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INTRODUCTION.

The purpose of this note is to provide a systematic approach
to some aspects of vector measure theory using the concépt

of a Saké‘spgce. A Saks space is a vector space with two

' structureé, a norm and a locally convex topology, which are

in some sense compatible. At first sight this may seem a
rather strange object and its relevance to measure theory is
not at all obvious. However, we hope that this paper demonstrates
the thesis that they are a suitable tool for some aspects of
the theory. Here we would like to mention one argument which
may make this claim more plausible. One of the features of a
g-additive measure with wvalues in a Banach spéce and defined "on
a o-field is that it takes its values in a weakly compact set.
This means exactly that it takes its values in a Saks space

and indeed of a very special kind - one with compact unit ball.
This trivial remark is userful for two reasons. Firstly, such
Saks spaces are precisely thoselwhich are expressible as pro-
jective limits (in a suitable sense) of finite dimensional
spaces and this allows us to prove seyerai results very simply
by reducing to the finite dimensional case (i.e. essentially to
the scalér casel . Also the theory of Saks spaces is taylor-made
to handle juct such situations of a ball and an auxiliary
topology (in this case the closed absolutely convex hull of

the range of the measure with the weak topblogy) so that it is

not surprising that it gives a more precise and efficient approach.



In fact, we use only some very basic and simplé'results on

Saks spaces and we recall these, together with the definitions
in § 1 which also contains some new results on operators
between Saks spaces. In §§ 2 and 3 we develop the basic theory
of measures and measurable functions with values in Saks spaces.
Using the representation of a Saks space as a projective limit
of Banach spaces,'there is no difficulty in carrying over theA
definitions and results we need. However, this gain in.generali-
ty, although easily won, allows us to unify‘ several distinct
concepts of measurability and integrability. In § 4 we con-
sider Lp—spaces of functions with values in a Saks space and
show how their duality theory can be deduced very easily by
formal manipulation with inductive and projective limits.

In § 5 we consider Riesz representation theory for operatbfs‘
from Cb(S) (S a completely regqlar space) into a Saks spacé E.
ﬁe prove one result for the special case where E is a Saks space

with compact unit ball and show how some known results (and

generalisations thereof) follow easily and naturally from it.

The collaboration which produced this article was made possible
by a generous invitation to the first-named author from the"
Mathematical Institute of the "Centro de Investigacion del

Instituto Polytecnico Nacional", Mexico City.



§ 1. PRELIMINARIES ON SAKS SPACES.

1.1. Definition: A Saks space is a triple (E,|| [|,t) where (E,|| |

is a normed space and T is a locally convex topology on E so

that B”II the unit ball of (E,|| [), is T-closed and bounded.
We then write vy[|| ||,7] or simply y for the flnest locally con-
vex topclogy on E which coincides with Tt on B“ H. We resume the

most important elementary properties of y in the following

Proposition (cf. COOPER [2]):

1.2. Proposition: 1) T € Y < T” H;

2) the y-bounded subsets of E coincide with the norm-bounded sets;
3) = a sequence (xn) in E converges to zero with respect to vy . if
and’only_if it is norm bounded and T-convergent to zero;

4) a subset of E is y-compact if and only if it is norm-bounded
and T-compact;

5) (E,y) is complete if and only if B“ I is Tt-complete;

6) the dual E; of (E,y) is the norm-cliosure of (E,T)"' in the

dual of (E,|| |-

1.3. Examples: I. If E is a Banach space, then the following
triples are Saks spaces:

(E'H ”'T” “)I (EIH HI O(EIE}))I (E'l“ ”r O'(E',E)).

II. If S is a completely regular space and Cb(S) denotes the
space of bounded, continuous complex-valued functions 6n S then

b .
(c7(s),|| H,TK) is a Saks space where T, is the topology of compact

convergence.



III. if H is a Hilbert space and L(H) is the Aigebra of con~
tinuous linear operators on H we denote by T and 1™ the weak
resp. strong operator topology on L(H). Hence Ts is defined by
the seminorms T —— [£(Tx)| (x ¢ H, £ € H') and T, is defined

by the seminorms T +—— |[Tx||. (x € H). Then
(L(H),II ll;t,) and (L(H),]| i)
are Saks spaces.

IV. Leﬁ u be a positive, finite, o-additive measure on the
space (Q,Z) and denote by Lw(u) the corresponding Lm—space. Then
(Lw(u),[[ILT1) is a Saks space where T4 is the topology induced

by the L1-norm and its dual is L.

1.4. Completions: If (E,|| |[,7) is a Saks space its completion-

is defined as follows: we let B denote the T-completion of Bllll‘

i.e. the closure of B”~“ in the completion ﬁT of (E,t). Then if
E is the span of B and || |7 denotes the Minkowski functional of
B (ﬁ,]][r,'r) is the required completion. As an example, if E

is a normed space then the completion of the Saks space

(E,|| |l, olE,E*)) is the Saks space (E",|| ||, o(E",E").

1.5. Saks space products and projective limits: If {(Ea'lIIL’Ta)}aeA

is a family of Saks spaces we form their product as follows:

if E denotes the Cartesian product I E we put
aceA O
E, = {x=1(x)) e E : ||x]| := sup Hxalk < w}

Then (EO,IIILT) is a Saks space where T is the Cartesian product



of the topologies {1 }. (EO,IIILT) is called the Saks space

product of {Ea} and is denoted by S Il E.

Now let {ﬂsa : EB — Eg» a,B € A, o ¢« B} be a projective
spectrum of Saks spaces. As usual, we define the projective-

limit of this spectrum as the subspace of the product formed by

‘the threads i.e. as

E,

(L]

{(x)) e sTE, : nBa(xS) = R -for a ¢ B}

E; is denoted by S%}E{Ea}- As an example, if S is a 1locally
compact space and K(S) denotes the family of compact subsets of
S.then . )

{pK1'K : C(Ky) ——> C(K), K ¢ K;}
forms a projective specfrum of Banach spaces (where C(K) denotes
the Banach space of continuous, complex-valued functions on K
and PR. K is the restriction operator) and its Saks space pro-

17
jective limit is naturally identifiable with (Cb(S),]||LTK).

Now if (E,|| ||,1) is a Saks space,we say that a family of seminorms S -

which generates T is a suitable family if it satisfies the condition:

1) if p,q e S then max{p,q} € S;

2) |l = sup s.

If p €S, Ep denotes the Banach space generated by p (i.e. the
completion of the normed space E/Np where Np is the kernel of p)
and if p < q then wqp denoted the natural mapping from Eq to E_.

Then {wqp :'Eq —_— Ep} forms a projective spectrum of Banach

spaces.
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1.6. Proposition: If (E,|| ||,T) is a complete Saks space, then

E is naturally identifiable with Slim E_.
PES P

1.7. Proposition: Let (E,|l||,T) be a Saks space. Then the
following are equivalent: |
' A1f B” I is T-compact; |
2). E is the Saks space projective limit of finite dimensio-
nal Banach spaces;

3) E has the form‘(F',IIIL o(F',F)) for some Banach space F.

Then vy = TC(F',F), the topology of uniform convergence-on the

campact sets of E, is the finest topology on E which agrees with T on B

I

In.féct, if 1) is fullfilled, then E is naturally identifiable

with S 1im{F'} where F(E;) denotes the family of finite dimensio-
FEF(E?) ' "L ET

nal subspaces of E;.

Further, the following are equivalent:

1) B is t-compact and metrisable;

2) E is the Saks space projective limit of a sequence of
finite dimensional Banach spaces;.

3) -E has the form (F',|| ||, o(F',F)) for a separable Banach
space F;

4) B” I is T-compact and normable (i.e. there is a norm

4 E that = B .
Il on = so that = = x)p ), on 3y p

1.8. The Hom functor: If E is a Banach space, (F,|| ||,t) a Saks
space, then Hom(E,F) denotes the set of || |y continuous linear

.operators from E into F. Note that as a vector space, this




coincides with the space of norm-bounded linear operators from
E.into F. We regard Hom(E,F) as a Saks space with the supremum
norm and Tp’ the £opology of pointwise convergence, with re-
spect to T, Note that on the unit ball of Hom(E,F),
this topology coincides with that of compact convergence, resp.

with that of pointwise convergence on a dense subspace of E.

1.9. Proposition: 1) If {Ea} is an inductive system in BAN1 and
F is a complete Saks space then there is a natural isomorphism

between the Saks spaces.

