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Abstract

Every sequence f1, f2, · · · of random variables with limM→∞
(
M supk∈N P(|fk| > M)

)
= 0 con-

tains a subsequence fk1
, fk2

, · · · that satisfies, along with all its subsequences, the weak law of

large numbers: limN→∞
(
(1/N)

∑N
n=1 fkn −DN

)
= 0 , in probability. Here DN is a “corrector”

random variable with values in [−N,N ], for each N ∈ N ; these correctors are all equal to zero

if, in addition, lim infk→∞ E
(
f2k 1{|fk|≤M}

)
= 0 holds for every M ∈ (0,∞) .
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1 Introduction

On a probability space (Ω,F ,P), consider real-valued measurable functions f1, f2, · · · . If these are

independent and have the same distribution with E(|f1|) <∞ , the celebrated Kolmogorov strong

law of large numbers (SLLN: [9]; [8]; [3], section 2.4) states that the “sample average” (f1 + · · · +
fN )/N converges P−a.e. to the “ensemble average” E(f1) =

∫
Ω f1 dP , as N →∞.

A bit more generally, if the functions fk(ω) = f
(
T k−1(ω)

)
, k ≥ 2, ω ∈ Ω are the images of

an integrable function f1 : Ω → R along the orbit of successive actions of a measure-preserving

transformation T : Ω→ Ω , then the above sample average converges P−a.e. as N →∞ to the condi-

tional expectation f∗ = E(f1|I) of f1, given the σ−algebra I of T−invariant sets, by Birkhoff’s

pointwise ergodic theorem ([1]; [3], p. 333).

A deep result of Komlós [10], already 55 years old but always very striking, says that such

“stabilization via averaging” occurs within any sequence f1, f2, · · · of measurable, real-valued func-

tions with supn∈N E(|fn|) < ∞ . More precisely, there exist then an integrable function f∗ and a
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subsequence
{
fkn
}
n∈N such that (fk1 + · · ·+ fkN )/N converges to f∗ , P−a.e. as N →∞; and the

same is true “hereditarily”, that is, for any further subsequence of
{
fkn
}
n∈N .

We have also another celebrated result of Kolmogorov, the weak law of large numbers (WLLN:

[9]; [2], section 5.2; [3], § 2.2.3) for a sequence f1, f2, · · · of real-valued, measurable functions which are

independent. If these are identically distributed and satisfy the weak-L1−type condition

lim
M→∞

(
M · P

(
|f1| > M

))
= 0 (1.1)

(rather than E(|f1|) <∞ ), then we have the WLLN

lim
N→∞

(
1

N

N∑
n=1

fn −DN

)
= 0 , in probability (1.2)

for the sequence of “correctors”

DN := E
(
f1 1{|f1|≤N}

)
, N ∈ N ; (1.3)

whereas, if the independent functions f1, f2, · · · do not have the same distribution but satisfy

lim
N→∞

N∑
n=1

P
(
|fn| > N

)
= 0 , lim

N→∞

1

N2

N∑
n=1

E
(
f2
n 1{|fn|≤N}

)
= 0 , (1.4)

then again the convergence in probability (WLLN) in (1.2) holds, though now with correctors

DN :=
1

N

N∑
n=1

E
(
fn 1{|fn|≤N}

)
, N ∈ N . (1.5)

It was shown in [5], [4], ([2], Theorem 5.2.3) that, for independent f1, f2, · · · , the conditions in (1.4)

are not only sufficient but also necessary for the existence of a sequence D1, D2, · · · of real numbers

with the property (1.2).

Let us also note, that the correctors in both (1.3), (1.5) satisfy |DN | ≤ N ; and that they are all

equal to zero, if each of the f1, f2, · · · has distribution symmetric around the origin.

The purpose of this Note is to present a Komlós-type version of the weak law of large numbers.

This is formulated in the next section, and proved in section 3. The proof, considerably simpler

than its counterpart for the strong law in [10], is based on truncation and on weak-L2 convergence

arguments, which give also sufficient conditions for the resulting correctors to be equal to zero.

Examples and ramifications are taken up in section 4.

