INTEGRAL OPERATORS ON L® SPACES, PART I.

BY WALTER SCHACHERMAYER

Abstract: We investigate the relation between the theory
of integral operators (i.e. operators induced
by a kernel) and the theory of Radon-Nikodym
derivatives of vector measures. Our
approach enables us to solve some problems posed
in [12 ]. Some other problems from the same book
will be investigated in a second part of the

present paper.



1. Introduction: Our paper is based on the book [12 ] of

P. R. Halmos and V. S. Sunder. There are 15 problems posed
in this book and we shall solve some of them in this paper
and some others in part II.

The basic idea of our approach is very simple: We con-

sider a kernel k(x,y) not as a scalar-valued function of two

variables but rather as a function of one variable, namely
X, into a séace of functions on Y, which will usually
be L1(Y,v). To make this approach precise, we introducéﬂin
section 3 the notion of a Halmos function. This concept
enables us to give a very easy solution to problem 8.4 of
[12 ]. Let us point out, however, that this problem, as well
as the problem of characterising integral operators, has been
solved some time ago in the russian literature (c.f.[3] and
[10] and. 3.7 and 4.5 below; I would like to thank M. Jerschow
for pointing this out to me).

In section 4 we give a new characterisation of integral
operators: " T : 1l — 1P is integral iff it transforms
order baunded sets into equimeasurable sets" (4.4 below).
Similar characerisations are given for the case of absolutely
bounded kernels and Carleman kernels. (4.7 and 4.10 below).

In section 5, which is inspired by martingale theory,
we show that an integral gperator is the limit of its
composition with the conditional expectations with respect
to the oc-algebras generated by the countable partitions.
This result gives a positive solution to problem 8.2 of [12 ].
A different solution to this problem will be civen in part II.
Finally, section 6 deals with problem 11.8 of [ 12 ]: Do the

integral operators form a right ideal? We show that the



composition of an integral operator with an order-bounded

map is integral (6.2). But the answer to all of the questions
posed in 11.8 is negative (see examples 6.6 and 6.8). A
refinement of example 6.8 shows that the answer to the first
question of problem 7.1 of [12] is élso negative: There are
two integral operators such that their kernels are multipliable,
put such that the composition of the two operators is not
integral.

We have not st;iven for maximal generality and have
restricted ourselves to Lp—spaces. However, the specialisatic
to Lz—case, as in [12 ], seemed too narrow a framework: Even
if one is only interested in integral operators from
Lz(v) to Lz(u) one is naturally led to consider the spaces
L1(v) and Lo(u): The reason for the appearance of L1(v)
is that the Halmos function (see definition 3.3 below) will not
in general take its values in L2(v) but only in L1(v);
the reason for the appearance of Lo(u) is that

o : n2(v) = L2 (n) is integral iff o : L3(v) = 12w

J2,0
is integral, j2 0 denoting the canonical injection of Lz(u)
14

into Lo(u). But o T is in many respects easier to

J2,0
handle than T. For example, it often happens that T is not

order bounded, while O T is. For these reasons we

j2,0
have chosen the following setting: We shall consider continuous
operators T : LI(v) —1P(u), where we usually allow a to vary
over [1,»l and p over [0O,«]. The case q = = could
also have been treated along the same lines, provided an
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obvious o -continuity - condition is added. A similarremark applies

to the case O £9g < 1, where one has to take some care



due to the fact that there are no continuous linear functionals

on LY(v). But we have prefered to accept the asymmetry in
our choice of p and q rather than waste a couple of lines

in most of the statements.
We have divided our article into

two parts: In the first we present these results which are
based on the concept of a Halmos function. In the second we
present those problems posed in [ 12 ], which are independent
of this concept. Hence the two parts may be read (almost)
independently.

I would like to thank all the mathematicians who have
contributed to this work, especially my colleagues at Linz
J. B. Cooper, M. Jerschow and K. Kiener, as well as
B. Mityagin, J. J. Uhl jr., L. Weiss, H. v. Weizsidcker and,
last but not least,P. R. Halmos, with whom I had the

opportunity of some very stimulating discussions.

2. Definitions and notations:
2.1.:

(x,X,uw), (¥,Y,v), (z,2,n) will always denote measure spaces.

In contrast to the setting of [12 ] where o-finite measure
spaces are considered, we shall always assume that the measure

spaces are finite in order to have L

imbedded into L2
for o 2 Py The finiteness assumption is not really a
restriction: all our results carry over - mutatis mutandis.—
to the o-finite case by the usual change of measure technique
(c.f. [ 12 ], §6). On the other hand, we do not assume that
the measure-spaces are separable, although this assumption

would simplify some proofs (see 3.8 and 4.4 below).

The letter T will usuallv denote a continuous, linear



operator from Lq(v) to Lp(u), where 1 £ g < «, 0 £ p = =,

if no special assuﬁptions are made.

Let us recall that Lo(u) is the complete metrisable
topological vector space of equivalence classes of €-valued
measurable functions, equipped with the topology of convergence
in measure. For 1 £ p,q & = the letters p', gq' will
denote the numbers conjugate to é and a.

A subset M of Lp(u) will be called order bounded if

it is contained in an order interval I(f) for some
£ € LP(n), where I(f) = {f' € tP(u) : JEY s £}.