‘Hom (B lim E , F) and S lim Hom (E_, F).
= ¢ < @

In particular, if E is a Banach space, we have

Hom (E,F) = Hom (B lim G, F) = S 1im Hom (G, F).
—’ e—
GeF (E) GeF (E)

2y - 41f {Fa} is a projective system of Banach spaces, E a Banach

space, then there is a natural isomorphism between the Saks spaces

. Hom (E, S %39 F,) and S lim Hom (E, Fa)‘

® o
In particular, if F is a Saks space with Blllif-qompact, we
have .
Hom (E,F)_= Hom (E, S %19 G') = 8 l;m Hom (E, G').
GeF(F;) GEF(F;)

In the following, we bring some new results on operators between

Saks spaces. A key role is played by the following simple Lemma:



i.10. Eégmg: Let E be a vector space, T and Yy locally convex
topologies on E so that T ¢ vy and y has a basis of t-closed
 neighbou;hoods. Let K be a t-closed, y-complete subset of E.
Then K is t-compact if and only if the following condition isb
satisfied:
for each y-neighbourhood U of zero, there is a T-compact
set KU so'that = KU + U.
Proof: = is trivial.
&———=: K is then clearly'precompacﬁ. We show that it ié complete.
Let (xa) be a t-Cauchy net in K. If U is y-neighbourhood of zero,

we can write

U u
Xg =Yg ¥ 24
U U ' U : u,
where y € Ky, 2z, € U. Let y be a t-cluster point of {ya}aeA

in KU' Now for any U1,U2 and o € A, B € A, we have

Uq
(6]

- (91 - U
y ) (z, 282)

- JY92 - (w -
Yg (xy, = %g

U U T s o=
and so y | -y 2¢ U, +_U2‘. Hence {yU} is a y-Cauchy net.
Let x = lim yU. Then X, is T-convergent to x. To prove this it
is sufficient to verify that x is a limit point of {xa}. Let V

be a t-neighbourhood of zero and choose a t-neighbourhood V, so

1

so that x - yU2 €V,. For

that V_ +V, +V_< V. There is a UZQV 1

1 1 1

a cofinal family of a's, we have

1

yq -y € V1.
Hence for those o, we get

U U U U
X - xa = (x -y 2) + (y 2 _ yaz) = 2“2 e V, + V. + V

-



r

1.11. Corollary: Let K beziweékly closed subset of a Banach
space E. Then K is weakly compact if and only if the following
condition is satisfied: |

for each € > O there is a weakly compact subset Ke of E

that K € K_ + €By |
o = € Il

1.12. Remark: I. The above Corcllary is known (éf. GROTHENDIECK
[8], p. 221). In fact, the Lemma ¢aﬁ be deduced from this
Corollary. For, using the BOURBAKI completeness theorem, we can
reduce to the case where T is the weak topology and then it is
easy to reduce to the case where E is a Banach space. We have
preferred the above proof since, although rather'less elegant,
it is more elementary (in particular, it avoids any use of the
bidual). It can also easily be adapted to proveAa suitable méAi—

fication of the Proposition which is valid for uniform spaces.

The following is an abstract version of a result of SENTILLES
[15] on operators between Cb(s) spaces. As so often happens,
the prcof of the abstract version is considerably shorter and

clearer than the original one.

1.13. Proposition: Let (E,|| ||,T) and (F,lllh,r1f be Saks spaces

with (F}"AHT)a Banach space. Then a linear operator T : E — F
~maps a y-neighbourhood of zero in E into a relatively (weakly)
compact subset of (F,y) if and only if T maps bounded sets into

relatively (weakly) compact sets and is y-|| || continuous.




2599£:-:===§ is trivial.

&——— : Let U be an abéolutely convex Y-neighbourhood of zero
with T(U) € B, (F) (B, (F) is the A-ball in (¥, |};)). Then

T(AU) ¢ BA(F) and T(U N Bn(E)) is relatively (weakly) compact

for each n. Let A
e [»o]
U == LJ
n=1

Then U is a Y-neighbourhood of zero and we claim that its image

=k
U N B (E)).

is relatively (weakly) compact. For

A - g 1 -k
T(U) = T T(2 U n Bk(E))
. n=1 k=1
“ -k > 1 -k
€ I (T(27°U n B (E)) + U I T(2 TU)
k=1 1=n+1 k=n+1
n -k ‘
€ I T(27U AN B (E)) + B__,(F) .
k=1 2

for each n and so the result follows from the Lemma.

We now give some useful factorisation theorems for operators
between Saks spaces. They are consequences of the following
recent factorisation theorems (due to the combined efforts of

DAVIS, FIGIEL, JOHNSON, PELCZYNSKI cf. [(31,061,[10]).

1.14. Theorem: Let E and F be Banach spaces, T : E —> F a
weakly compact linear operator. Then there is a reflexive Banach
space G and continuous linear operators S : G —— F and

R : E——>G so that T = SR.

If T is compact, we can find G,R,S with the additional properties

that G be separable and R and S be compact.
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This theorem follows immediately from the following Lemma.
Since we are able to give a simple and short proof using the

Lemma 1.10 above, we do so for completeness.

1.15. Lemma: Let E be a Banach space and W € E be a weakly

compact, absolutely convex subset. Then there exists a weakly

compact, abséluteiy convex subset C of E such that W ¢ C and
C’|l|b) is reflexive ((EC’IIIb) denotes the normed épace with

C as unit ball)

If W is norm compact, then one may construct C 'so that W is
compact in (Ec,lllk), C is compact in E and (E.,|| [|;) is a

separable, reflexive Banach space.

Proof: Denote by B the unit ball of E and put Wn := 27k + n—1B.
Then W is a closed, absolutely convex subset of E. Let || ||,
be the Minkowski functional of Wn and write En for the normed

space (E,|| || ). Then Il 1, is equivalent to || || (and so E,is a

Banach space). Now let

C := {x ¢ E : ZHXH

~Then C is a closed absolutely convex subset of E and a simpie
calculation shows that K € C. Also C < 2"K + n 'B(E) for
each n and so C is weakly compact by 1.11.-We show that o (E,E')
and c(EC,Eé) coincide on C and this will conclude the first

part. First note that the diagonal mapping

X m> (X,X,e0..)



v = G -

is an isometric embedding.from EC onto a closéé subspace of
lz(En). Hence, since the dual of ﬂz(En) is KZ(EA), it

suffices to show that o(£°(E_),£°(E!)) coincides with o (E,E')
on}C..Now if we denote by ¢(E$) the subspace of EZ(EA) con-
sisting of those sequences which have at most finitely many
non-zero elements, ¢(E£) is norm-dense in KZ(EA) and so
c(ﬂz(En),Zz(Eﬁ)) agrees with 0(22(En),¢(EA)) on the bounded
set C. But the latter topology induces o¢(E,E') on C (since_the

restriction of a form in ¢(EA) to C is in E').

Now we turn to the second part. If K is norm-compact, then it

follows from 1.10 that C is compact in E.

We now show that K is compact in EC' It will suffice to show
that it is precompact. Let &€ > O - we shall find an e-net

for K with respect to l|]b. First note that if x ¢ K then
@
”x[lx1 < 27", Hence there is an N > O so that ( = |pq1§) < 52/8
- | =N+1
N

for each x ¢ K. Now the norm ( I |l.|li)1/2 is equivalent
n=1

to || || and so there is a finite set {xqs...,x } in K so that

N
for each x € K there is an i with ( I ||x-x,

112
n=1 L

n) < 62/2.

Then we have ||x - x.||_ < e.

' . ol <
To show that (EC'I|IE) is separable, note that since C is
norm compact, the norm topology agrees with o(E,E') on C and
so the latter is metrisable. However, as we know, o(E,E')

agrees with O(Ec'Eé) on C and so the latter is also metrisable.
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From this it follows that (EC’IIIE) is separable.
The following Proposition is perhaps of some independent
ihterest although we shall not actually use it in this form

(so that we do not require the factorisation theorem 1.14):

1.16. Proposition: Let (E,|| |[,7) be a Saks space, (F,T) a

locally convex space, T : E —> F y-continuous and linear.
Then
1) T takes bounded sets into relatively compact sets if

and only if T factorises as follows

T ' , '
E ; —> F
\ / . ) . _
N
. G ’

where (G, || |[,,74) is a Saks space with B“ Ih T,-compact

R : E ——> G 1is y-y-continuous (and so takes bounded sets
into relatively compact sets) and S : G ——— F is Y-T-con-

tinuous.

If”F is a Banach space with the weak topology, we can assume
that (G, || ||;) is reflexive and Ti = 0(G,G') and if F is a
Banach space wich the norm topology, we can assume that (G,lllh)
is a separable reflexive and T, = g (G,G") (so that B” ”1 is

T1~compact and metrisable).
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:

2) T is y-compact if and only if T has a factorisation

as in the diagram with R y-|] H1 continuous.

Proof: 1) & 1is clear.

=—=: Let C := T(B;; ;). Then (E ,]l[k,?l ) is the required
Il c Ec

space where R is the corestriction of T to EC and S is the

injection EC — F.

Now if F is a Banach space with the weak topology then T is
weakly compact from (E,|| [)) into (F,|| [) . Hence by the
factorisation theorem, there is a ball B1 with T(B). ¢ B1 cCF

so that (EB1,H'HB1) is reflexive. Then if G := E T := o(G,G")

B1’
on B1 by compactness so we can complete the proof as above.
If F is a Banach space with the norm topology then we can\

proceed as above except, usiﬁg the factorisation theorem for

compact operators, we can assume that B, is norm-compact.