2 Result

We consider real-valued measurable functions f1, f2, · · · on a probability space (Ω,F ,P), and intro-

duce for every M ∈ (0,∞) the quantities

τn(M) := M · P
(
|fn| > M

)
, τ(M) := sup

n∈N
τn(M) . (2.1)
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Theorem 2.1. A General, Hereditary WLLN. In the above context, suppose that the weak-

L1−type condition

lim
M→∞

τ(M) = 0 (2.2)

holds. There exist then a sequence of “corrector” random variables D1, D2, · · · with

P
(
|DN | ≤ N

)
= 1 for every N ∈ N , (2.3)

and a subsequence
{
fkn
}
n∈N , such that the WLLN

lim
N→∞

( 1

N

N∑
n=1

fkn −DN

)
= 0 , in probability (2.4)

is satisfied “hereditarily”; i.e., not just by
{
fkn
}
n∈N but also by all its subsequences. If, in addition,

lim inf
k→∞

E
(
f2
k 1{|fk|≤M}

)
= 0 (2.5)

holds for every M ∈ (0,∞) , the correctors in (2.4), (2.3) can be chosen as DN = 0 for every N ∈ N.

The correctors D1, D2, · · · correspond to the generalized mathematical expectations in Kol-

mogorov [9], §6.4; they are also related to the nonlinear expectations developed by Peng in [11].

3 Proof

We start with the simple but crucial idea of “truncation”. This goes back to the work of Khintchine

and Kolmogorov ([5], [7]), where it plays a major role in the proofs of laws of large numbers and

of convergence results for series of random variables.

Lemma 3.1. Under the condition (2.2), we have

lim
N→∞

(
1

N

N∑
n=1

fn −
1

N

N∑
n=1

fn 1{|fn|≤N}

)
= 0 , in probability. (3.1)

Proof: For every ε > 0 , the expression

P

(∣∣∣∣ 1

N

N∑
n=1

fn 1{|fn|>N}

∣∣∣∣ > ε

)
≤ P

(
N⋃

n=1

{
|fn| > N

})
≤

N∑
n=1

P
(
|fn| > N

)
≤ N · max

1≤n≤N
P
(
|fn| > N

)
is dominated by N · supn∈N P

(
|fn| > N

)
, which converges to zero as N ↑ ∞ on account of (2.2).

It follows that, in order to establish (2.4), it is enough to prove

lim
N→∞

(
1

N

N∑
n=1

fn 1{|fn|≤N} −DN

)
= 0 , in probability (3.2)

for a suitable sequence D1, D2, · · · of correctors, and along an appropriate subsequence of {fn}n∈N
denoted by the same symbols for economy of exposition—as well as along all further subsequences

of this subsequence.

3



Proof of Theorem 2.1: For each integer N ∈ N we consider the truncated functions

f [−N,N ]
n := fn 1{|fn|≤N} , n ∈ N (3.3)

that appear in (3.1), (3.2). These are bounded in L∞ (as they take values in [−N,N ]), thus bounded

in L2 as well. As a result we can extract, for each N ∈ N , a subsequence of {fn}n∈N denoted by the

same symbols for economy of exposition, such that the sequence in (3.3) converges weakly in L2 to

some DN ∈ L2 :

lim
n→∞

E
(
f [−N,N ]
n · ξ

)
= E

(
DN · ξ

)
, ∀ ξ ∈ L2 . (3.4)

And by standard diagonalization arguments, we can extract then a further subsequence of {fn}n∈N ,
denoted again by the same symbols, and such that (3.4) holds for every N ∈ N.

It is fairly straightforward to check that these weak-L2 limits in (3.4) satisfy (2.3). On the other

hand, the lower-semicontinuity of the L2−norm under weak-L2 convergence, in this case∥∥DN

∥∥
L2 ≤ lim inf

n→∞

∥∥∥f [−N,N ]
n

∥∥∥
L2
,

gives P(DN = 0) = 1 for every N ∈ N, under the condition (2.5).

