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ABSTRACT We investigate those non-o-complete Booiean
algebras for which the theorems of Vitali-Hahn-
Saks, Nikodym, Orlicz-Pettis and Grothendieck
hold and how the validity of these theorems

is interrelated.

INTRODUCTION
1f F is a o-algebra the following theorems hold
) for F:

e

Vitali-Hahn-Saks (VHS): A seguence 1”n}:=1 of finitely

additive, bounded, real valued measures on Fs

(=}
such that {un(A)}n_ converges for every A € F,

1
is uniformly exhaustive.

Nikodym (N): A family M of finitely additive, bounded,

real valued measures on F, such that
{u(n) : uw € M} is bounded for every A € F, is
uniformly bounded.

Orlicz-Pettis (OP): Every measure u : F - X with valuesin

a Banach space X which is o-additive with respect

to the weak topology of X is o-additive with

.

respect to the norm topology of X.

o L



Grothendieck (G): Let B(F) be the Banach space of

bounded F-measurable functions equipped with the

o

sup~-norm. A sequence {u_} in B(F)", that

n’' n=1
converges weak*, converges weakly, i.e. B(F) is
a Grothendieck space.

Rosenthal (R): Every continuous linear map from B(F) to

a Banach space X, which is not weakly compact,
fixes a copy of 1, i.e. B(F) 4is a Rosenthal -

space.

For proofs we refer to [D-U 77] and for an account of the
historic development of these important and beautiful
theorems from Vitali's paper in 1907 on we refer to [F 76].

As regards (VHS) and (N), these theorems used to be
stated eriginally in terms of ¢g-additive measures.
T.Andd (A 61] was the first to realize that these
theorems have their proper setting in the framework of
finitely additive measures and since then many improvements
and generalisations were obtained. So the natural question
as tc whether these theorems could be extended to non-
c-complete Boolean algebras arose.

As regards (G), it was observed by Grothendieck
that on the dual of L”(u) weak and weak sequential
convergence coincide. Lindenstrauss [L 64] proved that for
a C(K)-space this preperty is ecuivalent to a certain ex-
tension property of senarablv valued orerators (see th.
5.1 below). He raised the auestion of characterizina this
pronerty, which we call (G), in terms of the tcpological

properties of K. Since then considerable progress



has been made in the study of Grothendieck spaces but they
still remain mysterious- objects. A good reference is [D 73],
in which a list of open problems is stated.

We take the validity of the theorems in question as
a definition (analocue to calling a locallv convex srace
barelled if the Banach - Steinhaus theorem holds on it):
We say that a Boolean algebra F satisfies (VHS), (N),

(0P), (G) or (R) if the corresponding theorem holds on F.

First we note that an arbitrary Boolean algebra need
not satisfy these rrorerties. Let ¢ (IN) be the algebra
of finite and cofinite subsets of IN and let 5, denote

the Dirac measure located at {n}. The sequence {én};=1

provides a counter-example to (VHS), while the set

{n(én - 5n+1) :n=1,2,3,...} provides a counterexample
to (N) . Concerning (OP) consider the measure y from ¢ (IN)
into c5 (the Banach space of null—sequencésL whose coordinates

are the scalar measures 6 - § For (G) note that

n n+1°
B(¢(IN)) may be identified with the Banach space c¢ of conver-—

gent sequences and that {Sn}oo (i.e., the evaluation in

n=1
the n'th coordinate) is a sequence in c® which converges
weak” but not weakly. Finally note, that the identity on c
is not weakly compact but c does not contain a copy of 17,
whence F does not have (R).

On the other hand, there exist classes of non-g-complete

algebrasAwhich have the above stated properties ([S 68],

[D 78], [F76]).



ke

It was realized that there are strong interrelations

between these properties of a Boolean algebra. (The

reader probably has noticed that the counterexamples in

the case of ¢(IN) are essentially the same.) So it was

asked ([s 68], [D-F-H 75], [F 76]) whether the four rroperties
(vHs) , (G), (N) and (OP) are equivalent for a Boolean

algebra.

The only known equivalence result was due to Diestel,
Faires and Huff [D-F-H 75]: A Bdolean algebra has (VHS) iff
it has (G) and (N).

It is proved that (G) implies (OP) (theorem 6.5 below) .
Whether (G) implies (VHS) (or equivalently (N)) remains open.
None of the other possible implications between (VHS), (G),
(N) and (OP) holds as is shown by a series of examples (see
§ 3 below). As regards (R) we can only show the (trivial)
observation that (R) implies (G). Nevertheless we include
property (R) in this paper as we feel that it has its propexr
setting in this framework.

As regards the organisation of the paper: After a
preliminary § 1 we give in § 2 definitions and present the above
mentioned Diestel - Faires - Huff theorem. We also show
that F has (N) iff the normed space of F-measurable
simple functions is barreled, which allows some sharpenings
of theorems of Dieudenné - Grothendieck and Seever.

Finally we show that in the definition of (OP) one may
reduce to the case of bounded o-additive measures.

In § 3 we give examples. For instance the algebra J
of Jordan-measurable subsets of T0,1] has (N) and (OP) but

not (R), (VHS) and (G). However, there is a guotient algebra
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of J which does not have (OP). Also the Stone space of J
has the property that everv infinite closed subset contains a
copy of BIN.

In § 4 we investicate two special classes of Boolean
algebras:

1) If F 1is a Boolean subalgebra of a oc-complete algebra
L which is not too far away from £ (the condition is that
the Banach space B(F) of bounded F-measurable functions is
a countable intersection of closed hyperplanes in B(x)),
then F has all our properties.

2) On the other hand, if F is a countable union of a ..
strictly increasing sequence {Fn};=1 of Boolean algebras
(these objects arise for example in the theory of martingales),
then F does not satisfy (VHS), (G), (N) or (R).

In § 5 we investigate in detail propertv (G). It is
shown that (G) is ecquivalent to a condition very similar to
(OP) (stated, however, in terms of finitely additive measures) .
We also characterize (G) in terms of convex weak’ -compact
subsets of B(F)". Finally, in § 6 we prove that (G) implies (OP).

My warmest thanks go to Joseph Diestel. Without him
this article never would have been written. He mentioned the
open questions tc me that are rartially solved in this naner
he gave me the unpublished preprint [D-F-H 75] and I had the
oprortunity of some stimulating conversations with him. I
also thank Barbara Faires for her kind collaboration. Finalily,
I am ¢reatly indebted to the referee for manv valuable comments,
simplifications of proofs and modifications of the poor style

in which the first version of this paper was written.
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Most of the results were obtained, while the author was
a Solomon Lefschetz - instructor at the Centro de Inves-

tigacidn del Instituto Politécnico Nacional in Mexico.

§ 1. PRELIMINARIES

In this paper F is a Boolean algebra with the operations
of sup, inf and complementation denoted by V,A and C. The

smallest and largest element of F will be denoted by

@ and Q . The Stone representation theorem (see [S 71a]

for example) states that F has a unique representation as
the field of clopen sets of a totally disconnected compact
Hausdorff space, the "Stone representation space" of F,
which will also be denoted by Q. Note, however, that F
always has many representations as a field of sets (the
Stone representation is one such representation, unicue
only in the above stated sence).

}iEI is a family of elements of F we write
Ai for the smallest element in F ‘+that majorises all

If (&

r
Ai' if such an element exists. (A necessary and sufficient
condition for the existence is that, if F is Stone
represented, the closure of the union of the Ai is open).
Fi is o-complete (resp. complete) if all countable (resp.
all) suprema exist in F.

The letters X,Y,Z will denote Banach spaces, which
-.only for simplicity - are assumed real, and X%,Y*,Z*the
topological duals. A function u : F - X 1is called a measure,
if it is additive, i.e. whenever A1, A2 in F are

disjoint (this means Ay A A? = @), then M(A1 v Az) =

H(A1) + u(Az).



A measure p is called bounded, if Rg(p) ={wA) : A € F}

is bounded and is called o-additive (resp. weakly c-additive)
if for every sequence of mutually disjoint elements

{An}:=1' s.t.»nz1An exists in F, we have n§1 u(An) =
u(nz1An), the sum converging in the norm topology (resp.

in the weak topology).