2) &= 1is clear for then R is y-compact by 1.13 and hence

so-is T. |

=3 : Suppose that T is y-compact. Then there is an absolutely
convex y-neighbourhood V of zero so that C, := T(V) is T-

1

compact. We can construct G as above, using C, as the unit ball.

1
Then R is y-compact as it sends V into a compact set in (G,y).

In this order of ideas, we récall the following resuit of

GROTHENDIECK (cf. [7], Lemma 1, p.131):
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[3

1.17. Lemma: Let T : E ——> F be a céntinuoﬁs linear
; operator from one locally convex space into another. Con-
sider the following three properties: |

1) T takes bounded sets of E into relatively weakly
compact sets;

2). T" (E") ¢ F;

3) T' transforms equicontinuous sets in- F' into

relatively o (E',E")-compact sets.

Then 1)< 2) == 3) and 3) == 2) if F is quasi-complete.



- 14 -

§ 2. MEASURES WITH VALUES IN A SAKS SPACE.

2.1. Definition: Let (E, |l |l,;T) be a Saks space, S a suitable

family of t-seminorms on E and (Q,F) a measure space (i.e.

F is a field of subsets of Q). A function p : F——>E 18 &

(finitely additive)‘measure if u(A1 U A2)'= “(AI) + p(AZ)

if'A1,A2 e F are disjoint. A measure is
bounded if its rangeAis norm-bounded i.e. if its semi-
variation ||uf] : A +——— sup {|f o u| (A) : f € B(Eillp}

with respect to the norm is finite-valued;

From now on we shall only consider bounded measures. p is

countably additive (or c—additive) if p(L}An) = 'Zu(An)

(convergence with respect to 1) whenever (An) is a dis-

joint sequence in F with L)An e F;

strongly additive if for each disjoint'sequence (An) in Fy

Zu(An) converges (again with respedt to f).

2.2. Rewarks: If (E,t) is a locally convex space and p: I — > E
is a bounded finitely additive measure, then p factorises over

a Saks space and the above concepts coincide with the qlassical
ones. For if B-is the closed, absolutely convex hull of the raﬁge
of u and || || is the Minkowski functional of B then‘(EBJIILT) is

a suitable Saks space. If we consider the Saks spaces of examples
- I and IITI of 1.3, we thain the most important regularity con-
cepts for measures with values in Banach spaces or spaces of

operators.
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2.3. Remark: Using classical results on Banach space valued measures,
‘it is easy to see that the following results hold:

1) if F is a o-field, then o-additivity implies strong adaitivity

2) we can drop the assumption that be bounded in the definition
of strongly additive; )

3) if E is complete, ‘then u is strongly additive if for each
decreasing sequence (A ) inF , u(A ) exists in o (E, E ) ;

4) if F is a o- fleld and f op is bounded for each f e E' then
¥ is bounded (DIEUDONNE-GROT THENDIECK theorem). For a reference see,
for example, |4].

Now if X is a completely regular space we denote by Bo(X) the o-field

of Borel subsets of X. If (E,|| |[,1) is a Saks space an E-valued Radon
measure on X is a bounded measure :Bo(X) E which is inner regular

with respect to 1 i.e. satisfies the condition that

lim ) U (K) ==
Kek(s) P
KSA

for each Borel set A in X and each pe S.

wp u(A) in Ep

We now introduce the following notation:
Mb(F;E) = {y : F—E : u is a bounded measure}
Mo (F; E)
‘"M (X;E) = {u : Bo(X) —E : u is Radon}.

{p : F—SE : py is o-additive}

The semivariation induces a norm on the above space, under which they

are all complete.

' We regard then as Saks spaces with the following auxiliary topologies;
in the first two cases that of pointwise convergence on sets of F
(with respect tot) and in the lust case pointwise convergence on

the functions of Cb(X) via integration (see 2.5 below).



2.4. Proposition: If (E,|| ||,T) is a complete Saks space, then

-there are natural identifications:

Mb(F;E) S %ET Mb(F;Ep)
PES

S &ET MO(F;Ep)
peS

S lim MR(S;Ep)
peS

I

| MO(F;E)

MR(S;E)

In particular, the spaces on the left hand side are complete.

Proof: The proof in each case is the same. If u is in the left-

" hand side, then the elementé (mp o .4) form a thread which def;nes
an element on the right-hand side.

On-the other hand, a thread (up) on-the right hand side pieces
together to form a bounded E-valued meaéﬁre and the correspon-
dence between the regularity conditions follows from the defi-

nition.

2.5. Integration: If F is a field of subsets of Q we denote byi
’S(F) the vector space of simple (complex-valued) functioﬁs
F-measurable ﬁunctions. L”(F) denotes thé sup-norm completion
of this space. Hence when F is a o~-field, then LW(F) is just

the space of bounded, measurable functions.

If x = Zlai Xa. is a simple function and u is an E-valued
i

bounded measure (E a Saks space) we define f}(du to be Zaiu(Ai);



Then A [x au
.is a bounded linear operator from S(F) (with the supremum norm)
into E and I]Tull= |[lul] (semi-variation of u with respect to
the norm). Hence we can extend Tu to a continuous linear

mapping from L”(F) into E (the norm completion-of E).

Hence we have:

2.6. Proposition: Let E be a complete Saks space. Then integration

induces a natural norm isometry between the spaces

Hom (L™(F); E)- and Mb(F;E)'.

This is, in addition, a Saks space isomorphism if the left-hand

side has its natural Saks space structure,

Now let U be a o-additive E-valued measure on a o-field, v a non-
negative (finite, o-additive) measure on I. Then the following
are equivalent: .

1) lim pu(A) = O (limit w.r.t. T);
vV(A)>O

2) v(A) =0 == u(A) =0 (Ael).

Of course 1) —» 2) is trivial and 2) == 1) follows from the

corresponding result for Banach‘spaces since if 2) holds then

V(A) =0 —_T? wpo“u(A) = 0 and so V(A) — 0 — mpo u(aA) — O
for each p € s i.e. Uu(A) ——> O in T (see DIESTEL, UHL [4j,

Th, 1.2.1).; v

We denote by ME(Z;E) the family of fo:Mb(Z;E) such that 2) holds.

We regard MZ(Z;E) as a Saks space as a subspace of Mb(Z;E).



2.7. Proposition: Let E be a complete Saks space, I a o-field.

Then the isomorphism
Hom (L7 (Z);E) = M (I;E)
induces an isomofphism

Hom (L”(v);E) = M) (;E).

Proof: Clear since T : L°(X) ——> E 1lifts to an operator on

Lw(v) exactly when condition 2) aoove is fulfilled.

In'fhe following Proposition, we characterise o-additivity of
the measure in terms of continuity properties-of the iﬁduced

linear mapping. Recali that if ¥ and v are as above, then the
vector space L”(v) has a natural Saks structure (1] H,T1) where
T, is the topology'induced by the L1—norm. The oorrespondiho“
mixed topology is denoted by 81 (see [2], Ch. III for some re-

sults on 81);

2.8. Proposition: Let u e ME(Z;E)J Then p is o-additive if and

only if _Tu : L(v)—> E is B4~y continuous.

. Proof: We show that if Tu is 81-continuous, then u is o-additive.
For iE (A ) is a disjoint sequence in I then I XA S XUA in

L (v) and so with respect to the topology 31 Hence
u(UAn) =T, xAn) =1 Tu(xAn) =Z u(a).

On the other hand, if p is o-additive, we must show that Tuois

31—continuous. Since 81 is the Mackey topology, it is enough to



show that £ oTu is 81—continuous for each £ eE* i.e. is given

by a function in Lt (v). But £ oTu is o-additive and v-absolute-

ly continuous and so the result follows from the Radon-Nikodym

theorem (see [1]1, Th. 2.2.4.).

2.9. Corollarz: Let u € M (IZ;E) where E is a Banach space. Then y

is o-additive if and only if there is a v so that py induces a B,;-
0 . s
continuous linear operator on L (V).

This is extentially a reformulation of the BARTLE-DUNFORD-SCHWARTZ
theorem (see [4], p.14 ). ‘ ‘
- In the next Proposition and its Corollary we reproduce an

important theorem on Banach-space valued measures. The extention
to measures with values in a Saks space is trivial.

2.10. Proposition: Let F be a field of subsets of &, I the o-field

generated by it; E a complete Saks space and p a bounded E-valued
measure on F with the property ﬁhat f o 4 is og-additive for each
f e E%. Then the following are equivalent: |

1) u has a o-additive extension to a measure on I;

2, for each p ¢ S, wpo 1 has a positive o-additive contfolv
measure;

3) u is strongly additive;

4) u(F) is relatively weakly compact in E.

Proof: 1) =% 2): if p has a o-additive extension, so does wpo M
and so the latter has a control measure.
2)=—=3): it follows from 2) that each mpo u is strongly additive

and hence so is u.