We introduce now, for each M ∈ (0,∞), the quantities

σn(M) :=
1

M
E
(
f2
n 1{|fn|≤M}

)
, σ(M) := sup

n∈N
σn(M) . (3.5)

As shown by Feller ([4], p. 235; see also [3], § 2.3.3), these quantities are related to those in (2.1)

via

0 ≤ σn(M) =
2

M

∫ M

0
τn(t) dt− τn(M) ≤ 2

M

∫ M

0
τ(t) dt (3.6)

for every n ∈ N, M ∈ (0,∞), 1 thus

0 ≤ σ(M) ≤ 2

M

∫ M

0
τ(t) dt , M ∈ (0,∞) . (3.7)

From this bound (3.7) and the assumption (2.2), it follows that we have

lim
M→∞

σ(M) = 0 . (3.8)

We note also

E
(
f [−M,M ]
n

)2
= E

(
f2
n 1{|fn|≤M}

)
≤ M · σn(M) ≤ M · σ(M) (3.9)

for all n ∈ N , M ∈ (0,∞) , therefore

E
(
D2

M

)
≤ sup

n∈N
E
(
f [−M,M ]
n

)2
≤ M · σ(M) = o(M) , as M →∞ . (3.10)

We observe at this point that, in order to prove (3.2) and thus (2.4) as well, along a suitable

subsequence, it is enough to show convergence along this subsequence in L2, namely

lim
N→∞

1

N2
· E

(
N∑

n=1

(
f [−N,N ]
n −DN

))2

= 0 . (3.11)

1 In the integrand of this expression, as it appears on page 235 of [4], there is a typo; this is here corrected.
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And developing the square, we need to show that the expectations of both the sum of squares

N∑
n=1

E
(
f [−N,N ]
n −DN

)2
≤ 2

N∑
n=1

E
(
f [−N,N ]
n

)2
+ 2N · E

(
DN

)2
(3.12)

and the sum of cross-products

2

N∑
n=1

∑
1≤j<n

E
[(
f

[−N,N ]
j −DN

)(
f [−N,N ]
n −DN

)]
(3.13)

are of order o(N2), as N → ∞ , for the subsequence in question and for all its subsequences. Now,

from (3.9), (3.10), the expression in (3.12) is already dominated by 4N2 ·σ(N) = o(N2), as N →∞,

on account of (3.8).

Let us recall what happens at this juncture in the case of independent f1, f2, · · · : the correc-

tors DN are real constants, given as in (1.5), so the differences f
[−N,N ]
n − DN , n = 1, · · · , N are

independent with zero mean, thus uncorrelated. The expectations of their cross-product in (3.13)

vanish, and the argument ends here.

In the general case, when nothing is assumed about the finite-dimensional distributions of the

f1, f2, · · · (in particular, when these functions are not independent) we need to guarantee, by passing

to a further subsequence if necessary, that the expression in (3.13) is also of order o(N2), as N →∞ .

One way to accomplish this, is to ensure that the differences f
[−N,N ]
n −DN , n = 1, · · · , N are very

close to being uncorrelated.

We do this by induction, in the following manner: Suppose the terms f1, · · · , fn−1 of the subse-

quence have been chosen. We select the next term fn in such a way, that the difference f
[−N,N ]
n −DN ,

with N ≤ en2
, is “almost orthogonal” to all of the f

[−N,N ]
1 −DN , · · · , f [−N,N ]

n−1 −DN ; to wit,∣∣∣∣E [(f [−N,N ]
j −DN

)(
f [−N,N ]
n −DN

)] ∣∣∣∣ ≤ e−n
2 ≤ 1

N
(3.14)

for every j = 1, · · · , n−1. Such a choice of fn is certainly possible on account of (3.4), and completes

the induction step.