Denote by B(F) the Banach algebra of real valued
bounded F—measuréble functions, equipped with the sup norm.
B(F) may be obtained in an abstract way as the completion
of the normed algebra BS(F) of simple functions, i.e.
expressions of the form 121 KiXAi' with the obvious‘nbrm
and algebra operations. A less formal approach is to note
that B(F) may be naturally identified with the Banach
algebra C(Q) of continuous functions on the Stone space Q.

The dual B(F)" may be represented as the space of all

‘real valued finitely additive measures p on F with finite
variation norms |llull = sup {i§1lu(Ai)l 2 {Ai}i=1 partition
of F} . Note that a real valued measure has bounded

variation norm iff it is bounded, as the following estimate

shows ([D-S 58], III.1.5.).
sup {Ip(A)l : A € F} < llull £ 2 sup {lu(A)l : A € F}.

Another representation of B(F)* is to interpret it as the
space of Radon measures on the Stone space Q.

Our notation follows [D-U 77] with the following
exception. A measure p : F - X is called "exhaustive"
(in [D-U 77] "strongly additive") if, for every sequence

{(a_ )"

n'n=1 ©f mutually disjoint members of F, Hu(An)H

tends to zero. A family M of X - valued measures is



called "uniformly exhaustive" if Hu(An)n tends to zero
unifofmly in K € M. The following result gives the connection
between uniform exhaustivity and weak compactness in

B(F)*. Althouch this result is wellknown, I am unable

to give a reference for the exact result that we need and

shall therefore sketch a proof.

1.2 Proposition. A subset M of B(F)* is felatively weakly

compact iff M 1is uniformly exhaustive and bounded on the

menbers of F .

Proof: We consider B (Fﬁ as the space of Radon - measures
on the Stone space Q.

If M is relatively weakly compact then M is bounded
énd by Dunford's characterization of weak compactness in
spaces of o-additive measures ([D-U 77], th.IV.2.5) there is a
positive Radon - measure n on o such that M is uniformly
absolutely coﬁtinuous with respect to n. So for every disjoint
seguence {Ai};o:1 of clopen sets in o , <n(Ai) - O , whence
w(A;) - O uniformly in u € M.

Conversely suppose M to be uniformly exhaustive
and bounded on mémbers of F. Then M 1is a bounded subset of
B(F) ™. Indeed, if this were not the case one could - by the
assumption of pointwise boundedness of M on the members
of F f easily construct a disjoint sequence {Ai}:=1
such that

lim sup UpRI)1 2 pe M = o,

Ao

a contradiction to the uniform exhaustivity of M.



As M is bounded we may apply corr. I. 5. 4 of
[D~U 77] to find a control-measure n € B(F) X for M ,

i.e. a positive Radon-measure n on © such that.

lim sup {Ipu(A)l : u € M} = O,
n{A)=0

where A ranges through F. With the help of lemma I.5.1
of [D-U 77] we again may apply Dunford's characterization
of weak compactness to infer that M is relatively weakly

compact in B(F)*.
]

5 2 DEFINITIONS AND A THEOREM OF DIESTEL, FAIRES AND HUFF

2.1 Definition. F has (VHS) if one of the following

equivalent conditions is satisfied:

o

VHS1 A éequence {ptn}n=1 in B(F)* which converaeg
pointwise on F , (i.e., for all » € F, {“r(A)}::1
cenverges) , is uniformlv  exhaustive.

VH52 A seguence {“n}:=1 in B(F)* which converages with
respect to the U(B(F)* ’ BS(F)) - topology converges

weakly, i.e. with respect to o(B(F)™, B(F)™™).

Proof: The equivalence is a direct consequence of
proposition 1.2 and the observation that a relatively
weakly compact sequence that converges with respect to

o (B(F)™, BS(F)) converges weakly.

2.2 Definition. A Banach space X is called a Grothendieck

: " * . ) *
space if a sequence in X which converces weak to zero

cenverces weakly.



2.3.Definition. F has (G) if one of the following equi-

valent conditions is satisfied:

o

G A bounded sequence {u_}

a ¥
in B(F) which converces
1 n’ n=1 (F) ’ S

pointwise on F, is uniformly exhaustive.

G B(F) 1is a Grothiendieck space

.

Proof: BS(F) is a dense subsrace of B(F). Whence a

bounded ¢ (B(F)*, BS(F)) - convercgent sequence is
o(B(F)*, B(F)) -convergent. Conversely it follows from the
uniform boundedness principle that a o(B(F)*, B(F)) -
convergent sequence is bounded. Whence the ecuivalence of
G1 and G2 is again a consequence of proposition 1.2

o

2.4 Definition. F has (N) if one of the following equi-

valent conditions is satisfied:

e
v

N A subset M of B(F)* which is pointwise bounded on F{
for all A € F we have sup {[p(B)]| : p € M} < «) is

uniformly bounded.

The normed space BS(F) (with the supfemum norm) is
barreled.

Proof: Since pointwise boundedness of M on F is the
same as boundedness with resnpect tc the duality <ﬁS(F),B(F)€),
the ecuivalence is a marticular case of IV.5.2 of [s 71].

]

2.5 Theorem [D-F-H 75]: (VHS) & (G) ® (N), i.e. F has

(VHS) iff it has (G) and (N).
Proof: VHS1 =%>G1 and G1 + N1=> VH81 are ecuivalent. So

it remains to prove (VHS) =» (N). Suppose non(N) and (VHS).

3 , >© . x “ &
Then we can find a sequence {“n}n~1 in B(F) which is

0



AT R e S e L e e 2 S i s L i i B, Sl s s e il S S e e s B it it A B B £ et SR b S 5 4

pointwise bounded on F but such that HunH - o, Defining

_ -1/2
xn = HunM Ko

we exhibit a sequence tending pointwise to zero on F,
but such that nxnu - «, a contradiction to (VHS).
O

. Despite its simplicity, the characterization of (N)
by condition N, (which is also essentiallyscontained in
[D-F-H 75]) gives more insight into the nature of property
(N) . For example the following theorems of Seever and
Dieudonné - Grothendieck may be considerably sharpened by
using the "open mapping theorem technique" connected with the

notion of barreledness.

2.6 Theorem ([D-U 77], th. I. 3.3 and I.3.4):

The following properties of F are equivalent:

(1) BS(F) is barreled

(ii) Given any continuous linear map T from a Banach space X
to B(F). such that T(x) contains BS(F) , T is onto
B(F).

(iii)Every linear map T from BS(F) to a Banch space X
with closed graph is continuous.

(iv) Every measure pu from F to a Banach space X , such that

* . * . ;
X O K 1is bounded for each x in some total (i.e. point-

separating) subset T of X*, is bounded.

Proof: (i)&= (iii): follows by ([S 71], IV.8.5 and IV.8.6).
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(iii) =» (iv): If p is civen as in (iv) p extends in a natural
way to a linear manp T : BS(F) - X by putting
T(XA) = pn(A). For every x*e Iy x0T is a bounded
linear functional on BS(F). This means that T is
continuous with respect to the norm-topology on 'BS(F)
and the o(X,T) topology on X so its grarh is closed
in BS(F)“X X. By assumption T is continuous, which
implies the result.

(iv) = (ii): Let T : X - B(F) as in (ii) be given. Factoring
X by ZKer(T), we may assume T +to be injective.
Denote by OX the unit-ball of X. We shall show that
T(OX) contains a zero-neighbourhood of B(F), which
will prove (ii). As BS(F) is dense in B(F), it will
suffice to show that T(0X) ~ BS(F) contains a zero-
neighbourhood of BS(F). Indeed, by the usual arcument
used in the proof of the open mapping thecrem (c.f.
[S 71], lemma III.2 or [J 74] theorem 22.4), this
implies that T(0X) already contains a zero-neighbour-
hood of B(F). As every member of the unit-ball of
BS(F) is a convex combination of indicator - functions,

we only have to show that {'I"_1

(X)) : A €F} 1is a
bounded subset of X. In order to deduce this from (iv)
define the measure
poo: Fo—s x
A —> T—1(XA,)-
Putting T = T*(B(F)*), which is a total subset of X*,

we are exactly in the situation of (iv) and may conclude
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that‘the range of u is bounded, thus proving (ii).

(ii) =:>(i): If BS(F) is not barreled, there exists a lower
semicontinuous seminorm, p say, on BS(F) which is not
continuois. Therefore the norm a = p + I+l is strictly
stronger than |lI*ll_ on BS(F). Let X bhe the completion
of (B_(F),a). As «a is stronger than -l_, X embeds
continuouslv into B(F). Moreover X # B(F) since otherwise
q would be eauivalent to = . The identity X -~ BS(F)

contradicts (ii).