The operator T will be called order bounded. if it transforms

orderbounded sets into order bounded sets.

A function Y from X into a Banach space E will

be called strongly measurable if it is essentially separable

valued and measurable with respect to the Borel-c-algebra
of E. A function Y : X=»E will be called scalarly

measurable if for every g € E* the composed function

X —>» <&(Xy, é> is measurable. It is wellknown that an
essentially separable valued, scalarly measurable function
is strongly measurable (c.f. [ 5 .

5.2 We shall often encounter the following situation:
Given a function g € LT(Y,V)+ then g.dv 1is a finite

measure and we-may consider the Banach space

= fh(y) . g(y) dv(y) < =}.

'(7,9. = (b €10 :lnll 1y,

If g is bounded away from O by a positive constant,
then L1(g.v) is a subspace of L1(v). The dual L1(g;v)*

may be identified with the space spanned by the orderinterval



of g, if the duality is defined in the obvious way,

1

namely for h € L' (g.v), h'e L' (g.v)

n, ¥ = { B B av).

For a subset A of X we shall denote by the

XA
characteristic function of A. If A is measurable, then

multiplication by is a continuous projection on Lp(u),

Xa
which will always ke denoted by PP'

Finally we want to note that we shall, as is customary,
often identify a function with its equivalence class.

But at some places it will be important to be careful about this
difference (e.g., 3.5 below ) and then we shall have to

distinguish rather pedantically between a function and its

equivalence ¢lass.

3. Halmos - functions

3.1 By a kernel we shall mean a uxv - measurable function
k : X x Y—C such that for u-a.e. x in X, k(x,.) is integrable

(i.e. a member of L' (v)).

for 1 £ g £ » we shall say that the kernel k is
a-bounded if
(1) given g € Lq(v), the product k(x,-) g(-)

belongs to L1(v) for uw a.e. x € X

Note that every kernel is «-bounded. For O £ p £ = we

shall say that a g-bounded kernel is (p,a)-bounded, if

(2) for every g € L9(v) the function £ defined by

£(x) = { g(v) k(x,y) dv(y) belongs to LP(yn).

f
¥



Bv condition (1) £ is u-almost everywhere defined. Note
that every g-bounded kernel is (0,q) -bounded.

It is a classical result, dating back to S.Banach's
pook ([ 1 1, in [ 16] we shall discuss this in detail), that
g (pagl = bounded kernel defines a continuous operator

Iint (k) from Lq(v)to Lp(u) via the formula:
g(y) — fx) = [g) k(x,y) dv(y).

An operator T : LI (v) = P (v) will be called integral

if it is of the form T = Int(k) for a (p,q)-bounded kernel.

3.2 Our approach is to consider a kernel not as a scalar
valued function of two variables but rather as a function of
one variables, namely X, into a space of functions on Y, which
will usually be L1(v). To make this precise we give the follo=
wing definition, which will turn out to be a mere refor-

mulation of the concept of a kernel.

3.3 Definition We call a Halmos-function a strongly measur-

able function

}(~§L1(v).

Y
For 1 £ g £ » we shall say that the Halmos-function v
is g-bounded if

(15 for every g € Lq(v)+ the function <y takes u-almost
everywhere its values in L1(g.v).

For O £ p £ = we shall say that a g-bounded Halmos-

function is (p,q)-bounded if

(2) for every g € Lq(v) the function f defined by

£ = (%09

belongs to LP ().



The symbol<: i :>refers to the duality of L1( la|l.v), as g
may be identified with a member of the unitball of L1(fghv)f
as was explained in 2.2. Hence by (1) the function f
is p-almost everywhere defined.

Note that every Halmos function is «-bounded and that every

g-bounded Halmos function is (0,q) -bounded.

3.4 We are ready to establish the correspondence between
kernels and Halmos-functions. Clearly this correspondence

is given by the mar i that takes a kernel k(x,y) to the Halmos-

function

y(x) = [k(x,-)],
where [k(x,-)] denotes the v-equivalence class of functions
to which k(x,*) belongs (for fixed x). However, some care

is needed, due to the differene between functions and their

equivalence classes. Although the following result is a mere
formality, 8.4 of [12] is an immediate consequence of it

(see 3.6. below).

3.5 Proposition: The map i introduced above establishes

a bijective corre@spondence between the equivalence classes
(with respect to uxv) of (p,g) - bounded kernels k and the
equivalence classes (with respect to u) of (p,g)-bounded

Halmos functions.



Proof: It is wellknown ([18], 26.6), that
L' (uxv) = ' uint (),

the right hand side denoting the Banach space of (eguivalence
classes of) Bochner-integrable L1(v)—valued functions. The
correspondence again is given by associating to k € L1(uXv)
the L1(v)-valued function vy : x =-[k(x,y)].

As the kernels, that we consider, are not necessarily
uxv-integrable (even (2,2)-bounded kernels may fail to be) ,
we cannot apply the above formula directly. One could show
that the formula Lp(uxv) = Lp(u, Lp(v)) is valid for
O < p £ »=. But as we could not trace this result in the littera-
ture for the case p = O (the relevant case for us), we proceed
differently and apply a simple trick.

