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SAXS SPACES AND VECTOR VALUED MEASURES

J.B. Cooper, W. Schachermayer, Linz, Austria

Introduction: The purpose of this note is to give a sample of applications

es tc the theory of vector measures. For coanvenience we re-
strict attention to gensralised Riesz representation theorems i.e. we con-

sider representations of operators on spaces of continuous functions by

[

q

nt4gfation with respect to a vector valued measure. A Saks space is a
vector space with. two structures, a norm and a locally convex topology,
which are in some sense compatible. At first sight this may seem a rather
strange object and its relevance to measure theory is not at all obvious.

However, we hope that this paper demonsirates the thesis that they are a

suitable tool for some aspects of the theory. Here we would like to
mention one argument which may make this claim more plausible. One of the

&
features of a g-additive measure with values in a Banach space and defined
that it takes its values in a weskly compact set. This
means exactly that it takes its values in a Saks space and indeed of a
very special kind - one with compazct unit ball. Now such Saks spaces are
precicely suitable

those which are expressible as projective limits (in a

sensz) of finite dimensional spaces. This allows us, for example, to reduce
the proof of a Riecz representation theorem for operators with values in
such Saks spaces to the finite dimensional (i.e. essentially the scalar
valued) case by means of a simple formal manipulation with suitable
functers. Surprisingly enough, although this result seems very special, it
contains as Corolilaries three important results and thus we obtain a
simple and unified approach to them. »

For the convenience of the reader we begin with a brief survey of the re-
sults and concepts on Saks spaces wnich we shall require. A detailed
discussion can be found in COOPER [1]. In the second half of the paper we
prove the Riesz representation theorem mentioned above and deduce three
important representation theorems (cf. DIESTEL and UHL [2]).

This article is an extract from a systematic treatment of vector measures

from the point of view of Seks spaces which is now in preparation.
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1. Definition: A Saks space is a triple (E,Il lI,T) where (E,Il II) is &

normed space and T is a locally convex topology on E so that B” I the

unit ball of (E,Il II), is T-closed and bounded.

We then write Y[Il II,T] or simply Y for the finest locally convex topology

on E which coincides with T on Bll!r Ve resume the most important elementary

properties of Y in the following Proposition (cf. COOPER [1]):

2. Proposition: 1) T ¢y & P
2) the y-bounded subsets of E coincide with the norm-bounded sets;

3) a sequence (xn) in E converges to zero with respect to y if and only if
it is norm bounded and T-convergent to zero;

4) a subset of E is y-compact if and only if it is norm-bounded and
T—compact;

5) (E,Y) is complete if and only if Bllllis T-complete;

6) the dual E+ of (E,Y) is the norm-closure of (E,T)' in the dual of (E, Il II).

3. Examples: I. If E is a Banach space, then the following triples are
Saks spaces:
(B0l )s (EsIILo(ELE)), (B, 11 11,0(E",E)).

II. If X is a completely regular space and Cb(X) denotes the space of
pounded, continuous complex-valued functions on X then (Cb(X),H ”’TF) is

a Saks space where TK is the topology of compact convergence.

III. If H is a Hilbert space and L(H) is the algebra of continuous linear
operators on H we denote by T,, and Tg the weak resp. strong operator topo-
logy on L(H). Hence T, is defined by the seminorms T = |£(Tx)| (x e H,

f e H') amd T is defined by the seminorms T - |ITx|l (x € H). Then
(L(H), Il H,Tw) and (L(H),IIILTS
are Saks spaces.

IV. Let u be a positive, finite, 0-additive measure on the space (Q,I)
and denote by L (u) the corresponding L -space. Then (Lm(u),li!LT1) is a
Saks space where T is the topolecgy induced by the L1—norm and its duel

is L1.