Returning to (3.13), we note that the summation

2

√
logN∑
n=1

∑
1≤j<n

∣∣∣∣E [(f [−N,N ]
j −DN

)(
f [−N,N ]
n −DN

)] ∣∣∣∣
is straightforward to control: each summand is bounded by N · σ(N) on account of (3.9), (3.10), so

the entire summation is of the order

Nσ(N)

√
logN∑
n=1

2n ∼ Nσ(N) · logN = o(N2) ,

as N → ∞. On the other hand, the validity of (3.14) for every j = 1, · · · , n − 1 implies that the

summation

2
N∑

n=1+
√

logN

∑
1≤j<n

∣∣∣∣E [(f [−N,N ]
j −DN

)(
f [−N,N ]
n −DN

)] ∣∣∣∣
5



is of the order

2
N∑

n=1+
√

logN

n e−n
2/2 ∼

∫ N

√
logN

2x e−x
2/2 dx =

1

N
− e−N ,

as N → ∞, thus certainly of order o(N2) . And it follows that the expression of (3.13) is of order

o(N2) as well.

The argument is now complete. It is also straightforward to check that it works just as well for

an arbitrary subsequence, of the subsequence just constructed.

4 Ramifications and Examples

The condition (3.2), which reads

lim
M→∞

(
sup
n∈N

τn(M)

)
= 0 ,

can be weakened to

lim
M→∞

(
lim inf
n∈N

τn(M)

)
= 0 (4.1)

Indeed, by passing to a subsequence, this becomes

lim
M→∞

(
lim sup

n∈N
τn(M)

)
= 0 , (4.2)

and one checks relatively easily that (4.2) can replace (3.2) in the inductive construction of the

subsequence (of)
{
fn
}
n∈N . We note also that the condition (4.2) can be satisfied, while (3.2) fails.

To see this, take g ∈ L0 with

lim sup
M→∞

(
M · P

(
|g| > M

))
> 0 (4.3)

and define the functions

fn := g · 1{|g|>n} , n ∈ N . (4.4)

We have then τn(M) = M · P
(
|g| > M ∨ n

)
, τ(M) = M · P

(
|g| > M

)
, so (4.3) means that (3.2)

fails. However,

lim
n→∞

τn(M) = M · lim
n→∞

P
(
|g| > n

)
= 0

holds for every M ∈ (0,∞), so (4.2) is satisfied. We obtain this way the WLLN (2.4) for a suitable

sequence of correctors D1, D2, · · · .
It is also checked readily that the condition (2.5) is satisfied here, so all these correctors can

actually be chosen equal to zero.

Example 4.1. To provide another illustration of Theorem 2.1 that highlights the role of both

conditions (2.1) and (2.5) in a more substantial way, let us revisit an old example from [7] (see also

section 5.2 of [2]) in slightly modified form. Suppose that the functions f1, f2, · · · satisfy

P
(
fn = 0

)
= %n ; P

(
fn = k

)
=

(1− %n) c

k2 log k
, k = 2, 3, · · · (4.5)
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with constants 0 < %n < 1 and 2 c =
(∑

k≥2 k
−2
(
1/ log k

))−1
, for every n ∈ N.

We do not impose any condition on the finite-dimensional joint distributions of the f1, f2, · · · ; in

particular, we do not require the f1, f2, · · · to be independent.

In this setting,

τn(M) = 2 cM
(
1− %n

) ∑
k>M

1

k2 log k
∼ 2 c

logM

(
1− %n

)
holds for integers M ≥ 2 in the notation of (2.1). Thus, τ(M) = supn∈N τn(M) ≤ (2 c)/ logM ,

and the condition (2.2) is satisfied. On the other hand, we have also

E
(
f2
n 1{|fn|≤M}

)
= 2 c

(
1− %n

) ∑
2≤k≤M

k2 · 1

k2 log k
≤ 2 cM

log 2

(
1− %n

)
and this shows that the condition (2.5) is also satisfied when

lim sup
n→∞

%n = 1 . (4.6)

We conclude that, under the condition (4.6), there is a subsequence of f1, f2, · · · , denoted again by

the same symbols, for which the WLLN holds with DN ≡ 0, and hereditarily: that is,

lim
N→∞

1

N

N∑
n=1

fn = 0 holds in probability

for f1, f2, · · · and for every one of its subsequences.

Remark 4.2. Theorem 2.1 has a direct extension, with only very obvious notational changes, to the

case where f1, f2, · · · take values in some Euclidean space Rd, rather than the real line. In such an

extension it does not matter whether balls or cubes are considered in the truncation scheme (3.3).
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