Given a kernel k(x,y) let k' = arctg o k.
Clearly k' is uniformly bounded, hence in partidular in L1(uxv)c

So we may find v' € L' (u;L'(v)) such that v'(x) = [k'(x,y)]

for u-a.e. x € X. Puttingvy (x) = tg o v'(x), we see that y is
welldefined and y(x) = [k(x,v)] for u-a.e. x € X.
Conversely given a Halmos function y let y' = aretg o v

and procced exactly as above to find the corresponding kernel k.
It is plain to check that this correspondence maps the
equivalence classes of (p,q)-bounded kernels bijectively onto

the equivalence classes of (p,q)-bounded Halmos functions.



3.6. As a first application of the above formalities

we give a solution to problem 8.4 of [12 ].

This problem has been solved in full generality some time ago
in the russian literature (c.f. [3] ang [10] ).

Nevertheless we present the proof since it is such a

simple consequence of our approach. Actually it was this
problem that was the starting point of the author's present
work.

3.7. Proposition:

Let Osps> and 1 £ g <« and h : Xx Y-—-C be a
(not necessarly X «X Y-measurable) function such that
(1) given g € Lq(v), the product h(x,:) g(-) is Y-measur-
able and v-integrable for up-a.e. x € X, and
(2) for g € L9(v) the function
i xk—;afh(x,y) g(y) dvl(y)
is in LP(u) (and hence X-measurable).
Then there is an essentially unique X X Y-measurable
(p,q)-bounded kernel k that inducesthe same operator, i.e. for

qELq(v))Ih(x,y)g(y)dv(y) = jk(x,y)g(y)dv(y) for p-a.e. x€X.

Proof: Putting as above y(x) = [h(x,:)] we obtain a
p—-almost everywhere L1(v)—valued function. By hypothesis,
for each g € L™ (v) the composed function x——><§(x),%>

is X-mesurable i.e. y 1is a scalarly measuraple function.

In the case, where L1(v) is separable (as is always assumed
in [ 12 ],for example), y is strongly measurable and by 3.5
corresponds to a kernel k(x,y) wﬁich clearly is

(p,q)-bounded and satisfies the assertion.
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In the case, where L1(v) is not separable, we need
the following beautiful theorem, due G.Edgar [ 7 ]:"Given
a scalarly measurable function Yy with values in a weakly
compactly generated Banach space E (e.g. L1(v) for
o-finite v) there is a strongly measurable function §. which
is scalarly eguivalent to y." This theorem therefore

. 0 ,‘\, . s
furnishes a strongly measurable function <y, which in turn

defines a kernel k by 3.5. It is evident that also in this

case k 1is the desired (p,q)-bounded kernel.

4. Characterisation of integral operators

4.1. We now turn to the main theme of the paper:
Given a continuous operator T : Lq(v)—waLp(u), under
what conditions is there a (p,q)-boundéd kernel k which
induces the operator?

In this paragraph, which is only motivational in order
to avoid technical difficulties we restrict ourselves to

the case 1 £ p £ =,

The question whether T is induced by a kernel turns

’ [}
out to be just the question whether the adjoint T : LP (u)—

! 5
Lq(v) is - in a certain sense - Rieszrepresentable ,

(Sze [ 5] for a définition of Riesgzrepresentability

and tls fela®onn



with the derivative of a vector valued measure). Indeed,
if T 1is induced by the kernel k and vy is the Halmos-

function corresponding to k, then for £ € LP (u)

T (F) = [ y(x) £(x) du(x)
X

The above integral is interpreted as a Pettis-integral in the
space L1(v), since, by hypothesis, for every g € L' (v)
(actually for every g € L9(v)) and £ € Lp'(u) the function
Ry f(x).(&(xig> is integrable and

g, 7€, = <Tq,£y = | £(x). &(x),9 du(x). (%)
X

However, this integral has a very particular flavour:
Although T*(f) is in Lq'(v) the integration takes place
in the bigger space L1(v) (as y takes its values not necessarily
in Lq'(v)); but for every single g € Lq(v) the expression

y(x),g\ makes sense for u—a.e. xXx € X. and the line (%)
makes sense also. We do not give a formal definition of the
integral (which would only be a reformulation of the concept
of a Halmos-function); our intention was only to point out
the relationship with the theory of Radon-Nikodym derivatives
of vector valued measures. The results of this theory will
serve as a guide for the investigation of integral operators
(e.g. the theorems that a strongly measurable function has
relatively compact range on sets of "large" measure, that the
indefinite integral of a Bochner integrable function has
relatively compact range ., the intimate relationship with
martingale-convergence etc.). Of course, these results do
not carry over in a direct way because of the special nature

of the integral in question, but the ideas behind them do.
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Let us mention however one easy direct application,
which was already observed by N. Dunford in 1936,[ 6 Bt
if p=« and 1< g < = then every continuous operator
T : L9(v) = .P(u) is integral. Indeed the adjoint operator
T  takes L1(u) into the reflexive space Lq'(v); it is
wellknown that T* is therefore Riesz representable
([ 5 1) and in this case we even cet an Lq'(v) -
valued Bochner-integrable Halmos-function Y.

Let us point out that one may also prove in the same
way that for g=1 and 1< p s = every continuous
operator T : L9(v) = tP(u) is integral, but this is slightly

more involved and we shall not do this here.

