds P−a.e., on account of Lemma 4.1. Therefore, E
[∑L

k=K+1 f
(k) 1D

]
≥ ε from

bounded convergence and (5.7); and the nonnegativity of these f (k)’s implies also

E
( ∑

k≥K+1

f (k) 1D

)
= E

(
f [K,∞) 1D

)
≥ ε , ∀ K ∈ N . (5.8)

The nonnegativity gives also limK→∞ ↑
∑K

k=1 f
(k) = f , both P−a.e. and in L1 on D. By

monotone convergence, E
[
f [K,∞) 1D

]
< ε/2 holds for all K ∈ N large enough. But this

contradicts (5.8), and we are done.
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5.3 Proof of Lemma 5.2

We fix j ∈ N, define

Dj := {f ≤ j}\B , E[K,∞)
n :=

{
f [K,∞)
n ≥ K

}
∩Dj =

{
fn ≥ K

}
∩Dj , (5.9)

and distinguish two contingencies:

Contingency A: α := limK→∞ limn→∞ P
(
E

[K,∞)
n

)
> 0 .

Contingency B: α = 0 .

• In ContingencyA, we pass to a subsequence {fn}n∈N with P
(
E

[n2,∞)
n

)
≥ α/2 , ∀ n ∈ N;

consider indicators gn := 1
E[n2,∞)
n

, n ∈ N ; and find a subsequence, still denoted {gn}n∈N,

that satisfies

gn
hC−−−→

n→∞
g, P− a.e. (5.10)

for some measurable g : Ω → [0, 1] with E(g) ≥ α/2, by bounded convergence. We are

appealing here also to Theorem 2.2 and Kronecker, as in the proof of Lemma 4.1. We

obtain in this manner fn
hC−−−→

n→∞
∞ , P−a.e. on {g > 0} .

The set {g > 0} ⊆ Ω\B has measure P
(
g > 0

)
= E[1{g>0}] ≥ E[g] ≥ α/2 ; thus we

are under Case (i) of Lemma 5.2, with C := {g > 0} ∪B and P(C) > P(B).

• Now we pass to ContingencyB. We fix ε > 0 and Dj = {f ≤ j}\B, and apply Lemma

5.1 to find K ∈ N for which (5.1) holds. We construct by induction a subsequence, this

time indexed by {nm}m∈N, and an increasing sequence {Km}m∈N of integers, as follows:

Start with n1 = 1,K1 = K, and suppose n1, . . . , nm as well as K1, . . . ,Km have been

constructed. Select, by the premise of Contingency B, an integer Km+1 > Km, such that

lim
n→∞

P
(
E [Km+1,∞)

n

)
< 2−m . (5.11)

Using (5.1), select now an integer nm+1 > nm so large, that E
(
f

[K,Km+1)
nm+1 1Dj

)
< ε holds,

therefore also

E
(
f [0,Km+1)
nm+1

1Dj

)
< E

(
f [0,K)
nm+1

1Dj

)
+ ε , (5.12)

completing the induction. Now, from (5.11), (5.9) and Borel-Cantelli, we have P−a.e.

lim
M→∞

(
1

M

M∑
m=1

f [0,Km)
nm

· 1Dj

)
= lim

M→∞

(
1

M

M∑
m=1

fnm · 1Dj

)
. (5.13)

On account of (5.12), the expectation of the function on the left-hand side in (5.13) satisfies

lim
M→∞

E
[(

1

M

M∑
m=1

f [0,Km)
nm

)
1Dj

]
≤ lim

M→∞
E
[(

1

M

M∑
m=1

f [0,K)
nm

)
1Dj

]
+ ε

≤ E(f 1Dj ) + ε . (5.14)

At this point, we need to let ε ↓ 0, j →∞. We pass to the limit ε ↓ 0 first, with j ∈ N
fixed, and find a diagonal subsequence, still denoted by {fn}n∈N , with

fn
hC−−−→

n→∞
f, P− a.e. on Dj ; (5.15)
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details for this argument are supplied right below. Thus, on account of (5.13), (5.14):

E
[(

lim
N→∞

(
1

N

N∑
n=1

fn

)
− f

)
1Dj

]
= 0 , ∀ j ∈ N . (5.16)

The next step is to let j →∞. We do this again by extracting subsequences, succes-

sively for each j ∈ N , then passing to a diagonal subsequence. In this manner, we obtain

(5.16) with Dj replaced there by the set D :=
⋃

j∈NDj = {f <∞}\B .
We invoke at this point (4.4), which gives limN→∞

1
N

∑N
n=1 fn = f , P−a.e. on this D,

and deduce that we are in Case (ii) of Lemma 5.2.