P .
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3)==4): if py is strongly additivé, so is wpo'u aﬂd so
(wpo'u)(F) is relatively weakly-compact in,Ep. But

(wpo‘u)(F) =‘wp(u(F)) and so the result follows from the
characterisatién of weak compactness in a Saks space (see
COOPER [2], I.1.20). |

'4)===?1): if 4) holds, then wpo u(F) is relativély weakly com-
pact in E and so wDo v has a unigue extension to a cfadditive

measure “p on L. But (up) is then compatible and so defines an

E-valued measure on I (recall that MG(Z;E) =.S llZDQJ(E;Ep)).
PE

2.11. Corollary: Let u be a bounded E—valuéd measure on a fiéld
F (E a complete Saks space). Then the following are equivalent:
1) for each p € S, mpo p has a finitely additivevposi-.
tive control measure vp; ’ |
2) o is strongly additive; '

3) u(F) is relatively weakly compact.

This follows from the Stone Representétion theorem (cf. DIESTEL

and UHL [4], Th. 1.5.3.).
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§ 3. MEASURABLE FUNCTIONS WITH VALUES IN A SAKS SPACE

3.1. Definition: Let (2,v) be a finite measure space i.e.

V is a positive, o-additive measure on a o-field I of subsets
of Q. If E is a Saks space, once again, S denotes a suitable
family of seminorms which define T and are dominated by || ||

vax is a function from @ into E, x is said to be measurable

if for each p € S, wpo X is Pettis-measurable as a function_
from @ into the Banach space (EP,H [E). Hence x is measurable
if and only if for each p ¢ S,_there is a sequence (xn) of
'simple functions so that mp(xn - X) E=—— vV a.e.

Note that at this stage, the defiﬁition of measurability has
nothing to do with Saks spaces since the above definition .is-
éssentially that of measurability as a function into (E,1) -
in particular,'it depends on the global form of t and not

just its character on the unit ball.

From the classical theorem of PETTIS we can immédiateiy

deduce:

3.2 Proposition: X is measurable if and only if

1) for each f ¢ ET', f e X is measurable;
2) for each p € S there is a v-negligible set A so that

x(Q \ A) is separable in Ep

In particular, if x(M) is separable in (E,t) and f ex is

measurable for each f ¢ E% then x is measurable.
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3.3, Examples: I. If E is a Banach space with the Saks
structure (IIILTIIIP, then we obtain the standard notion of
'meésurability.

II. If E.is a Banach space and we cénsider E as a Saks spaée
with the structure (|| ||,0(E,E')) we obtain the notion of
scalar measurability. |

III. If E = F' the dual of a Banach space F and we use the
Saks space strﬁcture (] |l,o(F*,F)) we obtain the notion of
scalar =x-measurability. |

_Iv. If E = L(F,G), the space of continuous linear mappings
between the Banach spaces F,G we obtain intefesting notions
of measurability by considering the Saks structures ([||LTW)
and (|| [litg) (cf. 1.3.1ID). | : y

3.4. The space L”(v;E): Recall that L®(Z;E) denotes the SPace

of bounded, measurable functions into the Saks space E. On

Lw(XJE) we consider the norm
I g : x —— sup{||x(®) || : t ¢ Q}
and the‘seminorms

Pt X [ lw_o x||dv (p € S).

p

L” (v;E) denotes the duotient space of L"(Z;E) with réspect to
N where

N := {x e L"(Z;E) : wpo X =0 v a.e. for each p € S}.

Then || ||; and p induce a norm resp. seminorms on L*(v;E) and

these induce a Saks space structure (lIIE'TE) on L”(v;E).




e

We recall that the measure space (Q;v) possesses a

multiplicative lifting (cf. [9]). i.e. a linear mapping

p L”(v) —> L%(Z) of norm one so that p is multiplicative

and a right inverse of the projection L(z) ——— L%(v).

3.5. Proposition: Let E be a Banach space. Then there exists

a vector valued lifting P ¢ Lw(b;E)-——~;Lm(Z;E) i.e. a
linear mapping of norm one which is a right inverse of the

[} . oo )
projection L (Z;E) ——— L (v;E) so that.

pp(x®x,) = xepl(x,) for each x ¢ E, A e I.

Proof: p induces a mapping
L/N(v) — I
(where N(v) is the family of v-negligible sets)

wﬁich associétes to each equivaience class [A] of elementg

of I an element A of so that if [AlNn[B] = ¢&

(i.e. A e [Al, By ¢ [B] == wu(a,NB) =g), then ANE = g.
For if A ¢ I, then the equivalence class of Xa in Lm(v)'is_

an idempotent. Hence so is its image under p énd hence'thé

letter is the characteristic function Qf some subset of Q.

Now if & X;0 X, is a countably valued function in Lw(y;E)
i

with {Ai} mutually disjoint in the above sense, we can define

pp(l x5® XAi) "SI X58 X5 (ay)

then Pg is well-defined on,L:(v;E), the norm-dense subspace




of Lw(v;E) consisting of the countably-valued functions.
Its continuous extension to an operator on L’ (v;E) has the

required properties.

Note that.the above construction is functorial in the following
sense. Suppose that E and F are Banach'spaces and T : E—F
is continuous and linear. Then T induceé in a natural way
operators from Lm(v;E) into Lw(v;F) resp. from Lé(Z;E) into -

L*(Z;E) and the following diagram commutes:

o PE -
L (v;E) —> L (Z;:E)
L7 (v;F) —> L7(Z;F)
P

3.6. Proposition: Let E be a complete Saks space with

canonical representation E = Slim {E_ : p € S}. Then
&~ " °p

L”(V;E) = S1lim L™(v;E_).
S = p' "
‘PeS

Proof: There is a natural mapping x +—— {on>x} from the
}eft-hand side into the right side. We need only shoh that

it is onto (that this.vector space isomorphism is a Saks space
isomorphism follows immediately from the definitions of the

appropriace structures).

Let {xp} be a thread in the spectrum defining the right-hand

side. Put X_ = p

p B (xp). Then by the functoriality of the

p
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construction of Py {§p} is a thread in the spectrum

{Lw(Z;Ep)}. Hence it defines a bounded measurable function.

~

X : Q >E. Then x, the projection of % in Lw(v;E) is the

required limit of the given thread.
3.7. Corollary: If (E,|| ||,T) is complete, then so is L™ (v;E).

3.8, Corollary: If E is a Saks space with Bllllt-compact so

that E = S lim {F' F e F(G)} (G := Ey') then

(3

8
<
=
I

slim {L”(v;F') : F e F(G)}.

We recall that if F is é Banach space, there are‘natural
isometric injections: , S ' iy g
1) L(v;FY) < LV (viF)
2) L7(viF') ¢ Hom(F,L”(v));
3) Hom(L'(v);F') < Hom(F;L™(v))
which are defined as follows:

1) if £ e_Lm(v;F‘), then f defines a linear form Tf'on
L1(v;F) as follows:
Tf : X ] (x,£) dv (x € L1(v;F))
_ 9 )
(Note that the scalar-valued function,'<x,f) is integrable

since x is integrable and f is bounded).
‘2) if £ ¢ ﬁw(v;F'), then fvdefinéé,an operator

Sg : Yyr—— (t—— (y,f(t))) (y € F)

from F into Lm(v).
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- 3) 1is defined by transposition;

Simple estimates show that these injections are isometric.
Now in the case where F is finite dimensional, it is easy

to see that these are all surjective (for example, by working
componentwise, one can reduce to the case where F is one-
'dimenéional). Hence we have the following natural isometric

~equalities in this case:

n

Hofu(F,L”(v)) L (viF') € Hom(L'(v);F")

=1V (v;F) .

Note that all of these expressions represent functors from
the category BAN, into itself and we are claiming’that these,
functors are equivalent with respect to suitable natural
transformation, a fact which we shall use implicitly in the

following proof:

3.9. Proposition: Let E b2 a Banach space and denote by Eé

the Saks space (E',|| ||,0(E',E)). Then there are natural

Saks space isomorphisms

o © '.. _ 1 .
Hom(E,L (v)) = L (v;E[) = Hom(L LVEsE. Y

LVviE) ',

Proof: The above preparatory remarks and results allow us to
reduce the proofs to formal manipulations with the wvarious

functors:
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Hom(E,Lw(\))) = Hom(Blg/\‘ F;Lm(v)),
FeF (E)

= S 1lim Hom(F,Lé(\)))
F @A
FeF(E)

= s lim LY (v;F")
FeF(E)
= Lm(-v}'Eo',.').
oo co
L (v;E') = Slim L (v;F'")
g e .
’ F
= .s"<1im Hom (L' (V) ,F')
.F.' .o 2
= Hom (L] (v),S Lim F')
) F

= Hom (L' (v) /EL) .

Hém(L1 (v), S(_]_.im F')

| Hom(L1 (v) ,Eol)
. F

. 1 '
S{.}}B Hom(; (v) ,F'")
F

= s1im LY (v;F)"

ERR——

F

(Blim L‘I (v}F)) !
—_
F

LV viE)r.