4.2. Definition: We recall the following concept due to

A. Grothendieck ({ 111]; see also [2],[14],[19])

A subset M of 1.°(u) is called equimeasurable if,

for € > O, there is xefS X with u(X \~X€) < e, such
that M restricted to Xe is relatively norm-compact in
L (Xelulxe)°

Note that an equimeasurable set is lattice - bounded
in Lo(u), while the converse is not true (for an example

take the unitball of L (u), for u is not purely atomic).

4.3, We also recall (ﬁnd prove) the very elemeﬁtary fact
that an operator from L1(u) to a Banach space E 1is compact
iff it is Riesz - representable by Bochner-integrable function
with relatively compact range: denote by L”(u) = E the

algebraic tensorproduct of L (y) and E. We may identify



Lw(u) ® E in obvious wavs with the following vectorspaces:

1) The bounded measurable functions y : X - E with the
range contained in a finite-dimensional subspace of E.

2) The finite-rank operators from L1(u) to E.

3) The o -continuous finite~-rank operators from E"

to Lw(u) .

The correspondence between a function y from 1) and

an operator T from 3) for example, is given by

T(g) (x) = é,Y(X> (%)

which holds for g € EY and y-a.e. x € X. Now take

in 1) the essential supremum-norm and in 2) and 3) the
usual operator norm and check that these norms are the same
via the obvious identifications (the corresponding norm on
Lm(u) ® E 1is the "injective" tensor product norm). Passing
to the completions we see that we may naturally identify

1) The Banach-space of (eguivalence classes of) measurable
relatively compactvalued functions y : X—> E (equipped
with the essential supremum - norm).

2) The compact operators from L1(u) to =

3) The compact ¢ -continuous operators from E° to L7 (n).

The correspondence between a function y from 1) and an

operator T from 3) is still given by formula (*).

IA

4.4 Theorem: Let O £ p s «, 1 g < *. A linear map

T : Lq(v)——>Lp(u) is integral iff T maps order-intervals

into eguimeasurable sets.
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4.5. Remark: The theorem resembles the following beautiful

characterisation of integral operators due to Bukhvalov

([ 31, see also [17 ]): " T is integral iff T maps ‘!
dominated sequences that converge in measure to almost
surely convergent seguences". Indeed on the left hand side
(i.e. on Lq(v)) both characterisations use the order-intervals,
while - as regards the right hand side - the concept of
eguimeasurability is very much related to almost sure con-
vergence (see [ 14], for example). However, it is not at all
evident, how to deduce one theorem from the other, allthqugh
this is possible, as was shown to I by A. Schep. Still we
believe, that our theorem has its own flavor and

that the method of proof is interesting in its own right.

Proof of 4.4: ==>: Suppose that T = Int(k) for a (P, g —

bounded kernel k. Then let y be the Halmos function associ-
ated to k and fix an order-interval 1I(g), g € Lq(v)+.
Clearly we may assume that g 2z 1. By definition vy (X)

lies in L1(g.v) for u-a.e. X € X. Note that v, viewed

as an L1(g.v) - valued function,is strongly measurable,
Hence for ¢ > O there is XEQ X, uw(X \ Xe) < e, such
that y restricted to X€ has relatively compact range in

L1(g.v). It follows from formula (%) in 4.3 that the operator
F: 0 (g. ) — L7(X | )
° g-\) '—; Eluixa

h — £(x) = {¥(x) ,h>

is a compact operator.
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Note that the unit ball of L1(g.v)* is just the order

interval I(g) and that T is just the restriction of
P, o T to L1(g.v)*
Xe

space of LY (v) spanned bv I(g)).

(which may be identified with the sub-

Hence T transforms the order interval I(g) into a set
whose restriction to X€ is relatively compact in Lm(xe,p!x ).
€

This is exactly what we had to show.
&=: Converslv surrose T satisfies the asumption of the theorem.

First we show that the condition that T transforms
order intervals into equimeasurable set implies that T 1is
a continuous operator from Lq(v) to Lp(u). By the closed

graph theorem it will be sufficient to show that if a secuence

o ; a ; -1 -n
{g tp=q in L7(v) with HgnH < n g 2 is such that

Tgn converges to fo in Lp(u), then fo equals O.

(e~}

Let g = L, n.lgnl,_which belongs to Lq(v)+. Hence

T(I(g)) 1is equimeasurable and in particular order bounded

in Lo(u), i.e. there is an £ € Lo(u) such that

T(I(g)) € I(f). It follows that ngn[ <. f, so

Tgn converges to O wu-a.s. As Tgn converges to fo in

Lp(u), we conclude that fO = 0 as reqguired.

Now apply the assumption that T maps order intervals

into equimeasurable sets to the order interval I(1), (i.e.
the unit ball of L (v)), to find a partition (A} _, of
X such that T(I(1)), restricted to An’ is relatively

compact in L (An,u’An).

This means that PA o T restricts to a compact operator
n

from L (v) to L (A ). This operator is o ¥ -continuous

n’ U!An

as T 1is a continuous operator from tY9v) to wP(w.
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By 4.3 there is a function Y, : B = L'(v) such that

for g € L (v)

\ '
P ¢ T(g) <i¥n(x),g) for u-a.e. X € An'

Ap

for u—-a.e. X € X,

Hence T{g) JY(X),g

"L\'
/
\ /

where y is obtained by glueing together the yn‘s,

i.e. y(x) = yn(x) if X € An.