Remark: In the above theorem the word "Banach space" mayv be
replaced by "Ptak space", whence in particular by (locally
convex) "Fréchet space". - N

An interestinag aspect of promerty (N) is that
it furnishes natural examrnles of non-complete normed
barreled spaces with closed subsraces which are not
barreied. For examnle let £ be a o-alcebra and F a
subalgebra which deces not have (N), e.g. Z = {all subsets
of N} and F = ¢(I) . Then BS(F) is a closed non-barreled
subspace of the barreled spvace BS(Z), which is a non-complete

normed space.

2.7 Definition: F has (OP) if one of the following ecuivalent

conditions is satisfied:
OP1 A measure p from F to a Banach space X, which is
weakly o—-additive is o-additive (i.e., for the norm

tonology) .
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opP A bounded measure p from F to a Banach space X,

2

which is weakly o-additive is o-additive.

Clearly OP,=> OP,. But the implication op, = oP,
is not obvions since g-additive (ewvwen real valued) measures on

algebras are not bounded in general. This is due to the fact
that there are alcebras on which nc non-trivial éountable supremna
exist (see 3.14 below). On such an algebra any meésure
(equivalently any linear map from BS(F) to X) is g¢g-additive,
(as the reguirements are empty) but there are unbounded ones
among them.

We now prove OP2 = OP1. Suppose p : F - X is weakly
c—-additive and let {An}:=1 be a disjoint sequencetin F

<0,

such that nZi An exists in F. Then

oo

/ . -
there is N s.t. p restricted to F a nlN An is bounded. ()

Assuming (%) for the moment we may apply OP2 to u restricted to
o0 co

nEN An and infer that néN U

in X. This gives OP2==% oP, .

F a (An) is strongly converagent

To prove (%), assume that it is not true. We shall
construct inductively a strictly increasing sequence

{nk};=1 of integers and elements B, € F such that

I +1
Pk ®1En 1Py
and H(u(Bk)H - @,
ﬁk+1
Since B1 7 C.1 v B1 v C2 Vo ... = nZ1 An € F the corres-

ponding series “(BT) + u(C1) + u(BZ) + ... converges weakly



to “(nz1 An) by the weak o¢g-additivity of p. Hence

u(BK) tends to zero weakly and cannot be unbounded; a

contradiction.
Induction: Let n, = O and suppose Ny oy Dy and
B1, "Bk—1 defined. By assumption there exists

I/ 3 % . *
Dk c lz£k+1 Al St Hu(Dk)H > k. Find %, in X s.t.
Hxi” = 1 and Ix; o u(Dk)I > k. By the ¢g-additivity of

n
- find t.  Ix. v(D/\IVk+1AI>’
X, O u we may fin n,, s-.t. X, 0 p(Dy l=nk+1 1 k,
Dk+1 Ny 41

whence Hu(Dk A l=nk+1 Al)H > k. Putting Bk = Dk A l=nk+1 Al'

we complete the induction step, thus finishing the proof of

OP, =3 OP,.
O

2.8 Definition: We call a Banach space X a Rosenthal space

if every non weakly compact operator T : X - Y fixes a
oo
copy of 1 , i.e. there is a continuous linear map

J :1 - X 'such that T o j is an isomorphism into X.

2.9 Definition: We savy that F has (R) if B(F) is a

Rosenthal space.

2.10 Proposition: (R) = (G), i.e. an algebra F having (R)

has (G).
Proof: It is immediate from the definition that the Banach
space B(F) 1is a Grothendieck svace iff every map

Pl

T : B(F) - ¢, 1s weakly compact (see th.5.%1 below).
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But as = does not contain an isomorphic cony of 1 .

it is plain that (R) implies (G).

To finish the section we state the follcwing result
on the stability of the propverties in gquestion. For the
definition of subalgebras, cuotients and ideals of a

Boolean algebra we refer to (B 63] or [5 62].

2.11 Proposition.

a) None of the proposition (VHS), (G),(N), (0OP) or (R)
is inherited byv sub-alcebras.
b) (VHS), (G),(N) and (R) are inherited by cuotient-

algebras, while (OP) is not.

Proof:

a) This follows from the example in the introduction.

¢(IN) is a sub-algebra of the complete Boolean algebra

P(nq) of all subsets of IN. .

b) Let I be an ideal in F and G = F/I the quotient

algebra. Note that B(G) is in a natural way a

cguotient of B(F), and BS(G) a quotient of BS(F).'

As the property of béing a Gfothendiéck, Roségéhal or a
éarreled space is inherited bv (sepé}ated) aguotient spaces,
we see that (R),(G) and (N) are inherited by aquotient
algebras and bv theorem 2.5 we get the result for (VHES) too.

The fact that (OP) is not inherited by cuotients will be

shown in the forthcomina example (prop. 3.9 below).



o L e TR o T G e, B S S ittt R S M . X s S A L S T S B Sl o U L L b N e

- 17 -

§ 3 EXAMPLES

3.1 Let J denote the family of Jordan - measurable sets in
[0,1), i.e. the A ¢ [0,1] such that bd(A) = A \ A°
is of Lebesaue measure 0. J forms a field of subsets
of [0,1] and B(J) is the Banach space of bounded
Riemann - integrable functions on [0,1].

We shall show that J does not have (G) (and

therefore (VHS) and (R) neither) but does have (N) and (0OP).
Finally we construct a quotient algebra of J which

does not have (0OP).

3.2 Pronosition. J does not have (G).

o

Proof: Define a secuence {p_} in B(J)* by

n’ n=1

p = 6,1
1 1y
9
by = o5 (6 4+ 85,
{Z} {Z}
b = 4 (8 + 8 + 8 + o6 )
3 LI A5 2 {35 i
8 8 8 8
n-1
2
"n+1 Z o
bp =2 k=1 ® 2k=1," €tC-r

where & denotes the usual Dirac-measure. We shall show
that for A € J , uk(A) converges to m(A), the Lebesgue
measure of A. This is clear for intervals and therefore

for finite unions of intervals. If A € J is arbitrary,



then Ao =

18

, Gn’ where Gn are disjoint onen intervals

and C 2, the complement of the closure of A, is of the

form C A = ng1 H_, where the Hn are also disjoint open

n
intervals.
As A is Jordan-measurable, m(A) = m(AO) = n£1 m(Gn)
m(A) =1 - Z m(H.) . Let e > O be agiven and choose
n=1 N n N =
N b -
N such that = m(Gn) + 21 m(Hn) > 1 e. Then
let K be such that vk > K
N N
I m (U, G) = np (ng1 G )l < e
N N
and | m (ng1 H) = nyp ng1 H)I < e
Then vk > K we have
i y
u'kl'A) > uk(nlé"l Gn) 2 m(n=1 Gn) - ez2mn(n) - 2¢,
N N
and  pp(A) = 1 - (Vo HD < 1 -m( U H) +es m(d) + 2e,
so Im(a) - p.k(A)I < 2e.

But the seguence {“k};=1 is not uniformly exhaustive as the

S Tiy 1 3 i ‘_"i §. Z = - £
sets  {{3}},{{g7} . (3 gy gk gt {gtt ... form a family of
disjoint sets {Ak}k=1 in J such that ul(Ak) = 6k,l‘

This readily shows, that J does not have (G).