L. Completions: If (E,ll Il,1) is a Saks space its completion is defined

as follows: we let B denote the T—completion of Blllli'e' the closure of
Bllllin the completion ﬁT of (E,T). Then if £ is the span of B ana I I

T O T T Y T A A oy O Y S . A T T, R MR 7 - Ay S W |-
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denotes the Minkowski functicnal of 8 (ﬁ,lllr,T) is the required com-
pletion. As an exemple, if E is a normed space then the completion of the
(E, Il N,0(E,E")) (E", Il I,6(E",E")).

Saks space is the Saks space

5, Saks space products and projective limits: IT {(Ea,lllh,ra)}aeA is a

family of Saks spaces we form their product as follows:

if E denotes the Cartesian product I E_ we put
agA @
E, := {x = (x,) € E : llxll := sup e 01, < oo}

Then (EO,H II,T) is & Saks space where T is the Cartesian product of the
topologies {Ta}. (EO,IIILT) is called the Saks space product of {Ea} and
is denoted by S II Ea'

Now let {HBG : EB - E a,B € A, o < B} be a projective spectrum of Saks
spaces. As usual, we define the projective limit of this spectrum as the

subspace of the product formed by the threads i.e. as

E, := {{ 3 = b £
3 {\xd) e SME, nga(xs) x, fora B}
E, is denoted by S lim{Ea}. As an example, if X is a locally compact space

and K(X) denotes the family of compact subsets of X then

{pK1,K : c(k,) = C(K), K& K}

forms a projective spectrum of Banach spaces (where C(K) denotes the Banach
space of continuous, complex-valued functions on K and pK1,K is the re-
stricticn operator) and its Saks space projective limit is naturally identi-

fiable with (cbfx),n ||,TK). .

Now if (E,Il Il,T) is a Saks space, we say that a family of seminorms S which

generates T is a suitable family if it satisfies the condition:

1) if p,q € S then max{p,q} € S;

2) Il Il = sup S.

If p € 5, E_ denotes the Banach space generated by p (i.e. the completion

of the normed space E/Np where Np is the kernel of p) and if p < q then

w  denotes the natural mapping from E_to E_. Then {w__: E ~ E } forms
q P qp q P

a projective spectrum of Banach spaces.

6. Proposition: If (E,Il Il,t) is a complete Saks space, then E is naturally

identifiable with S 1im E_.
peS
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T. Proposition: Let (E,ll lI,T) be a Saks space. Then the following are

equivalent:
BRI

2) E is a Saks space projective limit of finite dimensional Banach spaces;

is T-compact;

3) E has the form (F',Il ll,6(F',F)) for some Banach space F.
Then Y = TC(F',F), the topology of uniform convergence on the compact sets

of E, is the finest topology on E which agrees with T on Blllr

In fact, if 1) is fulfilled, then E is naturally identifiable with ;
S 1im {F'} where F(E!) denotes the family of finite dimensional subspaces
Fe F(E;)
of E'.

Y

R Rtk

Further, the following are equivalent:

1) B is T-compact and metrisable;

e LA A

2) E is the Saks space projective limit of & sequence of finite
dimensional Benach spaces;
3) E has the form (F',Il II,o(F',F)) for a separsble Banach space Fj
4) B
) I
that 1 =

P ARy

is T-compact and normable (i.e. there is a norm IIIH on E so

B o
T o By

8. The Hom functor: If (E,ll ll,t), (F,Il ”1’T1) are Saks spaces, then

Hom (E,F) denotes the set of y-continuous linear operators from E into F.
Note that, as a vector space, this coincides with the space of norm-bounded
linear operators from E into F if E is a Banzsch space. We regard Hom (E,F)
as a Saks space with the supremum norm and Tp, the ﬁbpology of pointwise

convergence, with respect to T.