The function vy, which is clearly strongly measurable,
is therefore a (p,~)-bounded kernel, inducing the restrict® n
of T to Lw(v). We still have to show that ¥y is actually

(p,q)-bounded and induces T on all of 1Z%(v).

Fix Qg€ 1d(v) and let g = 1 + [hy|.Repeat the above
argument to find a partition Zn and functions

~

Yy ﬁn—%vL1(g.v) such that for all h € L1(g.v)* (in parti-

cular for hg

T(h) (x) = %;(x),h,' for u-a.e. x € X,

~

where ; is again obtained byalueing together the Yn's.

Let {gm};;_1 be a sequence in Lm(v) separating points

of a separable subspace of L1(v) in which y and Yy take
u-almost everywhere their values.

It is easy to see that this is possible, but the reader who
is content with the assumption that L1(v) is separable may
instead take any sequence in 1.7 (v) which separates points

of L1(v). For each m € W

e < p |
< N o= = d -
Y{(x), 9., T gm(x) <y (x) ., gm> for p-a.e. X € X.

Hence yI!(xX) = Y(x) wu-almost everywhere, if we identify

L1(g.v) with a subspace of L1(v). So y lies almost every-



where in L1(a.v) and

g

T(ho(x) = 5&(x),h6> for u-a.e. x € X.

4.6. Definition: For O £ p £ », 1 < g < «», a kernel

k will be called absolutely (p,g)-bounded if |k| is a

(p,g)-bounded kernel. An operator Int(k) : LY (v)->LP (1) induceed
by an absolutely (p,q)-bounded kernel will be called

absolutely inteqral.

4.7. Proposition: For O £ p < =, 1 < g < o a linear map

T Lq(v)-a Lp(u) is absolutely integral iff it is integral
and order bounded. Hence T 1is absolutely integral iff it
transforms order intervals into equimeasurable sets which

are in addition orderbounded in Lp(u).

4.8. Remark: The easy proof of the above proposition is left

to the reader. Let us instead make a few comments: the
proposition implies in particular that every (0,q)-bounded
kernel is absolutely (0,q)-bounded, a fact which is also
easily seen directly. In addition, note that for O £ p < =
a subset M of LP(u) is equimeasurable and order bounded
in LP(u) iff there is a strictly positive function h on X

Te L®(u) and such that h.M = {(h.f : £ € M}

such that h
is a relatively compact subset of Lw(u). This observation
(whose easy proof again is left to the reader) might be

used to rephrase 4.7.

Finally let us mention that V.Sunder has recently shown
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in [20 ], using a theorem of Nikishin [15 ], that for an

integral operator T : Lq(v)——éLp(u) and e > O there is

€ X

X_ £ X, u(X™ XE) such that P, o T 1is absolutely integral.
€

4.9. Definition: For O £ o £ «» a (p,q)-bounded kernel Kk

will be called a (p,q)-bounded Carleman-kernel i f

k(x,*) € Lq(v) for uy-a.e. X € X. An operator
Int(k) : L(v) - Lp(u) induced by a (p,q)-bounded Carleman

kernel will be called a Carleman-integral operator.

The Halmos function associated to a Carleman-kernel
therefore takes its values in Lq'(v) and this makes things
easier. In this case theHalmos function y has been studied
in ([ 121, § 11) under the name of Carleman-function. A
reasoning analogous to the proof of 4.4 , except that it is

considerably simpler, furnishes the following characterisation.

4.10. Proposition: A linear map T : LYv) - tP(n) s

Carleman - integral iff it transforms the unit ball of

.9(v) into an equimeasurable set.



5. Atomic measure spaces and conditional expectations

5.1. There is an intimate relation between the validity of
the Radon-Nikodym theorem and of the martingale - convergence
- theorems (c.f.[ 4 ]). Hence it is no surprise that the
concept of conditional expectation gives some information
about integral operators. Let A = {An};=1 be a countable
partition of X <consisting of uy-measurable sets and let
Z(A) Dbe the oc—algebra generated by A. Denote by E, the
conditional expectation operator on Lp(u). (Here again we
restrict ourselves to the case 1 £ p £ » to avoid technical
difficulties; but at the cost of writing some additional lines
the following reasoning may be carried over to the caée
0O £ p<1).

The countable partitions A of X are directed by
refinement and so it makes sense to speak about

"convergence along the net (L of countable partitions A of X".

5.2. Proposition: A subset M of Lp(u), 1 £<ps =, |is

equimeasurable (ff E, converges (alonc (L) to the identity

uniformly on M with respect to the L” (u) -norm.

5.3.Remark: The phrase "with respect to the L  (u)-norm"

means that, given e > O, there is a countable partition
AE of X such that for every countable partition Az A€

we have jEA(f) - EAE(f);:< e, for each f € M. However,

EA(f) will not, in general, be a member of L7 (q) .
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Proof of 5.2: First note that a subset M of LT(X,W).,

((§(t) any measure space) is relatively compact iff Egx
converges to the identity uniformly on M, where A runs
through the net of finite partitions X\

If M is eguimeasurable, find a countable

partition B = (B o of X such that M restricted to

n’ n=1

Bn is relatively compact in L (BWHBn)'

Given € > O we may find a countable partition Ae , obtained
by splitting each of the Bn into a finite number of subsets,

such that

[, (£) - EA (£) [|;= € for each £ € M and AzA_,

Lo (W) as required.