3.3 Proposition. J has (N).

o *
Proof: Suppose there is a sequence {p_} € B(J) such that

n n=1

{un(A)}z=1 is bounded VA € J and HunH - =, By compactness

of lo0,1] there is t_ € [0,1] such that, for every k € W

1 1 o3
(10T, = 50 £ + gl ~ [0, 1),

is unbounded.
Now we adapt the proof of Nikodym's theorem as presented

in [D-U 77]: We may find a partition (E,,F,) of (0,1] into

disjoint members of J and an integer n, such that
Iun1(E1)l, Iun1(F1)l > 2

At least one of

; 1 1
inf sup sup Ip (ENnE, nlt - =, t + = [)I
kEN nEN EEJ = L & & ook
; 1 1
and inf sup sup Ip (EAF,Alt - =, t + = [)I
kEIN neEN EE] = 1 e & ek
is infinite. If the former is infinite, set S1 = E1 and
T1 = F1; otherwise set S1 = F1 and T1 = E1. In any case
there is an n, > n1 and (E?,Fz), a disjoint partition of
1 1
S, n ]to =y Bt 5{, such that
lunz(Ez)l,lun2(F2)l > 3+ dup (TP
Now at least one of
inf sup sup |p (E ~ Ey) n ]to = %, t, o+ %[)l
keElN neEN E&]J
; 1 1
and inf sup sup L (EATF, nlt - =, t_ + =[)I
kEN nEN EE€J n £ & k@ &
is infintie. If the former, set 82 = E2 and T? = F?;
otherwise, set 82 = F2 and T2 = E2'
Continué in this fashion, obtaining a secuence

{Tn}:= of pairwise disjoint members of J, such that

l and a strictlv increasing sequence of

1
1 1
T € ]t - —, t_ + —
Iy O n © n
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positive integers {nk};:=1 such that, for each k

gy (T > SElun, (TO1 + K + 1.

Now make the crucial observation: for any subsernuence

<o

(T }5_ U, P € J. Indeed
ki71=1 7 1=17k;

191 Ty € 18 Ty ULE)
e o) = )
and (U, Ty )7 o> U, T .
1=1 “ky& 2121 kg
g . &
B¢ 121 T, N G T )7 g
1 1
(187 T, v {81 N gy Ty e

O,(T, \ T,° o {t ).
121 Tk N Ty o

[{et:]

This implies 194 Tkl € J. So we may form any union

lcs

T without leaving J and the seauel of the proof

1=1 "k

b 8

of [D-U 77] carries over word for word.

O
Remark: We have proved proposition 3.3 for thé Jordan-
measurable sets with respect to Lebesgue —measure on [0,1].
But the only essential things, that were.needed, was the
compactness argument and the fact that the point {to} has
Lebesgue - measure zero. Having this in mind one can
easily adapt the above proof to more cgeneral circumstances:

Let S be a completely regular topological space and m

R 0 5 EIN il b A TULETASEI 2 R <ok TN S o B BT L B a3 DA "
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a o-finite nositive Radon-measure on S without atoms (i.e. for
t €S, m({t}) = O0). The algebra Jm(X) of subsets A

of X with m(A \ 2°) =0 has (N) .

But note, that the situation changes drastically if m has
atoms. For example let m = 6{0} be the Dirac-measure at zero

on IR . Then Jm(X) are the subsets A of IR such that

{0} § A\ A°. 1In other words A € J, (X)) iff {0} is

either an interior point of A or of CA. So the seguence
_ 1y 1 . . ;

by = Do (6{5} 6{5:7 ) is unbounded in norm while

{un(A)}n=1 is finally zero for each A € Jm(X).

Let us now state two corollaries of popositon K P
which we formulate for Lebesgue-measure on [0,1] but
which of course may be generalized as above. It is inter-
esting that the field of finite unions of intervalls is

not sufficient for the forthcoming corollary to hola.

3.4 Corollary: A subset B of L1[O,1] is bounded iff

for every A € J the set {IA f dm : £ € B} is bounded.

O

3.5 Corollary: The space of simple Riemann-intecrable

functions on [0,1], equipved with the supremum norm, is

barreled.
O
3.6 Definition. ([D 78]): An algebra F is called up-down
semi~complete if for everv disjoint sequence {An}:=1
. F . o2 . . F 7
in such that n!1 An exists in 5 ] A, also

exists in F for every subsequence {nk
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For example if @ 1is an F-space or, equivalently
F satisfies Seever's interpolation property then F is
up-down semi-complete [S 68]. Dashiell [D 78] has shown that
an "up-down semi—complete" algebra which satisfies a mild
additional lattice propertyv satiesfies (R), (VHS), (G) and
(N), and has applied these results to lattices of Baire
functions.
It is clear that we have also

3.7 Proposition. An ur-down sericomplete alcebra F

satisfies (op) .

3.8 Proposition. J is up-down semi-complete.

Proof: Let {An}c:l___1 be a disjoint sequence in J such

that nv An € J. First note that, since the one-point-

=1

sets {t} belong to J, n!1 An' the minimal set in J
majorizing all An, coincides with the set-thecretic union

(o o]
<

ng1 A_. Bv adding [O,T]\ng1 A to the seguence {An}n=1
we mav suppose U, A = [0,1]. Whence
n=1 "'n
oo <o O
Z\ —_ —
n§1 305 B n§1 m(An) LE

For a subseguence {nk}k=1 the boundary of the set p Ank
. . _ = o o
is given by Bd = U, Ank \ (Y4 Ank) . For every n € IN ,
Bd n Ag = ¢. Indeed, if n occurs in {nk};=1 then
o 0 o L. . k2 AC _
Al € (kg1 Al ), if it does not, then k21 Ank(1 n=¢-

k
This shows that m(Bd) = 0, i.e., kg1 Ank belongs to J

and it is evidently the Boolean supremum cf the seguence

{(a_ ¥, ..
nk k=1
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Remark: This answers the question, raised in ([D 73]), if

up-down semi-completness implies (R) in the negative.
J also provides a negative answer to the question, raised
in [S 68] and [D-F-H 75], if (N) and (VHS) are equivalent.
Finally I wanf to note that proposition 3.8 of course also
generalizes to the hypothesis in the remark following

proposition 3.3.

3.9 Proposition. There is a auotient-algebra of J that

does not satisfy (OP) and therefore cannot be up-down semi-

complete. Whence neither (OP) nor ur-down semi-completness

is inherited by cuotients.

Proof: Let I be the ideal in J of sets that contain no

oo

dvadic pecint other that O or 1. Consider {un}n:1 as
defined in the proof of proposition 3.2 and note that the
Hp all vanish on T.

So, if J denotes the cguotient-algebra J/1, the

w, are well defined on J. Define

PAF’;{HZH(A) - uzn_T(A)}nz']'

It follows from the proof of 3.2 that yu takes its
values in Coe Evidently pu 1is weakly o-additive as on
the bounded sets of c. the weak topology concides with the

coordinate-wise tonology.

. 1 13 21
Define A,] = {—é}""’ An = {-in' ‘i'n,...,—z-—rr'},...,

which are elements of J and denote by ﬁp their images in

j ]rl [ s [ o o
. I \ \_ = ) at = v irse c ot
Then V. A = [0,1] but 1, u(A)) of course does not

converce stroncoly in Sy

d
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3.10 Corollarv: (N) £ (OP).

Proof: The algebra j, constructed in 3.9, has (N)
(by 3.3 and 2.11) but not (OP).

D
Summing up: (N) imrlies neither (VHS), nor (G), nor (OP).
Also (OP) implies neither (VHS) nor (G). That (OP) does not
imply (N) will be shown in 3.16. Unfortunately, we leave open

the cuestion of wether (G) implies (VHS).

We still show another pronerty of the Stone sprace cf J.

3.11 Proposition. Let @ be the Stone space of J and D

oo

an infinite subset of Q. Then there is a secuence {Xn}n=1

» [=o] .
in D such that the closure of ‘Xn}n=1 1n @  is homeomorphic

to RBIN, the Stone - Cech - compactification of IN . Hence

every infinite closed subset of Q «contains a copy of BIN.

Proof: It will be convenient to make the following convention.

If A is in J, we write A, if we consider it as a member
of the field of subsets of [0,1], and write A, if we
consider it as a clopen subset of 2.

By the compactness of [0,1] there is for X € @
a unique "localisation point", i.e. a point t € [0,1]

such that for every neighbourhood V of t, V € J, x

is contained in V. Hence we can choose a secuence

;=1 in D so that the localisation necints t of x

) n n

converge to some t_ € [0,1]. It is easy to construct a
o0
subseaquence {Xn L . and a disjoint sequence {A,{}1 in J

e |
=1
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such that x € A and each A is contained in
Ny k k
1 1 ;
]to - % 7 E[' Relakel xnk by x.
if N1, N2 is a partition of I, let
— o i = . .
B1 U{Ak : k € N1, and B2 U{Ak : k € N2}. Note
that B1 and B2 are disjoint members of J. Hence §1
and 52 are disjoint clopen sets in Q such that
{xk}kEN1 ¢ B1 and {xk}kEN2 c B2. In particular
[ =
{Xk}kEN1 " ‘Xk}kENZ 2

which proves that {Xk}:=1 is homeomorphic to BIN.