In the last step we are using the fact that

L1'(\);E) = B lim L1 (v;F)
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This follows from the fact that L1(V;F) is (iéometricallyY

a subspace of L1(v;E) and kvj L1(v;F) is clearly dense
FeF (E)

in.L1(v;E).
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§ 4. INTEGRATION OF SAKS S$PACE VALUED FUNCTIONS.

{.i. et (&,]| ||l,T) be a Saks space, (?,v) a measure space as

above. If x : Q > E 1is a measurable function such that

1) for each p ¢ S, wpo X is Bochner integrable;
2) sup sup{|| [ w ox dv|_ } < =
Acel peS a P p ..

“then for each A e I, { wpo x dv} is an element of EY' the Saks
- A

space completion of E. We then say that x is integrable and

write [ x dv - (e EY) for ‘its integral.
Q2

We can also define ‘[ xdv (A e ). If f.x dv € E for each
A A ‘

_A_é L, we say that x is E-integrable.

4.2. Examples: If E is a>Banach space, then we obtain the

- notion of Bochner integrability. If E is a Banach space with
structure (|| ||,0(E,E')) then integrability in the above sense
is Dunford integrability (or Gelfand integrability) - cf.
DIESTEL-UHL [4], Ch. 2. E-integrability is, in this case,

Pettis-integrability. . .

Now if E is a Banach space, we denote by L;(v;Eg) the space
of functions in Lm(v;E;) (E; is the saks space (E",|| [|,o(E",E"))

which are E-integrable (i.e. [ xdv ¢ E for each A ¢ I).

4.3. Proposition: There is a natural isomorphism

Hom(i1(v),E) = LZ(V;E")
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Proof: By Proposition 3.9, we have
1 " _'cd Ll
Hom (L' (v),E) = L (ViED)

and it is clear that a function on the right-hand side induces_

an operator with values in E if and only if it is E-integrable.

The following Lemma is a version of the Pettis theorem on

weak and strong measurability:

4.4. Lemma: Let E be a Saks space where (E,|| |] is a separable
Banach space and Tt = O(E,E'). Then there is a natural isometric

isomorphism between the Banach spaces

L“(v;E“ ) and L (v;E).

If F and G are Banach spaces , we write LC(F,G) for the
(Banach) space of compact operators in L(F,G). We also write
L:(v;F) for the space of functions in Lm(v;F) which have

essentially relatively compact range (so that

LZ(v;F) = Lm(v) e F ~is the norm closure of L;(v;F), the space

of measurable simple functions).

4.5. Proposition: If E is a Banach space, the isomorphism
Hom (L' (v);E) £ L (v;E"
om (v); = Lp(v; 0),
induces an isometric isomorphism between the Banach spaces
Lo(t'(v),B) ana L3
c v), an Lc(v,E).

Proof: We need only show that each T ¢ LC(L1(v),E) is re-

presentable by a function in Lz(v;E). But by 1.16 we know

that T factors over a mapping R : L1(v) > G where G is
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a Saks space of the form (H,|| ||,0(H,H')) where the Banach space
H is separable. Now R is representable by a function in Lm(v;Hc)

and so by a function in L™ (v;H, i) by the Lemma.
Il |

Similarly) we denote by LWC(F,G) the space of weakly compact
operators between the Banach spaces F and G and by L;C(v;F)
the space of functions in Lm(v;F) which have essentially

weakly compact range.

4.6.‘Prqposition: The isomorphism
Hom (L' (V) ;E) = Lo (v;E")
s o E'"" 7o
induces an isometric isomorphism between  -the Banach spaces

LﬁC(L1(v);E) and L~ (v;E). , -
. wC ,

We remark that in the special case where‘E is separable this
‘can be éroved exactly as 4.5. The general case follows from
the fact that a weakly éompactroperator from L1(v) into E has
éeparable range (sketch oS proof: since L1(v) has the DUNFORD-
PETTIS property, such an operator takes‘relativelf weakly
compact sets into compact sets. Hence it takes the set
{XA : A e L} into a relativély compact set. But the former
generates L1(v) - so the range of the operator is compactly
genérated and'so separable) - for_details see ﬁIESTEL and UHL
{41, pp. 75,76).

’

4.7. The spaces Lq(v;E): Let E be a Saks space. We denote by

Lq(v;E) (1 £ g < ») the space of measurable functions
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for which ["|x]qdv < «© where f' is the upper integral

(/| x/|¥ need not be integrable). Then

1l s x —s " |Ix|@av) /9

is a seminorm on LY(v;E) and induces a norm (also denoted by Illh)
on LY(v;E) := ﬁq(v}E)/NqA where
‘N = {x € Lq : Ww_oX =0 v a.e. for each p ¢ S}.

q p

Wevregard Lq(v;E) as a Saks space with the norm and the

locally convex topology defined by the seminorms
R ——y (f||wp<ox|ﬁdv)1/q

(p € S).

4.8. Examples: If E is a Banach space, then this space coincides
with the classical notion 6f Banach space valued Lq—spaces.

.If E has the form (F',|| ||,0(F',F)) (F a Banach spacé).then we

obtain the lower-star space Lg(v;E') studied by SCHWARTZ in [14].

4.9. Proposition: If E is a complete Saks space with canonical

representation E = S1lim { E_ : p € S}~ then
p

LY(v;E) = s1im L9(v;E ).
«— P
' P

In particular} Lq(v;E) is complete.

s

S lim Lq(v;Ep) is surjective which is the only non-trivial
P ’ '
part of the Proposition.
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Proof: If x ¢ thv-E) then (w ) x)pES is a thread which defines

an element of the right hand 51de. On the other hand let (x ) be
a thread in S 11m Lq(v Ep) Note that (Hx (. Hl is an 1ncrea51ng
family of elements of LY9(v) and that by the deflnltlon of a Saks-
space projective limit {f(ﬂxp”p )9dv} is uniformly bounded. Let

{pn}:=1 be an increasing sequence in S such that

sup [ (x Il )9dv = sup [ (x| )q dv
neN Pn Pn pPES

and let
b : Q o——-——a]R_l_Uf‘”}

w ——sup||x_ (w)]| .
neN Pn Pn

b is Vv a.e. defined and finite valued and by the monotone convergenc

‘theorem it belongs to L9 (v). Also for p € S, we have

"xp(w)“p < b(w) v a.e.

Indeed for fixed p let pg be an increasing sequence in S such that

Pﬁ,z p and pé > p._.

n
Let
b' : w,——sup [|x_;] .
' neN ,ph ph
Then b' > b and ||b"| = ub " , whence they are equal v a.e. and so
| L9 L9 |

b dominat .
ominates pr( )ﬂp vV a.e

Define
) X
Yp =B

14

e

with the convention = 0. Then (yp) defines a thread in S kim Lw(v;E

olo

and by the vector - valued lifting theorem 3.5 we can lift it to a
thread (yp) in s lim L (v; Ep). This thread pieces together to an
element y of L% (V;E), Let y be the corresponding equivalence class
in L% (v;E) and finally put

X: = b.y ,
~which is the element of Lq(v;E) corresponding to_(xp). This shows tha
the above mapping from Lq(y;E) into S 1jm Lq(v;Ep) is surjective whic

is the only non-trivial part of the proposition.
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4.10. Propdsition: Let E be a Banach space. Then there is a

natural isomorphism
1] T
i)t = 19 (viED) (1< q< =

where q' is éonjugate to g and Eé is the. Saks space

(&', |l ll,o(E",E).

Pfoof: 'Lq(v;E)' =.Lq(v;Blim F)'!
FeFEE)

= (B1lim .9(v;F))"
——
FeF (E)

s1lim (L9(v;m) ")
e .

]
S linl'Lq(v;F'))_
F

‘q' e !
L (V'Eo)'

We note that once again the duality is generated by the bi-
linear form of integration of the bilinear mapping of point-

wise evaluation.




§ 5. REPRESENTATION OF OPERATORS ON Cb(X).

In this paragraph we consider Riesz representation'theoreﬁs
for continuous linear operators from the Saks.space Cb(X)

{ek. I.3.II)>in£o a-éaks space. We prove one main theorem for
épératofs with values in a Saks space with compéct ﬁnit ball.
Using'the machinery deﬁeloped above, thisican be proved in aj'
feW lines. We then shqw how the classical representation
theorems for bounded, weakly compact and COmpactgoperators

ffom C(K) into a Banach space follows immediately from this.

First we recall that if F is a Banach space, X a completely

reqgular space, then if M : Bo(Xx) —— F is a Radon measure-

T, : X —s [ x du

is a B-cbntinudus linear operator from Cb(xj info F. u H—-%-Tu
is an isometry from MR(X;Fj into Hom(Cb(X),F). In general it
is not onto as the example of the identity operator on C[O,1]
shows. However, if F is finite‘dimensional it clearly is
(once again, we can easily reduce to the case where F is one-
dimensional and then the result can be found, fér example,

in COOPER [2], II.3.3). | |

Hence we have, for finite dimensional Banach spéces
: . i
MR(X;F) = Hom(C™ (X),F). .