9. Proposition: 1) If {Ea} is an inductive system in BAN, and F is a
complete Saks space then there is a natural isomorphism between the Saks
spaces

Hom (B 1lim E , F) and S lim Hom (E , F).
a o .
In particular, if E is a Banach space, we have

Hom (E,F) = Hom (B 1im G, F) = S lim Hom (G,F).
GeF(E) GeF(E)

2) if {Fa} is a projective system of Saks spaces, E a Seks space, then ;

there is a natural isomorphism between the Saks spaces i

Hom (E, 8 1im F ) and S lim Hom (E,F ).
a a

T T e A /e T T e Y 3 . T T S T B T T S 7 3 4 0 23
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In particular, if F is a Saks space with B” 0 T-compact, we have
Hom (E,F) = Hom (E, S 1im G') = S ljm Hom (E,G').

GeF(Fy) GeF(Fy)

10. Remarks on the Saks space Cb(X):

The space Cb(X) is one of the most important Saks spaces and we shall be
interested in.representations of operators on it. We note here that the
dual of (Cb(X),Y) is the space of bounded Radon measures on X, the duality
being established by integration. This follows easily from 2. For the dual
of (Cb(X),TK) is the space of Radon measures with compact support and the
bounded Radon measures are just those which can be approximated by such
measures. We remark in passing that there are natural Saks space structures
on Cb(X) 50 that the corresponding dual spaces consist of the bounded
o-additive Borel measures (resp. T-additive Borel measures).

For the theory of C°(X) ef. COOPER [1], Ch.II.

11. Radon measures with values in a Saks space:

Let (Z,11 1I,T) be a Saks space, S a suitable family of T-seminorms on E and

X a completely regular space. A bounded Borel measure on X with values in
E is a (finitely additive) norm bounded set function u from Bo(X), the
Borel field of X, into E. Such A measure is a Radon measure if it is inner

regular with respect to T i.e. satisfies the condition that

n

lim w_o p(K) =w_o u(A) in E
KeK(x) P p P
KeA

for each Borel set A in X and each peS.
b
(

Note that we can then integrate functions in C (X) with respect to such a

measure. The integral .fx dy is then in EY’ the completion of E.

We use the notation MR(X;E) for the (vector) space of E-valued Radon
measures on X.

We regard MR(X;E) as a Saks space with the following structures. The norm
is the semivariation normand the subsidiary locally convex topology is that

defined by the seminorms

uoo= p(fxan)  (pes, xec®(x))
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12. Proposition: If (E,|| ||,T) is a complete Saks space, then there are

natursl identifications:

MR(X;E) =5 ljm MR(X;EP).
peS

Proof: If u is in the left hand side, then the elements (wpo u) form a
thread which defines an element of the right hand side. On the other hand,
a thread (wp) on the right hand side pieces together to form a bounded E-

valued measure which is clearly Radon.

We consider Riesz representation theorems for continuous linear operators

from the Saks space Cb(X) (ef. 3.II) into a Saks space. We prove one main

theorem for operators with values in a Saks space with compact unit ball.

Using the machinery developed above, this can be proved in a few lines.

We then show how the classical representation theorems for bounded, weakly
compact and compact operators from C(K) into a Banach space follow

immediately from this.

First we recall that if F is a Banach space, X a completely regular space,

then if 1 : Bo(X) = F is a Radon measure

‘I’u tx f X du

is a B-continuous linear operator from Cb(X) into F. p =~ ‘1’u is an iso-
metry fron MR(X;F) into Hcm(cb(x),F). In general it is not onto as the
example of the identity operator on C[0,1] shows. However, if F is finite
dimensional it clearly is (once again, we can easily reduce to the case
vhere F is one-dimensional and then the result can be found, for example,
in COOPER [2], II.3.3).

Hence we have, for finite dimensional Banach spaces F,

MR(X;F) = Hom(Cb(X),F).

Once again, this is a natural isomorphism of functors.
The above isomorphism is a Seks space isomorphism if we give the left hand

side the topology of pointwise convergence on Cb(X) as auxiliary topology.

13. Proposition: Let (E,Il Il,T) be a Saks space with Bllll T-compact, X a
completely regular space. Then if T : Cb(X) -~ E 1is a B-y-continuous

linear operator there exists a Rdon measure U : Bo(X) - E representing

T I T P T 1T AT o T T, . e AT e 550 7 € B o Myt e e
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T i.e. T is the operator

T =% = f x du

u
Conversely, every Radon measure | defines a B~y-continuous linear operator
TU in the above manner.