O

3.12 Definition. An algebra F has property (n-o) if

no non-trivial countable suprema exist in F, 'i.e., for

' )
no seguence {A_}

o’ n=1 of mutuallv disjoint, non-zero

O

elements in F, the supremum n¥1 An exists in F.

The following proposition is trivial.

3.13 Pronosition. (n-o) =§ (op), i.e. if F has {n-0o),
F has (opP). O
It is well known that the quotient algebra of ()

modulo the ideal of finite subsets of W or, equivalently,
the algebra of clopen subsets of BIN \ N has property
(n-o) (c.f. [S 71 al, prop. 16.5.6.). However, this algebra
also verifies all our other properties (as pIWN \ N is

an F-space [S 68]). So we have to consider more general

cases.,.



3.14 Proposition: Let X be a set and F a field of

subsets of X. Suppose F contains all countable sets
and let I be the ideal of finite sets. Then F/I has
property (n-o).

Proof: (c.f. [S 71 a) 16.5.6.) Let z§1 < 5,2 < 113

be a strictly increasing seqguence in F = F/I and
suppose A = ng1 An exists in F. Choose Bir Byreen
and A to be revresentants of K1, ﬁz,... and A in
F. Of course we mav choose the {An};=1 to be

increasing in F too. Then, for every n € IN, An'\ A

is finite, while A \ A is infinite (the A are
1 n n
strictly increasing). Therefore there exists a sequence

[=>]

{x_}

n’n=1 1in A s.t. X, € An+1 X An' Let B = A‘\{xn}

n=1"

which belongs to F, and let B be its image in F. Then

A_ £ B for every n€N, while B is strictly smaller

~

than A, a contradiction.

3.15 Let F be the field of subsets of [0,1] generated

by the dvadic intervals [%ﬁ . %ﬁl] and the countable

sets. Let I be the ideal of finite sets and F E#l
the quotient algebra. Bv 3.14 F has property (n-o)

and therefore,by 3.13, (OP).

3.16 Proposition. F does not have (N) or (G). Hence

(OP) == (N) .
Remark: The second part of the provosition is the result

promised after 3.10.



Proof: For n 2z 1 define the measures

w, = no. (XLOI%] . m - x[%’%] . m)
on F (m denoting the Lebesgue measure). Clearly
{”n (A)}:=1 is eventually zero for everv A € F, while
an" = 2n tends to infinity. As the k, @all vanish on

I, they factor through F, which readily shows that F

does not have (N). Considering v, =D .u s we may

n

conclude that F does not have (G) either.

\

D
3.7 In the above example the property (OP) was implied
by the fact, that because of (n-¢) every measure is
trivially o-additive (regardless with respect to which
topology) . Another way of finding algebras having (OP) is to
construct examples of algebras F on which no real
‘valued measure (exept p = 0) is o-additive.
Indeed a Banach valued measure on F, which is weakly
o—additive, then is necessarily identically Zero.
It is an old result (c.f. [H 63], lemma 15.4.) that
the complete Boolean algebra of regular open subsets of
[0,1] has the proverty that every o-additive real valued
measure on it vanishes identically. Accidentally, this
algebra being corrlete satisfies all our properties. But there

are other algebras with this propertv.

3.18 Preposition. Let F be the algebra of clopen

subsets of {0,1}]N . Every o-additive real valued measure

on [ wvanishes identically. Hence F has (OP).



Proof: Let u € B(F)*, . # 0, and suppose for simpli-
city p 2 0. As B(F) mayv be identified with C(aA), the
space of continuous functions on A = {O,!}Rq, Lo is

the restriction of a positive Radon-measure on A, denoted
1, to the clopen sets.

If p has atoms, there exists xo € A such that

E({xo}) > 0. Represent. A\ {XO} as a countable disjoint
union of cloven sets {A }w_ . Note that y A_ = A (the
: n’n=1 n=1 "'n
supremum being taken in F ). But
nZq WA = Eoou(A ) = u(a\ {x }) < w(a)-= ula);

therefore L is not o-additive.

If p has no atom, let {xn}:___1 be a dense sedauence

in A and choose inductivelv clopen neighbourhoods An

of X, Sate n(a,) < 271, n(A). Putting
B, = A, % (A1v...\/An_1), we again obtain a disjoint
sequence (B ¥ inm F, 8.t V. B = A, while

n n=1 n=1 "n

oo

g h(B) < n(a).

For the case of signed u, the above argument

adapts easily.

On the other hand, it is plain to show that F does not

have (N) and (G). (Compare the proof of 3.16, notinc
that F may also be represented as the field of subsets
of [0,1] generated by the dvadic intervals [%ﬁ, %%l{

Hence again we get an example of an algebra having {(OP)

but none of our other nroperties.
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§ 4 SOME SPECIAL CLASSES OF BOOLEAN ALGEBRAS

In the first part of this section we exhibit a relatively
broad class of Boolean algebras satisfying all our
properties, while in the second part we exhibit another
relatively broad cladd, that satisfies. non of them exept

possibly (OP).

4.1 There have been constructed many examples of non-

oc-comnlete algebras F, on which (R) and (VHS) hold

( [An 62],[1-5 63], [S 68]). One takes for examples BN

and glues together 2 pointsof RBIN \ IN. The quotient

space K thus obtained does not have nice disconnectedness-
properties (it is not even an F-sapce), while the space

C(K) nmay bé‘identified with a closed hyperplane of 17
and is therefore isomorphic to 1. The situation carries
over to the respective Boolean algebras of clopen sets.

We do not carry out the details here, as we shall consider

below a more general case.

4.2 Definition. An algebra F has propertv (E) if for every

fee)

sequence {A_}

" of mutually disjoint elements of F

there is a subsequence {An}’}::1 such that for every sub-

sequence {A the supremum ly1 Ank exiskts in F.

Yo
nkl 1—1 1

4.3 Proposition. (E)=> (R) and (E) = (VHS), i.e. an algebra

having (E) has (R) and (VHS).
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Proof: Just copy the proofs of (R) and (VHS) in the case
of s-complete Boolean algebras (c.f. [D-U 77], th.I.4.2.
and th.I.4.8.), except passing once more to a subsequence

in the respective proofs.

4.4 Proposition. Let £ be a o-complete Boolean algebra

and F a subalgebra such that B(F) may be represented as
a countable intersection of hyperolanes of B(L). Then F

has (E).

Proof: We adapt one of the many prcofs that Cq is not

[e=]

complemented on 1 (c.f. [J 74). prop. 29.19.).
By hypethesis there is a sequence {“i}:=1 in B(£)™

such that

B(F) = ,B,(n]' ({o})).

[ee) -
Let {Z\n}n:1 be a sequence of mutuvallv disjoint elements of F,

<o

be the sub-o-algebra of I generated by {A_}

let = .
n" n=i

1

and denote by Ei the restriction of by to 21 and

by iﬂi] the variation - measure of §,. Clearlv for
c ] — T = T =

every n €N and i € IN, ui(An) luil(An) 0.

Let {Ba%ﬁI be an uncountable family of infinite

subsets of N such that, for ¥ a, B ~ B  is a finite
- (11 G.2
subset of W (c.f. [J 74], lemma 29.18., for example). For

a €I let C = V' A_, an element of £.,. For i € W
a neBa n 1

and a1# ay we have

I
&)
<
+
o
>
o

luiI(Ca1) 3 luiI(Caz) i o] Ca2 iy «1 oy



because C A C is a finite unicn of the An s and

O.’] Cl2
therefore IEil vanishes on it.

It follows that Vi =z 1 and Ve > O there are

only finitely many a € I such that Iﬁiuca) > e¢. So there

are at most countable manv o € I such that for some

i 1,1§i|(ca) + 0.