Once again, this is a natural iSomorphism of functors.

The above isomorphism is a Saks space isomorphism if we give
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3

‘the left-hand side the topology of pointwise convergence

on cb(x) as auxiliary topology.

5.1. Proposition: Let (E,|| ||, 1) bg a Saks space with B” Il
T-compact, X a completely regular space. Then if

T 3 Cb(x) —- > E 1is a B-y continuous linear operator then

" there exists a Radon measure yu : Bo(X) —> E representing

T i.é. T is the operator

T, : x — [.x au

Conversely, every Radon measure u:defines a B-y continuous
linear operator Tu in the above manner.

Hence integration establishes a Saks space isomorphism

MR(X;E) = Hom(c®(X) ,E).

Proof: We put G := E! .and calculate:

v
.Y

Hom(Cb(X),E) = Hom(Cb(X), S1lim F')
_ FeRG)
- S%‘;T Hom (CP (%) ,F')

0] ) '
Sgﬁﬂx MR(X,F )

3 ]
MR(X, S%&pE‘

MR(XIE) .
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5.2. Remark: A less formal demonstration of the above result

goes as follows: since T maps bounded sets in Cb(X) into re-

"latively compact Subsets of (E,Y), then
n b n "
™ : C°(X)" —> E

actually takes its values in E (cf. 1.17).

Noting that if A is a Borel set in X then its characteristic
- function Xa defines, by integration,Aan.element of

Cb(X)" = (MR(X),IIID' we may define

p(A) := T"(X,)

Xa

which is an E-valued measure.

By the continuity of T" (with respect to the norm in Cb(X)")
we can deduce that .

T (x) = [ x du

for every bounded, Borel-measurable function on S and so ih

particular, for x € Cb(X); The converse fact is easy.

'5.3. Corollary: if T and_X and E are as above, then the
following are equivalent: | ‘

1) T is g-|| || continuous;

2) T is compact i.e. takes sohe B-neighbourhood of zero
to a relativély compact set in.E;

3) the semi-variation ||p|/of u (with respect to the norm

“in E) is tight i.e. for each € > O there exists-a K ¢ K(S)
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so that for each A e Bo(Xx) with A ¢ x \ K, |lu]l (A) < e.
Proof: The equivalence of 1) and 2) follows from Proposition
1.13 (which is trivial in this case since*BIIIlis compact) .

The equivalence of 2) and 3) is clear.

Using the above result, we can now easily obtain a result

for general operators with values in a locally convex space.

5.4. Proposition: Let E be a locelly convex space, X a

completely regular space. Then any continuous, linear operator
T Cb(X)-———+ E may be represented by integration with respect
' to a Radon measure u from Bo(X) into (E",c(E",E')). In fact,

g takes its wvalues in the o (E",E')-closure of T(B(Cb(x))).

If T maps the unit ball of Cb(x) into a relatively weakly
compact Subset of E, then p takes its values in E (actually

in T(B(Ch(x))) and is a Radon measure with respect to the

original topology in E.

gﬁgggz For the_first assertion, let B be the ¢ (E",E')-closure
of T(B(Cb(X))) in E" And let F be the Saks space spanned by
B_in EJ with || “B as norm and ¢(E",E') as auxiliary topology.
Then this is a Saks space with cempact unit ball and the result

follows immediately from 5.1.
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In the second case, take B := T(B(Cb(X))), the closure

noﬁ being taken in E, and define the Saks space F to be
(EE,IIIE,O(E,E')). Then T is represented py an F-valued
Radon meaeure‘u (i.e. Radon with respect to d(E,E')). Now

the Orlicz-Pettis.theorem for Radon measures implies that

U is a Radon measure with respect to the finest topology on F
compatible with the duality between (F, F ) and 1n.partlcular

with | respect to the topology of E.

5.5. Remark: We note that if'u € MR(X;E) is such that its
range is contained in a weakly compact, absolutely convex’
set, then the associated integration operater T. = Cb(x)-—-;+ E

sends the Cb

(X)-ball into this same set and T is weakly con-_
tinuous and so EOﬁtinuous iE (Cb(X),B) is a Mackey space

(e.g. if S is locally compact, paracompact) .

5.6. Proposition: Let (E,t) be a quasi-complete locally

convex space, T : CP(x) -—>E a 8-continuous_linear operator.
1f T does not map the unit ball of Cb(X) into a relatively
weakly compact subset of E there is a sequence (x ) of functlons
in C (X) with mutually disjoint supports so that 1f j is the
mapping (k ) —%E X n*n from s into Cb(x) and A denotes

the B-closed span of {xn} in Cb(S) then in the following diagram ;‘

: - T
c® (x) _ > E

c : —> A — —3 T(A)
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j .and TIA are isomorphisms. More informally, T fixes a
subspace of (Cb(x),B) which is isomorphic to Cye
Consequently, if E fails to contain a copy of o then every
continuous linear operator T : Cb(x)-*—«>E takes the unit

ball into a relatively weakly compact subset of E.

Proof: if T failé to satiéfy the given éondition,‘then by

Lemma 1.17, T' : E' —> M (X) takes some‘equicontinﬁous set

H in E' to a subsét of MR(X) which is bounded but nof rela- ‘
tively G(M(X),M(X)')—compact. Then by GROTHENDIECK's characteri-
sation of weakly compact sets in MR(X) (cf. BUCHWALTER and
BUCCHIONI [1], p.76) there exists a sequence (fn) in H and
a sequence (Un) of disjoint open sets in S and an € > O sd;"
that lT'(fn)(Un)I >e (ne N). i.e. lfn o u(Un)l 5 € (where
U represents T). By ROSENTHAL'S Lemma (sf. DIESTEL-UHL [4],

I.4.1) we may suppose that

|£ 0 ul (k%j u)<e/2 (ne N).
~ m¥n A

Now choose a sequence (x ) in cP(s) so that |xn| < xU, and

Sl T(x) | = lé x d(f o w| > e

which is possible since fno p is a Radon-measure. Then j, as
defined in the statement of the theorem, is clearly a well-

defined, continuous injection; We claim that

NTosC Ny 2 /2 H(?\n)IIco
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for each (A) € c,, where II]% denotes the seminorm of uniform
convergence on the equicontinuous set H. Indeed for any

(An) € C, and any k € N,

T od (A I 2 KT oA ), £ 5] = lé nﬁ]N »Anxnd(fkovu).l
> | f axdE o] - 1OOIL £ oul (U v
s KKk .n.lcok,l*kl
2 | le = Tl -e/2
. ',

Taking the supremum over k on the right-hand side we get the

required estimate.

This shows that (T oj)—1 is well-defined and continuous on
T bj(co),.from which it follows that j, as an operator from
co to j(co).and T, as an operator from j(co) to T oj(co) are

isomorphisms (by the following trivial Lemma)..

5.7. Lemma: Let X,Y,Z be topological spaces, £ : X ——> Y and
g : Y —>2Z continuous, surjective'mappings such that geof

is an isomorphism. Then f and g are also isomorphisms.

Proof: The injectivity of go f implies that of g and f so

=] 1

that f—1 and g-1 are well-defined. But as g

and f—1 = (g of)-1° g it is clear that f and g are con-

fc(gef)
tinuous.

With these results it is now easy to prove the following

Proposition:
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5.8. Proposition: Let (E,|| ||,t) be a complete Saks space,

T.: Cb(s);~~—$ E  an B-y continuous linear operator with
repreéenting measure yu e'MR(S;E"). Then the following are
equivalent:

1) T does not fix a copy of Coi |

2) T maps the unit ball of cP(s) into a rélatively
weakiy compact set; ‘

3) T maps weakly summable sequences to suﬁmablé sequences;

4) T maps weakly Cauchy sequences into convergent
. sequences;

5) T maps sequences which tend weakly'té zero to conver-
gent sequenées; ) | '

:6) if (xn) is a bounded séquence of funqtions in Cb(s)_
with mutually disjointisupports, then Txn———e'O in E;

7) T maps weakly compact sets in Cb(S) into compact sets;

8) u takes its values in E;

9) u is a Radon meésure with valués in E;

10) u is a strongly additive measure with values in E..

gggggg 1) == 2) iénPrpposition 5.6.

2) =—> 9) 1is Proposition 5.4.

9) == 2) - 6) are all simple applicatiohsvof the Lebesgue-
dominated convergence theorem. The reverse impliéations all
follow frcem the fact that if p is not Radon then the (xn)
constructed in the proof of Proposition 5.6 supply counter-

examples.




r

9) ==> 8) is clear and 8) = 10) follows.from the weak
o-additivity of u and ORLICZ-PETTIS. 10) implies 2) is
embédded in the proof of Proposition 5.6.