Proof of (5.15): Let us reprise what has been done so far, for ε(1) = ε > 0: We have

seen that the subsequence {fnm1Dj}m∈N of {fn1Dj}n∈N is Borel-Cantelli equivalent

(cf. section 2) to h
(1)
m := f

[0,Km)
nm 1Dj , m ∈ N; i.e.,

∑
m∈N P

(
fnm1Dj 6= f

[0,Km)
nm 1Dj

)
<

∞ . And for a given ε(1) > 0, we have found an integer K1 ∈ N with the property

E
[
h

(1)
m 1{h(1)

m ≥K1}∩Dj

]
< ε(1) for all m ∈ N large enough.

Repeating this argument with ε(2) > 0, we extract a subsequence {fnm`
1Dj}`∈N of

{fnm1Dj}n∈N and find K2 ∈ N, and a sequence
{
h

(2)
`

}
`∈N which is Borel-Cantelli

equivalent to {fnm`
1Dj}`∈N , with

E
[
h

(2)
` 1{h(2)

` ≥K2}∩Dj

]
< ε(2) for all ` ∈ N sufficiently large.

Continuing in a similar manner, then passing to a diagonal subsequence, we obtain a

sequence {fn
}
n∈N such that, for every term ε(i) > 0 in a sequence with ε(i) ↓ 0 , there

exist Ki ∈ N and a sequence
{
h

(i)
n

}
n∈N , Borel-Cantelli equivalent to {fn

}
n∈N , with

E
[
h(i)
n 1{h(i)

n ≥Ki}∩Dj

]
< ε(i) for all n ∈ N sufficiently large.

But this implies fn
hC−−−→

n→∞
f, P− a.e. on Dj , as claimed in (5.15).

5.4 Proofs of Proposition 4.2 and Theorem 3.1

On the strength of Lemma 5.2 we construct, by exhaustion or transfinite induction argu-

ments and as long as we are under the dispensation of its Case (i), an increasing sequence

B1 ⊆ B2 ⊆ . . . of sets as postulated there, whose union B∞ :=
⋃

j∈NBj is maximal with

the property (5.3) for an appropriate subsequence.

But such maximality means that, on the complement Ω\B∞ of this set, we must be

in the realm of Case (ii). This establishes the Proposition, thus also Theorem 3.1.

5.5 Proofs of Theorems 3.2 and 2.1

The sequence {f−n }n∈N satisfies the conditions of Theorem 3.1, and supn∈N E
(
f−n
)
< ∞ .

Thus, from Theorem 3.1 and Fatou we obtain, after passing to a subsequence,

f−nk

hC−−−→
k→∞

f (−), P− a.e.
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for some f (−) : Ω→ [0,∞) which is integrable: E
(
f (−)

)
≤ supn∈N E

(
f−n
)
<∞ .

Passing yet again to a subsequence, still denoted {fnk
}k∈N , we apply Theorem 3.1 to

the positive parts
{
f+
nk

}
k∈N and obtain f+

nk

hC−−−→
k→∞

f (+), P − a.e., for some measurable

f (+) : Ω→ [0,∞]. The proof of Theorem 3.2 is completed by the observation

f+
nk
− f−nk

= fnk

hC−−−→
k→∞

f := f (+) − f (−), P− a.e.

If supn∈N E
(
f+
n

)
< ∞ also holds, we have as before E

(
f (+)

)
≤ supn∈N E

(
f+
n

)
< ∞ , the

just defined function f is integrable, and Theorem 2.1 follows.

References

[1] Aldous, D. (1977) Limit theorems for subsequences of arbitrarily-dependent se-

quences of random variables. Z. Wahrschein. Verw. Gebiete 40, 59-82.
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