Let a_ be such that |[p,|(C_ ) =0 for every
o i By
i € IN and let {nk};=1 be an increasing enumeration

of the set of integers in Ba For every subsecuence

Qo ) s
{nkl}l:1 and every 1 € IN, we have |uil(l!1 Ankl) = 0,
whence ui(l\:/1 Ankj) = g (l!1 Ankl) = Q. )

In ather words the characteristic function of lZ1 Ank
_’I © ]
belonas to every My ({0}), whence l¥1 Ankl belongs

te . Fs

4.5 We now consider a class of Boolean algebras, that
behaves badly with respect to the properties we are inte-
rested in, namely, algebras which are unions of a strictly
increasing seguence of subalgebras. These objects arise
naturally in the context of martingales. It is a standard
exercise which can be found in most probability text-books,
that these'algebras may fail to be o-complete. It was even
shown [B-H 76], that these algebras are never o-comnlete.
Our approach furnishes an easy proof of this curious fact
as well as stronger results. In fact, they never satisfy
(N) or (G) (and therefore neither (VHS) nor (R)). On the

other hand, they may verify (OP).
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Let us first show the latter assertion. The algebra F
considered at 3.18 mav be represented as n§1 Fn’ where
F is the algebra of subsets of A.depending only on the

n
first n coordinates. We have seen in 3.18 that F has (OP) .

4.6 Proposition. Let F be a Boolean algebra and suppose

F = Fn’ where Fn is a strictly increasing sequence of

ng1
subalgebras of F. Then F does not have (N) nor (G).

For the proof we shall need some lemmas.

4.7 Lemma: Let (X,ll ) be a normed space and suppose

X = ng1 Xn where {Xn}n=1 is a strictly increasing
sequence of closed subspaces of X. Then (X, |I) is not
barreled.

Proof: Let Bn be the ball in Xn around zero with

radius % and let T be the closed convex hull of {Bq}:=1

Then T 1is a barrel but not a neighbourhood of zero in X.
D

4.8 Lemma: ([D-s 58], I1.3.12.): Let Y be a subspace of

a normed space X. Let x € X be such that

inf{ly-x| : vy € Y} =d > 0.

Then there is x* € X* with

<xx*> =1; 1x*n=a",; <y,x’:> =0 forvye€ Y.
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4.9 Lemma: Let F = Fn’ where F  is a strictly

ng1

. *
increasing seguence of subalgebras. Let pu € B(F) ,

w2 O. Given F ~—and e > O there exists k € N, k > m

and E, € Fk \ Fm so that u(Ek) < €.

k
Proof: Represent F as the algebra of clopen subsets
of the Stone - representation space. Then pu may be
extended to a Radon-measure g on the Borel field of Q.

Decompose p into its atomic and diffuse part i.e.

N
i O O +ud,

po= Z ;
n=1 "n tn

.. N
where N is zero,a finite number or +«, {tn}n=1 are

}

(e}

n=1 positive scalars and hq is a

points of @, {an
diffuse measure on Q. Given Fm and e > O we can
find a partition of @ into disjoint clopen sets

{A.}p_ and points s, € A, so that
iti=1 i i

w (Ai \ {si}) < g i=1,..,p.

m

Find n so large that {Ai}§=1 Fn’ take k > max(n,m)

and B € Fk \ Fk—1' For some io’ T £ i0 < p,

By N Aio ¢ Fi-q (otherwise B, would belong to F,_,).

1f 85 ¢ B By s let Ey =By n A; , if not/let
E, =C B n Aio. In any case E; € Fk\Fk__1 and
u(Ek) < €.
o

Proof of pror. 4.6: As regards (N), remark that

B (F) = 0

~

] Bg(Fn) cannot be barreled by 4.7, whence
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F does not have property N, of definition 2.4.

To show that F does not have (G) we shall

define inductivelv a seaquence {“i}i=1 of measures
fee]
on F, and a strictly increasing sequence {ni}i_1
such that
t
; = i S 2
MioF o ; HulH

and {u.} is not uniformly exhaustive. This contra-

i“i=1
dicts (G).

Induction: Take Fn = F F = F2, E, € Fn % F. »

(e 1 4 1 e

Since

inf{llf - Xg I : £ € BS(Frl Y= 1/2

1 o)

by lemma 4.8, we mav find by € B(F)* such that

u1(E1) = 1 ; Hu1H = 2 ; b= 0 on Fno.

Suppose (E1""Ek—1) p (Fn P w 9 Fnk‘1) and

o

(u1,..,uk_1) have been already chcsen. Define

_kel

[{Inel

Yk
; A .
Applying 4.2 we may find n > nkf1, Ek & Fnk§ Fnk—1'
Vi (Ek) < k_1. Arplying 4.8 we mav find i € B(F)"

such that

uk(Ek) = 1; Hukﬂ = 2

-~

= 0O on F .
n

L
k k=1

This finishes the inductive construction.

It remains to show that the seguence {“k};=1
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is not uniformly exhaustive. Consider

© -

2 7 p.l.

\)=
i=1 i

All are v-continuous (W(Ai) - 0 £>uk(Ai) - 0)

Pi
for each k separately. It is known that {uk} is
uniformly exhaustive iff {uk} is uniformly v-continuous

(see e.g. [D 72], II.6.2.). However we have

V(E) = v (E ) + .2 27 1u, 1 (E) = O,

with k to infinity, while uk(Ek) = 1 for all k.

§ 5 THE GROTHENDIECK - PROPERTY

We first recall known results.

5.1 Theorem: For a Boolean algebra F the following

are eguivalent.

(i) F  has (G).

(ii) Everv continuous operator T : B(F) - q is
weakly compact.

(ii) ' Every continuous operator T : B(F) - X into
a weakly compactly generated (abbreviated WCG)
Banach space X is weakly compact.

(iii) If T, B(F) - X 1is a sequence of weakly compact
operators intc a Banach space X, converging in

the strong operator topology, then the limit

T = 1lim Tn is weakly compact.



(iii) ' As (iii), remlacing "strong operator topology"
by "weak operator topology".

(iv) If T : B(F) = X is a continuous operator into
a separable Banach spate X and B(F) is a
subspace of a Banach space Z, then there is a
norm - preserving extension of T to Z.

(v) If T : B(F) - X 1is a continuous operator to
a Banach space X, which is not weaklv compact,
then T fixes a copy of cl0,1], i.e. there is
a subspace of B(F) isomorphic to C[0,1] on

which T reduces to an isomorphism.

The equivalence of (i) to (iii)' may be found in [D 73]

and the eguivalence of (i) and (iv) in [L 64]. The

remarkable result that (i) implies (v) is due to Diestel

and Seifert [D-S 78], while it is plain that (v} implies (ii).
We now show that proverty (G) is equivalent to a

property very similar to (OP) (a result of the type

"weak implies strong”) but which may be stated in terms

of finitely additive measures.

5.2 Theorem. F has (G) iff

(vi) For every bounded measure p : F - X, such that there
is some bounded positive measure n on F with x¥* ou « n for
every x* €X¥ it follows that p <« n.

Here x o u & n (resp. p € n) means that for
€ > O there is 6 > O such that up(A) < & implies

Ix* o L(A)l < e (resp., llu(AM < € ).
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Proof: (v) = (vi) Suprose u,n;X given as above.»We
represent F as the algebra of clopen sets of the Stone
space , whence n and x o r  extend to Radon measures
on Q. Let T : C(Q) - X Dbe the integration operator
associated to pu.

Claim: T 1is weakly compact.

Indeed, if it were not so by (v) we could find a
subspace Z of C(Q), isomorphic to C[0,1], such that
TIZ is an isomorphism onto its image. Denote TO = TIZ
and Y = TO(Z). By the Radon~Nikodvm theorem thé adjoint
" transforms X' into L1(n) which is a WCG space. On
the other hand Tz(Y*) = 7% is isomorphic to M[0O,1],
where M[O0,1] 1is the space of Radon measures on [0,1],
which is not WCG. Consider the continuous quotient map
g : M@ - 2% and L'(n) e M(Q). We have o(L'(n)) = z*.
Indeed T factors through L1(n) and a o T is ontc
Z*. Hence Z* must be WCG, a contradiction proving the
claim. |

Therefore T : C(Q) - X 1is weakly compact and
T (ball (X*)) is a weakly compact set in L1(n). Hence

lim Ix“o p (A)] = O,
n(A)-0

A

. : * ;
uniformly in lix |l 1, 1in other words

lim lw(A) Il = 0.
n(A)-0
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(vi) = (ii): A continuous operator T : B(F) - ¢ is
*
given coordinate-wise by a sequence {un} in B(F)

*
tending weak to zero. Putting

n satisfies the assumptions of (vi). Hence
lim ()l = o,
n(A) -0
which means that {un}z:1 is uniformly exhaustive thus

weakly tending to zero (prop. 1.2). This is equivalent

to the fact that T 1is a weakly compact operator (c.f.