9) ===3>17): Note_thaﬁ (Cb(S),B) is not necessarily completé so
that we cannot use EBERLEIN-SMULIAN. Firstly, we may assumé
that E is a Banach space (using the characterisation of
cdmpacﬁneés in Saks spaces (cf. COOPER [2], I.1.12). Then

- H : Bo(S) —— E hés tight semi-variation norm so that for

€ > O,we‘may find K € K(S) so that if Ty denotes the operatof
associated to u|g then Hi - TK{|<.e.vNow if B is weakly com-
pact in cP(s), then Ty (B) is compact in (E,|| [) (using factori-
sation through C(K)‘and EBERLEIN-SMULIAN) and by Lemma 1.10

we may conclude that T(B) is compact in (E,]|| |]).

In the following we give two applications of the theory
developed here - to ORLICZ-PETTIS type theorems and to the
spectral theory for unbounded operators on Hilbert space.
Firstly, suppose that E is a locally convex space and that D
is a total subset of E'. Let T : £°(N) —>E be a linear
operator and put x, = Te,.

5.9. Lemma: T is B-o(E,D) continuous if and only if for every

séquence (An)~e £m(ln, T Anxn is o (E,D)-convergent.

Proof: —= follows from the fact that I Xnen is B-convergent.

E~

N

: it suffices to show that if f € D, then T*f ¢ £1(In -for

~then T is 0([“,21)-0(E,D) continuous and so B-continuous (since
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o ’ . 0 r
B is stronger than o(l ,1').But if (A ) € £ (N), f e D, then

N N

oo . B
X = ‘
T*f( Anen) £f( Anxn)-———> f( Anxn)
n=1 n=1 n=1

and so T*f is B-continuous i.e. T*f ¢ £1(1U..

5.10. Proposition: IF (xn) is a sequence in E so that I Anxn
' n

cohverges weakly in E for each (An) £ Zm(ln (i.e. if (xn) is

-weakly unconditionally convergent) then I X (in fact I Anxn
. : n n

for each (An) € £w(nﬂ) is unconditionally convergent in E.

Proof: By the above Lemma, the hypothesis implies that

N
T ¢ (A ) ——> 1lim I A x
n n=q DN

is B-o(E,E') continuous and so B-continuous (for the original

topblogy of E) since B is the Mackey topology.

5.11. Proposition: If E is separable, D a total subset of E‘

and (xn) is such that Anxn is o (E,D) convergent for each

z
n
(A_) € Kw(nn then, £ A_x is convergent (in the original
-+ n n n'n
topology of E) for each (An).

Proof As above, except that we now use the closed graph theorem

for Saks spaces (cf COOPER [2], I.4.24) to deduce the contlnulty

of T.

Using. standard techniques (cf. THOMAS [17], Prop. 0.1) we can.

deduce the following ORLICZ-PETTIS theorems for measures.




5.12. Proposition: Let D be a total subset of the dual E'

of the locally convex space E and suppose that

1) D =E"
o) 2) E is separable.
Then any measure QY : I >E (I a o-field) which is o- .

additive for o(E,D) is o-additive for the original topology of E.

5.13. Proposition: Let K be an Eberlein compactum, D a dense

subset of K. Then a measure uy : I ——> C(K) (Z a 6—fie1d)
is norm o-additive if it is o-additive for the topolbgy Ty of

~ pointwise convergence on D.

This generalises a well-known result for metrisable compacta.
(cf. BUCHWALTER-BUCCHIONI [1], 1.6.2). The proof uses the fapt
that if K is an Eberleih‘compactum, then C(K) is weakiy cdm—
pactly generated and so we can apply a closed graph theorem
for Qperators from Zm(IU into‘C(K) (cf. COOPER [2], I.4.33,

p. 6) .

5.14. Proposition: Let (xn) be a Sequence in the locally convex

space E so that each (A_) ¢ K?(IU, 2 A x_ is o(E,D)-conver-

n n n'n
gent where D is a total subset of E' with the property that
every o (E,D)-bounded set is bounded. Then either an converges

(unconditionally) or there are disjoint blocks

Yy = xnk + i + Xnk
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is an isomorphism

so that the mapping (Ak) e ﬁ MYy

from (£, |) into E.

Proof: Define the mapping T : £m(Iﬂ ——> E by

(Xn) —> ﬁ Anxn (O(E,D)—limit){

By the assumption, T(B(£”)) is bounded in E i.e. T is Il

continuous. If I X does not converge unconditionally, there
n N

- is a continuous seminorm p on E and blocks (yk) so that (p(yk))

is bounded away from zero. A standard application of ROSENTHAL's

. Lemma (cf. DIESTEL-UHL [4], Ch. 1) concludes the proof.

Now suppose that T is a self-adjoint, densely defined but

not necessarily continuous operator on a Hilbert space H. We’
shall show how the theory developed in this section can be
applied to deduce the spectral fheorem forAT (cf-. BUCHWALTER
and BUCCHIONI [1] for a corresponding treatment for bounded
operatofs). We recall the following facts which can be prdved
by,elementary means, resp. by using the spectral theofem for
bounded, self-adjdint operators (for proofs, see RIEéZ and

SZ.-NAGY [13]):

1 1

. I. The operators B := (I +_T2)- and C := T(I + Tz)- are

bounded, continuous and evefywhere defined.

1
II. If B = j XdFA is the spectral representation of B and
' o

* == - . = 3 2 2 -
Pn := F1/n ' F1/n+1’ Hn ¢= PnH, then H = £ (Hn), the £ or
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'

Hilbert sum of the Hn and each Hnreduces T to a bounded,

self-adjoint operator Tn'

Let Q(T) denote the spectrum of T (so tha£ 0(T) need not be
a compact subset of IR). Now denote by Yy the funcﬁion
t — t(‘l+t2)—1 and by Y, the function t P———>(1+t2)—1.
Let A be the subalgebra of ng(c(T)) (the subscrip£ denotes
:real—valued functions) generated by Y1 ¥y and the constants.
Then if we define y1(T) and‘yz(T).to be T(I+T2)—1 and
(-I-i-Tz)_'.1 respectively, it is clear how we can define an
.operator ® : X ——> x(T) from A into L(H). We shall sketch
briefly a proof of the fact that ® is a Saks space algebra
morphism from (A, IIIITK) into (L(H),II|LT ).
First of all it is easy to see that ¢ is norm—decréasing (foé
example, by applying the corresponding result for bounded
operatofs componentwise to the decomposi;ioq H = £2(Hn)).
Now suppose that X, —>0 in (A,8). ;;dl assume that (xa)
liea in the unit ball of A. Let y = (yn)l'and
z = (zn) € H = £2an). Then we can choose N so that

l|Yn”2 % ; ”anF < €. Then we can show that
n=N+1 n=N+1

(x&(T)yIz) ~——f¥—9~0

by . estlmatlng the talls ‘and using the fact that x ————% O

uniformly on o ( 69 T, ) (the restriction of T to Qa H ) so
n=1 -

that x,(T) s g >0 uniformly.




"
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Now A is B-dense in Cg{(o(T)) by the Stbne—WeierstraB
theorem.and so we can extend ¢ to a B-continuous algebra
morphism from Cgl(o(T))'to L(H). We continue to denote the
image of x EAC;{(O(T)) by x(T). Hence we have proved

(rather sketchily) the following result:

5.15. Proposition: Let T and H be as above. Then there is a

Saks space algebra morphism o : X —>x(T) from

(€2 (o(m), |l lltg) into (L(H), || l.t,) which extends the

."substitution operator" on A.

If we now apply 5.1 we obtain the result that there is a

Radon measure u : Bo(o(T)) > L(H) so that

x(T) = [ x du. (xecP(o(m)).
: o(T) , )

Now ¢ 1lifts (by integratioh) to a mapping from Lw(c(T)) into

L(H) which is easily seen to be multiplicative.

Since u(a) = @(XA),vu takes its values in the setAof self-
adjoint_projections énd is multiplicative (i.e. _

u(A N B) = u(Aiu(B) for A € Bo(o(T))). Hence the above reéult
is just the classical spectral theorem for unbounded, self-
adjoint operafors. Similar methods can be applied to cbtain the

spectral theorem for unbounded normal operators.



- 47 -

- § 6. ABSOLUTELY SUMMING OPERATORS ON Cb(S).

In this’seCtion; we characterise absolutely summing operators

on Cb(S). We begin with some preliminaries:

6.1. Definition: Let (E,T) be a locally convex space. A family

) in E is

(x iel

i

weakly summable if )X |f(xi)| < » for each f ¢ E';
iel

summable if the finite partial sums form so T-Cauchy set;

absolutely summable if z p(xi) < =« for each t-con-
' : iel s :

tinuous seminorm p on E.-

Note that (x;) is weakly summable if and only if

{2 x, : 3¢ J(1)}
. i .
lE:J . .
" is weakly bounded (and so bounded) in E (where J(I) denotes

the family of finite subsets of I).

A family (xi) in.a Saks space is absolutely summable,if its

partial sums:are norm-bounded and it is T-absolutely summable.