Conversely : Suppose M satisfies the hypothesis of the

(k

k= v k= 1,200,

-1

proposition. Choose partitions$ A(k) = {A

such that for each A z A(k), HEA(f) = EA(k)(f)HLm(u) 5 ik

for all £ € M. Given e > 0 , choose for each k a number

‘N(k) such that 11(\] (k) < €/2

I«\ n v N

It is easily seen that XE; = rw \J (k)

is such that

(X \\Xe) < e and M restricted to X€ is relatively

compact in L (Xe,ulxa)

a
5.4. Corollary: For 1<pge, 12> a linear map
T Lq(y) - .P(u) is integral iff EAS T converges to T

with respect to the L -norm along the net L of countable
partitions uniformly on every order-interval of L ()

Proof: 4.4 and 5.2.
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5.5. Remark: For a continuous operator T : L9 v) - P(w)

the composition EA oT 1is always a Carleman-integral operator,
in fact a very "natural" one; namely the one induced by the

_ =1 * ,
by the kernel k,(x,y) = H(AL) . T (x, ) if x € A .

This is because the operator T takes ?ts values in the
subspace LFP(X,z(A),u Z(A)> of LP(u), which is in reality
just 1P, and in this case the question whether an orerator
is integral becomes trivial.( 12 , th. 7.3.).

Hence corollary 5.4 essentally states that the space of
integral operators from Lq(ﬁ) to LP (1) is the completion of
the vector space of "natural operators of the form E, > T with
respect to a certain uniform stucture.

This uniform structure has the ugly feature that it does

not define a topologic;l vector space, as the scalar multi-
plication is not continuous. But such topologies have some-
times turned out to be usefui in analysis, e.g. the uniform

topology on C(R) ([9], 2M.6, p. 34) or the Whitney topolo-

gy on C (R) ([13]).

The above éorollary might also be regarded as a solution
to problem 8.2 of'[12 ] on the existence of an "effective"
procedure for recapturing the kernel k of an integral
operator T : LI(v) = P ().

If T = Int(k) is integral, then the kernels kA , which

were defined éffectively'above, converge to the kernel k,

in the norm of L1(uxv) ~for example; (the corollary implies
convergence with respect to a considerable stronger topology) .

Note, however, that the convergence has to be understood

in the sense of remark 5.3 and that, in general, k does
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not belong to L1(uxv), even for (2,2) - bounded kernels.
However, the reader might have doubts about the effectiveness
of a procedure which involves convergence along the net of
countable partitions of X. Hence we shall give in [16 ]

a different solution to problem 8.2 which seems (at least to

the author) to be more-"effective".
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6. Right ideal properties of integral operators

6.1. We now turn to problem 11.8. of [ "2 ] : Do the integral
operators from a right ideal ? We shall give three counter-
examples (arranged in ascending order of difficulty) which
show that the answer to all of the guestions posed in 11.8
(as well as to the first question of problem 7.1) is no.
First we give a positive result, which'is an immediate
consequence of 4.4 and 4.7 .

-

6.2. Proposition: Let O s ps «», 1sg s «,1 £ r <= and

let s : Lr(T) - L9(v) be an order bounded operator. If
T : L9(v) - LP(w) s integral (resp. absolutely integral)

than T S 1is integral (resp. absolutely integral)

6.3. Remark: Note that in the case g = «, 1 £ r < = or

r =1and 1 £ g £ » every continuous operator
S: Lr(f) - Lq(v) orderbounded. Hence in those cases we have
a right ideal property for integral operators.

with respect to the continuous operators.

6.4. Let us now turn to the general case, where S 1is not
necessarily order bounded. A typical example of a continuous

operator that is not order bounded is the isometry on

2
Lo,1]

This operator and variations of it will be used in the

that takes the exponential basis into the Haar basis.

following examples. For clarity ©of notation we recall the

definition of the Haar basis of Lz[O 11"
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6.5. Definition: The sequence of functions {hn};=1 de-

fined by h, =1 and for u=0,1,2,..., v = S L

[Vﬁﬁ if x e [(2v -2) 27%77, (2v-1) 27%77)
1 . —u-1 —u-1
hou,, (X) = {—Vﬁﬁ if x e [(2v - D279, 2w2™Y ]

L 0 otherwise

is called the Haar basis of L2 ‘
[0,1]

6.6. Example: There exists an absolutely integral operator

T : Lz(v) - Lz(u) and a continuous operator

S : Lz(*) - Lz(v) such that To S is not integral.
Let (x,u) = (¥,v) ={(2/ = (I ,m), the unit interval

equipped with Lebesgue measure, and let k(x,y) be the

absolutely (2,2)-bounded kernel defined in 11.1 of [ "2 ], i.e.
0 if x s vy
kix,y) = _
(x=- )" V2. 18 x5 5.