[D 73]).

5.3 Proposition. F has (G) iff

(vii) There is no subspace of B(F) isometric to <, and
complemented in B(F).

Proof: (ii) = (vii) is trivial.

(vii) = (i): If F has not (G) we can find a sequence

{n_}

sequence {En}n=1 in F such that Iun(En)I > ¢ for

L) . * s * a9 o
n=1 In B(F) converging weak to zero and a disjoint

L
n

some € > O. By multiplying with a bounded sequence

of scalars we may assume b (E) = 1. Denote by E the

<o

ring generated by {E_} in F. Then B(f) is a

n n=1
subspace of B(F) isometric to S Define an cperator
T : B(F) -~ C, = X on the indicator-functions by J(XA} =

{un(A)}z:1 and extend it by linearity and continuity to



B(F). By [D 76] there is an infinite set M &€ W - such

that TO =T IB( 'EM)
where [, 1is the ring generated by {En, n € M}. By

is an isomorphism onto its image,

a theorem of Sobczyk (see e.q. (T 741, 29.22.) there is
a continuous proiection L from X onto TO(B(EM)-
Hence T;1 P1 T is a continuous nrojection from B(F)

onto B(EM), an isometric copy of Css o

Remark: Proposition 5.3 may be rephrased as follows: If
F does not have (G) there is a sequence {u }n—1 in

n o=
B(F), tending weak to zero, and a disjoint seguence

{= }é_ in F so that
n n=1

6 i denoting the Kronecker-symbol. Indeed, the

i,

projection T;1 P1 T constructed above, viewed as an

oo

operator into Cor defines such a secuence {“n}n=1'
Note, however, that it fcllows from 3.11, that

©o

{“n}n=1 may not, in general, be replaced by a sequence

oo
{ By }n_1 of Dirac measures on Q.
o D=

5.4 We say that a bounded set {fi}jEI in a Banach
space X is eduivalent to the lT—basis, iff the

continuous operator T : l;—erx, taking the unit-

vectors onto the corresponding fi's, is an isomorphism;
equivalently, if there exists a constant o > 0O, such

that for every choice of scalars u,,..,u and

2
ee..,f.  we have |I.P £, =

£ .. in K21 Mi ik . k=1luk|'

11'
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We say that {fi} is equivalent to the 11—basis

i€l
and complemented, if in addition the space spanned by

{f.} is complemented in X.

i€l
Note also, that it follows from the special nature

i

of the 11—norm, that if T : X - Y is a continuous

operator and {fi}iCI in Y 1is equivalent to an

1 . .
1l -basis and there exists a bounded seguence {ei}icI

1 v = 1 . i l
if, X, 8.t T(ei) fi’ then {ei}lEI is also

" 1 . o .
eguivalent to an 1 -basis and T reduces to an isomorphism

on the span of {ei}iEI.Moreover r 1F {fi}iEI is
assumed to be complemented, then {ei}iEI is complemented.

5.5 Propnosition. F has (G) iff

.
(viii) Every weak compact convex subset of B(F) which
i t weakly com i i
is not weakly compact contains a family {ft}té[o,1]

*
.

equivalent to the 11—basis and complemented in B(F)
Proof: (viii) => (vii): If (vii) does not hold there is a
complemented subspace of B(F), isomorvhic to oo
Hence 11' is isomorhic to a weak*—complemented and

therefore weak -closed subspace of B(F)*. The inter-

. . . . - . *
section of this space with the unit ball is weak -compact

d re i i Z ils l 1 -.'—
and convex but contains no family {ft’t6[0,1j equi
valent to the l1~basis.
(v) = (viii): Let K in B(F)* be weak%~compact

. = . . : . . *
convex and let K be its circled hull, which is weak -

s - . = *
compact again. Consider the Banach srace sranned by K in B(F)
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with X the unit ball in X. As K is weak*—compact,
X 1is a dual Banach space, i.e., there exists a Banach
space Y such that X 1is isometric and weak*uisomorphic
to Y (see e.g. [C 78]).
; . . ) L

Consider the canonical injection from Y into
B(F)", Jj : Y - B(F)". The injection j is continuous
with respect to the weak*—topologies, hence there exists
a continuous operator j, : B(F) - Y such that (i,) = 3.
If K 1is not weakly compact, J, is not a weakly con-
pact operator, so by (v) j,. fixes a copy of cl[0,1],

i.e. we have the commuting diagramm

i,
B(F) p Y
14 -5
K 1
C[O’1]—~———9V —» W
where i1,i2 are isometric injections and k and 1

are isomorphisms. Transposing we get

B(F) e
" %
g iy
k9 " 1* .
M[O, 1]« V' & W

Note that k i, j 1is an open mapping onto, as

1
k*l*i; is. Whence k*i1*j(ball (X)), which is just k*iT(f),

contains for some o > O an a-ball around zero in M[{O,1].

The Dirac measures {6, )} from a complemented

t'te[0,1]

l1~basis in M[O,1].
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} in K such that

There exists a sequence {rt te[o,1]
¥ (ft) = a. é{t}' It is evident that we may find

k i

]
~ . ¥ % A _
{ft}te[o,1] in K, such that k i (ft) = até{t}

where {at}te[o,1] is a bounded sequence of scalars

> a. A . r
such that Iatl zZ «a As the {at 6{t}}tELO,H

equivalent to an 11—basis and complemented in M[O,1],

are also

we conclude by the remark predeeding the proposition

~

that {ft}tE[O,1]

complemented in B(F)*.

is eauivalent to an 11—basis and

5.6 Corollary: F has (G) iff one of the following

two ecuivalent conditions holds.

(ix) Every weak " ~closed subspace Z of B(F)*, which
does not contain a complemented subspace

isomorphic to 11[0,1] is reflexive.

(x) Every bounded measure p : F - X 1is either

exhaustive or there is a bounded family {Xt}tE[O,1]

* L%
. . T —
in X such that {xt o “}t6[0,1] is equivalen

to the 11-basis and complemented on B(F)™.

Proof: We only show (viii) = (ix) : The intersection

of Z with the unit ball of B(F)* is weak*—compact

convex. So if it is not weakly compact (i.e., Z is not
reflexive), by (viii) it contains a comnlemented subspace
1

isomorphic to 1 [0,1]. -

-

To finish this section we remark that prop. 5.5 (as well
as corr. 5.6) may be strengthened, if one assumes (R)

instead of (G).



5.7 Propositon. If F has (R), then every weak*—compact

convex subset of B(F)* which is not weakly compact

}

contains a family ({f equivalent to the l1~basis

i’i€ex
and complemented in B(F)*, where I 1is a set of

cardinality 2[0’1].

-

Proof: Just copy the proof of 5.5 replacing CcC[0,7]
by 1°. The dual (1°)* may be identified with the Radon
measures on the Stone-Cech-compactification of IN; the
Dirac measures on RBIN are equivalent to the 11—basis
and complemented in (lm)* ; hence the rest of the

proof carries over, revlacinc everywhere [0,1] bv

BIN, a set of cardinality 2[0'1].

§ 6 THE ORLICZ - PETTIS - PROPERTY

In this section we shall show that (G) implies (OP).

We first show the result for the special case in which the
unit-ball of X is weak’” sequentially compact (e.g. if

X is WCG [D 73]), as in this case we may state a stronger

result and the proof is very easy.

6.1 Proposition. Let F satisfy (G), and let X be

a Banach space s.t. ball (X*) is weak*-sequentially compact
and let T ¢ X be a norming subset of X"
If a measure p : F - X is such that x o u is

oc-additive vx € I, then u is strongly c-additive.
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Proof: Let (A }m_ be a sequence s.t. vV, B € F.
S n n=1 n=1 "'n

. = . e . o e
To show that nZE1 u(An) u(n;_1 An) in norm it suffices
to show that the set of partial sums is relatively

norm-compact, as this,together with

né1“(An) - u(n\__Z1 An) weakly,will produce the result.
If the set of partial sums is not relatively compact,
et
we may find blocks B, = Vv A and a > O s.t.

k n=nk+1 n

_Hu(Bk)” > a. As T is norming we mav find

%, o ) ® . % .
{xk}k=1 € T s.t. ”Xk" = 1 and ka e} u(Bk)l > a. By

. - . & * e8]
hypothesis, we may find a subsecuence {Xkl}l=1 vl

* o« a "
converges weak . But then {xk o) u}l_, is convercing
— i

1
weak” in B(F)" and bv (G) it is uniformlv exhaustive,

. —_— : *
in-eontradicticon to bic 0 u(By ) > a for everv 1.
' kl kl B

m]

The following example will be tyvical, as we shall reduce
the general case of an algebra not havinag (OP)

essentially to the sutuation of this example.