Hence integration establishes a Saks space isomorphism

MR(X;E) = Hdm(cb(x),E).

Proof': and calculate:

Hom(cP(X), S 1im F')
FeF(G)

S 1lim Hom(c®(X),F")
3

[}

i

S 1im M.(X,F')
F

= MR(X, S lim F')

F

1}

MR(X,E).

1%, Remark: A less formal demonstration of the above result goes as follows:

since T maps bounded sets in Cb(X) into relatively compact subsets of (E,Y),

then
T" . Cb(X)" o E"

actually takes its values in E.

Noting that if A is a Borel set in X then its characteristic function Xa

defines, by integration, an element of Cb(X)" = (MR(X),llln' we may define
T
u(A) =T (XA)

which is an E-valued measure.

.. . . b
By the continuity of T" (with respect to the norm in C (X)") we can deduce

that
T(x) = }'x du

for every bounded, Borel-measurable function on S and so in particular, for

X € Cb(X). The converse fact is easy.

Using the above result, we can now easily obtain a result for general

operatars T with values in a locally convex space.
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15. Proposition: Let E be a locally convex space, X a completely regular
space. Then any continuous, linear operator T : Cb(X) - E may be
represented by integration with respect to a Radon measure u from Bo(X)
into (E",0(E",E')). In fact, U takes its values in the o(E",E")-closure

of T(B(c(X))).

If T maps the unit ball of Cb(X) into & relatively weakly compact subset
of E, then y takes its values in E (actually in T(B(CP(X))) and is a Radon

measure with respect to the original topology in E.

Proof: For the first assertion, let B be the o(E",E')-closure of T(B(Cb(X)))
in E" and let F be the Saks space spanned by B in E" with lll% as norm and
o(E",E') as auxiliary topology. Then this is a Saks space with compact

unit ball and the result follows immediately from 1k.

In the second case, take B := T(B(C°(X))), the closure now being taken in
E, and define the Saks space F to be (EB,H lb,G(E,E')). Then T is repre-
sented by en F-valued Radon measure u (i.e. Redon with respect to o(E,E')).
Now the Orlicz-Pettis theorem for Radon measures implies that p is a Radon
measure with respect to the finest topology on F compatible with the
duslity between (F,F;) and in particular with the respect to the topology
of E.

16. Remark: We note that if UE:MR(X;E) is suck that its range is contained
in a weakly compact, absolutely convex set, then the associated integration
operator T : Cb(X) -+ E sends the Cb(X)-ball into this same set and T

is weakly continuous and so continuous if (Cb(X),B) is a Mackey space

(e.g. if S is locally compact, paracompact).

17. Proposition: Let (E,T) be a quasi-complete locally convex space,
T : cY(

X) - E a B-continuous linezar operator. If T does not map the unit
ball of Cb(X) into a relatively weakly compact subset of E there is a
sequence (xn) of functions in Cb(X) with mutually disjoint supports so that

if j is the mapping (ln) - ZAn.xn from <, into Cb(X) and A denotes the
B-closed span of {xn} in Cb(X) then in the following diagram
T

ch(x) —_— E
J T
C ’ > A |4 > T(A)

B I W T 3 P B e TP T A A

o RS P G~ oy B

C——

T

N,
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p . N g 5 b
j and T|, are isomorphisms. More informally, T fixes a subspace of (c™(x),B)

which is isomorphic to e

Consequently, if E fails to contain a copy of G, then every continuous
linear operator T : Cb(X) - E takes the unit ball into a relatively

weakly compact subset of E.