(Actually any index in [-1/2, -1 would work instead of
-1/2) . Denote by vy the Halmoskfunctidn corresponding to k.
Let S : Lz(T) - Lz(v) be the iséﬁetric operator
mapping the»eleﬁent e2~im to the element'hb(m)’ where

b is any bijection between Z and N .

The composition R = Int(k) oS 1is not integral.
Indeed, suppose there is a Halmos function B : X - L1(f)
inducing R. By the Riemann - Lebesgue lemma this would
imply that for upu-a.e. x € X

Lim <§{x), = im:> - o. (%)

i
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But \B(x), e > = R(e ) (X)“.
= Int(k) -~ S(e? ™1™ (x)
= 1Int(k) (hb(m)) (x)

(Y (x), hb(m)’f;» '

the above equations holding p-almost everywhere on X.

Hence we would havVve

Lim <3(x), hn‘> = G, (%%)

n->
for p-a.e. x € X.

But this is absurd: Let (¢ (x)}°°

_ denote the dyadic
u u=1 :

u

expansion of x € X, i.e. x = u§1eu(x)2 with €y = 0,1.

(For the countably many dyadic points x choose any one
of the two possible dyadié expansions). It follows from

5 g

the Borel-Cantelli-lemma that there exist for u—a;e. x € X

arbitrarily large u's such that eu+1(x) = 0 and
eu+2(x) = 1. Fix x and u such that these two equations
hold true and let x = i§1 e; (%) Zfi; note that
U2y _gxg 7wl -

Légjvv =.{-+ i§1v€izg)Aéﬁ-i énd iet &n = 2%+ v; the
Haar funcﬁion hﬁ assumes the value v;ﬁ on [X,x + 2-u-1],

=27 on [X% + 2-u—1' X+ 2% and 0O elsewhere. Hence

x‘ 7- -—
Q(x),hn>= ) 2% x - »7V2 gy
e X -
2 2% fomue2 (x - ) /2, 8¢ =1,

This shows that for u-a.e. x € X (%%) does not hold

and this contradiction finishes the proof.

o



- 97 =

For the next examples we need a lemma which I have been

unable to find in the literature.

6.7. Lemma: Let {hn};=1 be the Haar basis in L2[0’1].
For {An}:=1 € 12 and {uu}z=1 € 1> the sum
© zu
'uEO V§1 il A how 4 v(x)

converges absolutely for u-a.e. X € fos1]1.

Proof: We shall show that

211

z | A

= B0 o 4 - a. hau (x) |

F(x) 27 +v ua 2+ v
is in L1[O 117 which will imply the assertion. Apply
14

the Cauchy-Schwarz inequality to the identity

u . 71.1 21.1

: Tl 2
1‘x Uiy h2u+v(x)l (v=1 A2u+v’x[

P

’

L
Ig<

to obtain the following estimates

u
:}h' - 5 & ,_} 2
: - o Vi ;
E(x)dx u=o(|au" o} v=1|A2u+v h2u+v (x) | ax)
Lo A E
soBoa g Box g 2 ax ) /2,
u=0'!%u' "o v=1 27+v [v—1, v ]
e 2u 2%
12 o2 1/2
)
(§ yEq- Ihpuyy (0 [T dx)
: ou
: 2 ,-u,1/2 u, 1/2
s Eoley j(y§1M2u+vl wd = - (27
2u
@ - e ooy By 42
o uéolau '(v£1‘A2u+v‘ 5
’ 2" 2.1/2
% 2.1/2 .
S uwloloyl ™) - (&g VEOIA2u+vl ) 4 .

(%)) - (Eq hyu,  (x))
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6.8. Example: There are integral operators

T : L?(v) =L%(w) and S : L2(-) - L2(v) such that the
composition is not integral.

Again let (X,u) = (2,7) = ( I,m) but this time let
(Y,v) be INequipped with counting measure. Contrary to our
general assumption, (Yp) is not a finite measure space, but

this is only for nctational convenience: one could rewrite

the example replacing v by the measure that puts mass 2
on the point {n}.

Define the kernel k(x}y) (y will now denote an integer!)

by : k(x,1) =1

1

(u+ 1) " . h (x)

where u=0,1,2,.., v = 1,...,2% Given (g(y)}j_ € L?(v) =
we infer from the preceding lemma that, for upu-a.e. x € X,

g(-) k(x,-) € 11, i.e. k 1is a 2-bounded kernel. Actually

1
and '.k(X,L +v) U,

u

k is (2,2)-bounded, as Int(k) maps the (2% + v)'th unit-

vector to the function (u + 1)_1 h2u+v and is therefore

a compact operator from Lz(v) to Lz(u).

Zkv) be the isometric operator

mapping eZWlm to the unitvector 5 (i) of 12 = Lz(v),

Let § : L2(7) -~ L

where b again is any bijection between Z and N . Then
S 1is an integral operator as (Y,v) is atomic (see
remark 5.5 above or [ 721 , th. 7.3).

But R = Te S is not integral. Indeed, R maps

bijectively the members of the exponential basis in LZ(L)

to functions of the form (u + 1)"1 h2u+v in L2(u).

So if there were a Halmos function 8 : X - L1(i) inducing
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R, again, by Riemann-Lebesgue,

lim ¢B(x), e271m>> = lim R (ezﬁlm)(x) =0
imgeo | mjpeo

for u-a.e: X E X .

e2<1m) = (u + 1)-152u+v for appropriate indices

(u,v), this would mean that

As R(

lim (u + 1)_1 h2u+v(x) =0 for u-a.e. x € X

o -

A

- which is of course absurd.