6.2 Example: Let F Dbe the algebra of subsets of IN

consisting of the sets A ¢ W s.t. for all but finitély
many k € W the pair {2k - 1, 2k} is either in A
Or in its complement.

Define pu : F = S coordinate-wise by

p(a), = O, if {2k - 1, 2k} is either in A or in Ca,
k
+ 1, if {2k - 1} € A, while {2k} ¢ A

- 1, if {2k} € A, while {2k - 1} ¢ a.
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Then clearly p takes its values in the unit ball of
Cye As on this unit ball the weak topology coincides
with the topology of pointwise convergence one checks
immediatly that p is weakly o-additive. Obviouslv p is
not strongly o-additive.

The fact that F does not satisfy (G) is quickly
seen by considering the sequence {6{2k-1} f 6{2k}};=1

which convercges weak" in B(F)* but is evidently not

uniformly exhaustive

]

To prove (G) = (OP) we still need 2 technical lemmas:

6.3 Lemma. Let F be a Boolean algebra, p : F - X

a bounded measure and {An};=1 a ‘disjoint sequence in
. ' W <
Fos.t. \\_u(An)l > o« > 0.
Then there exists a continuous linear map

T : X~ 1 s.t. for some sulysequence {nk};z1 we have

T oun(A_ ) =e, , where e is the k-th unit vector
ny k k
of 17
Proof: By ([D-U 77], th.I.4.2.) there exists
{Ank}k=1 s.t. {u(Ank)}k=1 spans ¢ in X.
Define T : X - 1° on the subspace sranned by
{u(Ank)}k___1 putting T(u(Ank)) = ey and extending it
to X by the injectivity of 17
o

6.4 Lemma. Let ({x }w_ in X be s.t. L. X

n’n=1 n=1 "n

converges weakly to X, € X.



Then for € > 0 and N € M there is M 2 N such that
for each block of mutually distinct natural numbers

n > M there are natural numbers m1,...,ml > N

1,...,nk
and scalars Aqreeeihy with kj € [0,1] so that

m1,...,ml, n1,...,nk are all mutually distinct and

k 1
z
15217 =y + 4E

Proof: Given € > 0O and N € I the set of points of
N M

X + X _, where M > N and

. = 33 2
the form n=1 “n n=N+1 Hn n

Mo € [0,1], 1is a convex subset of X. As weak and strong

closure of a convex set coincide, for some M and

PN+1’ Pn+27 "M we have

N M

by % - - .
”n?1 s b n=n+1 ¥*n *n Xo” < e/2

If n .,n, > M are fixed, then again the set of

g i

points of the form

1
Lox_ + . Xni] + B R R

+ I
n=1 "n n=N+1 "n “n i=1

where for each j,mj ¢ (1,...,N, n1,...,nk}, and either

A. € 10,11 or . € [o,1—[lm_] if m., € {N+1,...,¥}, and

J J 3 J
ranges in IN; is a convex set whose strong clesure contains
X . S&c acain we mav find A ,..,X. and ﬁ.,...,a. s.t.
¢} - - 1 J i J
E M k 1
. -
& M boox_ 4+ B x + L. X, x_ - x &
'n=1 "n n=N+1 "n “n i=1 i J=1 "3 M o
k 1
Whence N -
WoE =+ B %, %= || < ¢
i=1 “n =1 7 n,

1
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6.5 Theorem. (G) = (0P), i.e., an algebra F having

(G) has (0OP).

Proof: Let p : F - X be a bounded measure that is

weakly o-additive but not strongly. Then there is a dis-

joint seaquence {A } , such that ! A=A exists
- n=1 n=1 "'n o

in F, and such that n§1 u(An) converges weaklyv but

not strongly to wu(A ). By may be forming blocks cf the

form A Viiso w o v Anm+1 we may suppose that there is

n
m+1

a > 0, such that Hu(An)H 2 a, for all n.
By the lemma 6.3 there is a continuous operator

T : X - 17, such that, for some {nk};=1,

T (u(Ap)) = e .

Write v for T o u, which clearlv is a weakly o-
additive bounded 1° -valued measure, and denote
- T .
Vi € O v (this time e
1

vector in 1 ).

Kk denoting the k-th unit

Now we form inductivelv a seguence (B such

l}l=1

that each Bl is a finite union of elements of the

seqguence {An}:=1 and such that the Bl's mimic the

pairs {21 - 1, 21} in example 6.3.

At the first step let k(1) = 1 and add to Ank(T)

finitely many A(1) é}%) (taken from the seqguence
(A_}__.), such that for
n’n=1



Iv1| denoting the variation measure of vy Define

a(1) = iif inf lvkl (B1)

and let S be an infinite subset of IN, such that, for

1

kES.],

N =

v, (B1) ool <

At the 1-th step sunpase k(1),...,k(1-1), B1""’Bl—1’

o(1),...,a(l-1) and Sl—1 have been defined. Choose
k(1) from 81_1, such that Ank(l) has not been used to
buile one of the blocks Byre..yBy 4. Choose
elements A(l) sy A(l) from the seauesnce (A }m_ i
1 p(l) - n’ n=1

such that neither of them has been built into one of the

blocks B1”"’Bl-1 and such that for
(1) (1)
B, = A A VieaVW A
we have

] =

| v (Aco \ (B1 V...V‘Bl)) <

k(1)

To make sure that the Bl's finally exhaust all of the

sequence {An}n=1 we may and do assume that A1""’A1-1
have all been built into one of the blocks B1""’B1’
Define

a(l) = lim inf Ivki (B
k €8y,

e
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and let S be an infinite subset of S,-q+ such that,

1

for k € Sl

v, | (B) = a(D)1 < 271 (%%)

This completes the induction step.

We shall show that for each C in F the

sequence {vk(l)(c A Bl)}l=1 tends to zero. This will

imply that F does not satisfy (G). Indeed the seguence

of measures {Vk(l)lBl}l=1 (i.e., the restrictions of

£ ¥ *
the vk(l)'s to the Bl s) tends weak to zero. But

" . P "
the vk(l)lBl are disjointly supported and

"vk(l)lBl” z lvk(l) (A?k(l))l =1,

whence {Vk(l)LBl}l=1 cannot be uniformly exhaustive

thus does not tend to zero weakly.

First observe that 121 a{l) < =, Indeed,

<o
vi:e F -+ 1 is a bounded measure, so there exists some

constant X > O such that for each k € the

variation norm Hka is majorized by K. If -121
we could find L € W, such that
Ii (1) > K 1
121 *
For any Xk € s, v Iz Tv | (By) +. ~+lvy 1(B)
2 a(1) = 5 4.t a(L) - 2
L
% Yy -
> 121 a{l) 1 > K,

a contradiction.

(by (*%))
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Now fix C € F and e > O. Choose N € IN ‘'such that

¥ . | =] &
i=ti+q (@(i) +27) + N <5 .

By the lemma 6.4 there is M z N such that for every

1 greater than M we may find an element

x1.v(c AB:.) 4+ ... + xr.v(c A Bir)

11
s.t.
-5 . i £
nx1.v(C A Big) ... Aev(CoA Blr) + w(C A Bl)g <5
where Kj € [0,1] and the indices {ij}JjC=1 are greater

than N and different from 1. In particular we have

A qevi(1) (€A By ) + oue 4 AoV (€ A Bj )+ vp(1y (€ A By
; €
< 5 -

On the other hand

'k1'“k(1)(c A Bjq) + ..t Kr'vk(l)(c A Bir); <
vy (€ A Bj) VooV (CABy)) =
1-1 -
v
Ve ! Gafer By Y ogaeq By) oS
151 -i -1 3
j=R+1 (@) + 27 + 10 <5,

where the last line follows from (%) and (x%).
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So

I\)k(l) (C/\Bl)l < €y

which completes the proof.

Remark: From 6.5 and 2.11 it actuallyv follows that
if F has (G), every quotient algebra of F has (OP).

I do not khow if the converse holds true.
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