Note that this is not the same as y-absolute summability (cf.

the sequénce (en) in (£7 (W) ¢ |l “er) where Tp is the topology
of coordinatewise convergence). |
If E is a iocaliy convex space with defining family S of
éeminofms, 21{E} denotes the space of absolutely summable

~sequences in E, regarded as a locally.convex space with the
family of seminorms {p : p € S} where

P:o(x) > = p(x_).
' neIN '
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(E,T) satisfies property (B) (cf. PIETSCH [121, § 1.5.5)

if each bounded subset of £1{E} is contained and bbundéd in
some £1{EB} where B is absolutely convex and bounded in E.
Examples of spaces with this préperty are metrisable and
dualmetric spaces‘(cf. Th. 1.5.8 of the above reference).

Of particular interest to us is the following ?esult,_which

is originally due to NOUREDDINE ([11]):

6.2. Proposition: Let (E,]] ||,t) be a Saks space. Then (E,y)

has property (B).

Proof: Let B be a subset of 11{E} which is not‘bounded for

the norm i.e. is such that

(xn) € B} = w..

sup {z'Hxnlls

We shall show that B is not bounded in the topology induced

. on £1{E} by y. For each i ¢ N, we can find x' = (xi) € B
_ n(i) 4 : .
and n(i) ¢ N so that [Ixnll > (i+1)°“.
n=1 -

Choose fi e (E,1)' so that Hfi]|< 1/i  and

x,. 1 1 i
l£0 ) | > o x|l

. (note that (E,7)' is O(EIIIVE)—dense in (E,|| ID*).

"Now C := {f; : n=1,...,n(i), i=1,...} 1is a norm-precompact
subset of (E,T)'. Hence its polar U° in E is a Y-neighbourhood
of zero (for y is finer then the topology TpC(E'E%) of

uniform convergence on. the norm precompact subsets of E').
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Now we have

w . n(i) . n(i) . .
i - i i, 4 '
z =] 2 Z .p.&)E"E [ lx)|
i U ‘n — U'''n n=1 n'n
n(l p
1 i .
> I—;_—.]- % ||Xn“> i+1

where'pU_is the Minkowski functional of U and so is a
Yy-continuous seminorm on E. Hence B is not bounded in £1{E}-

which was to be demonstrated.

6.3. Corollary: Let (x;) be a family in a Saks space (E,I{ILf).
Then 1) (xi) is y-weakly summable if And only if it is norm-
weakly summable; |

2) (x ) is y- absolutely summable 1f and only if 1t is

norm absolutely summable.

Proof: 1) follows from the remarks in Def. 6.1 and the fact
that the norm and y-bounded sets are the same.

2) follows from Proposition 6.2.

Note that the corresponding result for summability is not true
(once again the sequence (e ) in (Zw(IU,H Il TP) provides a

counterexample).

6. 4 Corol1arz A family (x ) in C (S) is B-weakly summable

.k and only if there is an M > O so that

B |xi(t)| <M
ieI
for each t ¢ S.
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6.5. Definition: A continuous linear operator T : E —> F

between locally convex spaces is absolutely‘summing if it

maps weakly summable families into absolutely summable ones.
Note that if E and F are normed spaces, then this is equi-
valent to the existence of a constant”p > 0 so that for each
finite family {x1,...,xn} in E
n - "n ’ '
T ||tx.]|| = psup{ £ |f(x.)]| : f € B(F')}.
=1 =1 -

The infimum of all such p is denoted by HTIES’ the absolutely

summing norm of T. It is a norm on AS(E,F), the vector space

of absolutely summing operators from E into F.

'6.6..Proposition: If T is an absoluteiy summing operator from

(Cb(X),B) into a quasicompletevlocally convex space, then it
maps the unit ball of Cb(x) into a relatively weakly compact

subset of E and so is represented by an E-valued Radon measure.

Proof: If T does not satisfy the conclusion of the Propositién,
then by Prop. 5.6 there is a bounded sequence (xn) of functions
in Cb(X) with disjoint support so thatAp(T(xn)) is bounded
away. from zero fbr some continuous seminofm p on E. This

obviously implies that T is not absolutely suhming.

Now let E be a normed space. Then a B-continuous linear operétor
T : Cb(x) —> E 1is absolutely summing if and only if it is
absolutely summing from (Cb(x),[llb into E (this follows from

6.3). In particular, we can define HTlgs for such a T and we
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have that HT]&S is the infimum of those p for which

n .~ n
L |lTx.]] £ psup I |x.(t)]
j=1 tes =1 3

for each {x1,.f.,xn}.in C(x).

6.7. Lemma: A B-continuous linear operétor T Cb(x)-———e E
(E a Banach space) is absolutely summing if and only if its
representing measure p has bounded variation [ul.

Then we have HTIES = |u|(x).

Proof: Suppose that p has finite variation |u|, where (by

definition),

lul (&) = sup(z |lu(a)l|: {A;} a finite partition of A}. . .

Now if {xj}? is a finite family in cb(x) we  have
- ,

z ”ij”= ZIIJXJdU” < 2 flledlul

el 3 , ]

< sup glxj(t5|.|u|(X).
teX 3 :

Hence T is absolutely summing and HTI%S < Jul X).

Now let T be absolutely summing. Suppose that {Ai}? is a
partition of S. We show that = Hu(Ai)H < “T1k5'

Choose {f1,...,fn} in the ball of E' so that
lu@ap |l = £, ().

Since fio11 is a bounded Radon measure on X, we can find,
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for € > O, compact sets Ki c Ai so that

o
Alfj o ul(_L_)1 A;\ K;) < e/n

i=
for each j. Now choose x; :X ——> [0,1] so that x; =1 .CQ
K;s x; = O on Kj (§%i) and EIxi <1 onXx. |
Then [Tx, Il 2 [§(1x) | = | fx,d(£,0 W]
2.|£i x;d(£; 0 w | - !x{Ki xid(fio ﬂ)l'
2 [£i0ou@a)] - |[£50 ulgUAj\Kj_>
2 flw@ap]l - e/n.

Hence I |lu(a) |l <z |[Tx,|| + e.

This implies that |u| < HTIES as was to be shown.

Using this result it is now easy to show:

6.8. Proposition: Let T be a continuous linear operator

from Cb(X) into a quasicomplete locally convex space. Then

T is absolutely summing if and only if its representing
measure p has finite variation with respect to each continuous

seminorm.

6.9. Corollary: Let T be a continu&us linear operator from
(Cb(x),ﬁ) into a Banach space E. Then T is absolﬁtely summing
if and only if there is é positive Radon measure v on X so |
that T factors over the natural injection Cb(X)f——ﬁ L1(v) as.

follows:



cP(x)

v
&3]

L' (v)

In this case, then v and U can be so chosen ﬁhat

V(X) = “T“AS and ||U]| = 1.

Proof: Let T be absolutely summing and let yu be its representing

measure. Put v = |u|, the variation of u. Then if

X = ElaixA_ € S(v), the space of v-measurable step functions, we
. i

define -5 "

: U(x) := Zo;u(a).

U is well-defined and ||U|| £ 1 - so it extends to an operator

from L1(v) with the required properties. Also

ITllyg = Tu] (X)) = vix).

The converse follows from the well-known fact that
Cb(X)-——~a L1(v) is absolutely summing (for example, because
~its representing measure is A F————?XA which is clearly of

bounded variation).

Note that the above result is no longer true for afbitrary

locally convex spaces E as the following examplé shows:
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6.10. Example: Let I be an uncountable set and consider the
natural inclusion T : KQ{I)-———acl which is clearly absolutely
summing. But any poéitive, finite Radon measure v on I is
supported by a countable subset of I and so the inclusion

Zm(I) c L1(v) cannot be injective. Hence, T, being injective,

cannot factorise over this mapping.

However, we can generalise the above Proposition as follows:

6.11. Proposition: The statement of Corollary 6.9 holds if E
is replaced by a quasicomplete locally convex space with
property (B).

Proof: We recall the notation £1[F] (F a locally convex space)
for the space of weakly summable sequences in F with locally

convex topology defined by the seminorms:

3 . o P
e, (%) ————~>sup<[§jf(xn)l : £e U} (pes)

where Up is the unit ball of p.

Then if T : Cb(x) ——> E is absblutely summing, it induces

a continuous mapping from 21[Cb(x)] into 21{E}. Now put

D := {(x) e £'c®(01 : 1 |x | < 1}.

n

ol

Then D is bounded in Ki[cb(x)] and so T(B) is boﬁnded in Z’{E}

and_so in some £1{EB}, where‘B is a Banacn ball in E. But this



means exactly that T is in fact an absolutely summing
operator from Cb(X) into the Banach space EB and so the

- result follows easily from 6.9.

6.12. Corollary: If X is such that for every bounded, positive
Radon measure v on X, L1(v) is separable‘(e.g. if the compact
subsets of X are metrisable), then any absolutely summing
operator T from Cb(X) into a quasicomplete locally convex space

E with property (B) has separable range.
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