A refinement of the above example furnishes a counterexample

to the first question of problem 7.1. of [ 11 ]:

- 6.9. Example: There are integral operators

Int(o : L2(v) -~ L2 and Int(1) : LP(7) - 1%(v) sueh

~that k and 1 .are multipliable, i.e., for wo“ T o—a.e.(x,2),

_... the product k(x,-) 1(-,%) is v-integrable (c.f. [721,87),

an? such that R = Int(k)e Int(l) is not integral.
Denote by I the unit interval I minus the dvadic points.

For u€ N and x € L, let v _(x) be the unigue number in

15 Fug
a vu(x)~1 v, (x)
{1,...,2°) such that x € [ Ly —
‘ 2¢ e
ik {eu(x)}u=1 denotes the dyadic expansion of x, then
= u-1
vu(x) 1 + g8 si(x) 2 .

We now define a permutation Pig of the set {1,...,2u}

. F5 e < X £ o R R R,
If v=1H+ i§1 e 29" for a (uniqgue) sequence of e, = o,1,
: - A= L u-1 s By
- . : bl ) _ u-1
then let p (V) T+ ey * 38y (1 e;) 2 . Note that
pu-1 = n,- Now define for u € N and z € %

¥, (2) = p (v, (2).
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The significance of the permutation pa lies in the fact that

it transforms nested sequences of dydadic intervals into

sequences Qf disjoint intervals.
v (z)=1 ¥ _(z)
u u
> ]
24 2u
u=1,2,... are mutually disjoint in II . Hence for x € I ,

Claim 1: For z € I the intervals [

z € I the equality vu(x) = ;u (z) holds for at most one

%

uz1.

For the first assertion ndte that the interval

v _(z)-1 Gu(z)

[— ’ ] is formed'by the ¥ € T with 81(x)#e1(z),..,.
zu 2u .
€umq (X) # ;ﬁ_1(2') and e, (x) = e (2).
For the second assertionobserve that _v, (x) = v (2)
v. (z)=-1 v
iff x is in the interval [———M —]
g% 2u

After these preiiminaries we turn to the comstruction
of our kernels: Let - (X,u),(Y,v), (2,1) and k be as in the
above example 6.8,except thét_ we now take I instead of IIto avoid the
technical difficulties arising from the non-uniqueness of the
dyadic expansion of a dyadic point.
Define 1l(y,z) by

11,2 =

1(2;251" h,(z),

. u i
and 1(27 + Pu(V)lf h2u+v gz)

u

for W= 1,2,su0e9 ¥ = 156% 52 .. The operator S = Int(l)

is the isometry which maps the Haar function h1 (resp. hz)

2 2

in Lz(n) onto the unit vector e, (resp. e,) in L7(v) =1

1 T2
to the (2u + Fh(v))'th unit
A ,

and the Haar fupc1ton h2u+V

vector for u=1,2,..., v=1,...,2
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and for u z-1, 'h2u¥V' onto (u-+ 1)
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Claim 2: The kernels k and 1 are multipliable. Actually
for every (x,2) there is at most one Vv 2 3 such that
k(x,y) 1(y,z) = 0.

If u <1, then- k(x,‘2u + v) is non-zero (for 1 £ v = 2"

)
iff v o= Vu(x),'While~ lCZu»+ v, -z) ‘is non-zero iff

v = Gu(z). Hence claim 2 follows from claim 1.

Claim 3: The composed dperator R = Int(k) o Int(l) is not
inteqral:

‘First note that ~R maps ~h., (resp. h,)-onto h,(resp. h,)

ﬂ2u+Fﬁ(V) .
For uz 1 and x € X, déefine

2_1725~h :

u
= 3 1 -
94,22 = 124 2147 (x

)(z).

Observe that gu,x belongs to the unitball of L (1),
as the supports of the components of the sum are disjoint.
Although x varies in the uncountable set X, there are in
reality, for fixed wu, only 2% different gu,x's hence
%}= {gu,x 2 u€E N, x € X} is a countable subset of the
unitball of L7 (n).

We shall show that

sup R(g)(x) : g E’ﬁi = =, (%)

for u-a.e. Xx € X.
This will imply that R({]) is not order bounded in L~ (u)},

& s

hence R does not transform the unitball of L7 (1) into
an equimeasureable set. By 4.4 the operator R 1is not
integral.

To prove (%), simply observe that, given x € X,

*
u .
w272 eV noi

2 274+v7.(xy
1

R(gu,x) = iz
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. _ 2. =1
a function on X that assumes the value 121 (1-+ 1)
on x. This finishes the proof of claim 3 -and example 6.9.

a

6.10. Remark: As R = Int(k) e Int(l) is not integral, it

is certainly not induced by the function m(x,z), defined

by

m(x,z) = [ k(x,y) l(y,z) dv(y).

It is, however, conceivable, that m is a kernel (inducing
a different operator than -R). But-this.is not.the case
either: one may check that for =-almost no x the function
m(x,-) belongs to L1(n), The:argument follows the-lines

of the proof of claim 3 above.
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