Proof: If T fails to satisfy the given condition, then by a standard result,
T : E' - MR(X) takes some equicontinucus set H in E' to a subset of
MR(Xl which is bounded but not relatively o(M(X),M(X)')-compact. Then by
GROTHENDIECK's characterisation of weakly compact sets in MR(X) (ef. BUCH-
WALTER and BUCCHIONI [3], p.76) there exists a sequence (fn) in H and a
sequerice (Un) of disjoint open sets in S and an € > O so that
IT'(fn)(Un)| > ¢ (neWN). i.e. Ifno u(Un)| > ¢ (where u represents T). i
By ROSENTHAL's Lemma (cf. DIESTEL-UHL [2], I.lk.1) we may suppose that

|£_ o ul (U u,) <e/2 (neg W).

- m#n

Now choose a segquence (x ) in c®(X) so that lxn| < XU, and
, -
Ilno T(xn)[ = lé xnd(fn° w| > e

which is possible since fno U is a Radon measure. Then j, as defined in
the statement of the theorem, is clearly a well-defined, continuous in-

jection. We claim that

j >
o SNy = /21000
for each (An)e o where || ]h denotes the seminorm of convergence on the

equicontinuous set H. Indeed for any (An)e:co and any ke IV,

HT e (A Ny 2 1I<T o J(OA)),E 21 = |é ngm A d(fy 0wl
2| agate o] -, Teenl([J up)
s “o 1#k

2 le - A, -e/2
(o}

Teking the supremum over k on the right hand side we get the required

estimate.

This shows that ('I‘o,j)_1 is well-defined and continuous on T oj(co), from

which it follows that j, as an operator from ¢ to j(co) and T, as an
operator from j(co) to'roj(co) are isomorphisms (by the fcllowing trivial

Lemma.) .
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18. Lemma: Let X,Y,Z be topological spaces, f : X=-Y and g : Y = Z
continuous, surjective mappings such that goef is an isomorphism.

Then f and g are also isomorphisms.

o5 - ; s - -1
Proof: The injectivity of gef implies that of g and f so that f L and g
are well-defined. But as g_1 =fo(g of)_1 and f_1 = (g of)—io g dt

is clear .that f and g are continuous.
With these results it is now easy to prove the following Proposition:
19. Proposition: Let (E,Il ll,T) be a complete Saks space, T : Cb(X) - B

& B-y-continuous linear operator with representing measure uE:MR(X;E").

Then the following are equivalent:

1) T does not fix a copy of s

2) T maps the unit ball of Cb(X) into a relatively weakly compact set;
3) T maps weakly summable sequences to summable sequences;

4) T maps weakly Cauchy sequences into convergent sequences;

5) T maps sequences which tend weakly to zero convergent sequences;

6) if (xn) is a bounded sequence of functions in Cb(X) with mutually
dusjoint supports, then Txn - 0 in E;

7) T maps weakly compact sets in Cb(X) into compact sets;

8 U takes its values in E;

9) U is a Radon measure with values in E; =

10) ¢ is a strongly additive measure with values in E.

Proof: 1) <=> 2) is Proposition 17

2) ==> 9) is Proposition 15

9) == 2) - 6) are all simple applications of the Lebesgue-dominated
convergence theorem. The reverse implications all follow from the fact
that if U is not Radon then the (xn) constructed in the proof of Propc-
sition 17 supply counter-examples. ¢
9) ==> 8) 1is clear and 8) ==> 10) follows from the weak o-additivity
of 1 and ORLICZ-PETTIS. 10) implies 2) is embedded in the proof of Propo-
sition 17. '

9) == 7) Note that (Cb(X),B) is not necessarily complete so that we
cannot use EBERLEIN-SMULIAN. Firstly, we may assume thet E is a Banach
space (using the characterisation of compactness in Saks spaces)

(ef. COOPER [1], I.1.12). Then u : Bo(X) = E has tight semi-variation

R
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norm so that for €>0 we may find K e K(X) so that if TK denotes the

operator associated to u[K then HT-TKH < €. Now if B is weakly compact
in Cb(X), then TK(B) is compact in (&, Il 1) (using factorisation through
C(X) and EBEZRLEIN-SMULIAN) and we may conclude that T(B) is compact in

(B,11 ).
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