BOUNDED OPERATORS ON LY SPACES

PART II

by Walter Schachermayer

ABSTRACT:
As in the first part of the paper, we deal with some problems posed

in [1]. In the present paper we give solutions. to the problems 3.12,
8.2, 17.6 and B.4. o

1. INTRODUCTION:

"+ For-definitions and notatiens we refer to the first part of the paper
[3].-.But we shall not:- use the - concept of- a Halmos-function in this

second part.

-2~ SOLUTION TO PROBLEM [1],
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..-The solution is a relatively straightforward application of the Banach-
Steinhaus. theorem.and.the closed graph theorem.:We. first need, however,

a definition and a preliminary result.. . . -

2.1. Definition: Given a Banach space (G,l!.”) we shall call a Banach

space (E,|H. j : E»G,

a Banach subspace of G. Slmllary, glven an F—space G (i.e. a complete-

ly metrlsable topologlcal vector space) we shall call an F-space E

’together w1th a contlnuous ln]ectlon j: Em G an F- -subspace of G.

2.2. Proposition: Let E be a Banach subspace of Ll(v) and let k(x,y) be

a measurable function on X XY such that



1) VYg€EE . k(x,.).9() €1 (v = for p-a.e. x € x.
Then the operator

Int(k) : E +— L°(W)

g +=— f(x) = [ k(x,y)g(y)av(y)
Y

is well defined and continuous.

Proof: Let kn bg the trupcation Qf k at n, 18z,
K 0¥ = KOSTY Xy e y) 1 5m) )
The operator
1
Int(k ) : L (V) ~— L ()

g — f(x) = [ k (x,¥)g(y)av(y)
1 w y g - PR -
is continuous from L (V) to L (W) (its norm is at most n).

In particular Int(knY'réstricts’to a cohtihuous operator- from E~to LO(H),
e 1 T ot o o i B = oo i ®
as the injection from E to L (V)" as‘well as 'the injection from-L- (L) to

L° (1) are continuous. ‘ ‘ AR

Given g € E, note that Int(kn)(g) converges U-almost everywhere to Int(k) (g)
because of the integrability condition (1) . Hence Intjknilé)aébnyerges to
Int (k) (g) in measure, i.e. with respect to the topology of Lo(u). Therefore
the map Int(k)“is‘thé pointwise limit of the sedquéence Int(kni'oflaon—
tinuous operators from E to Lo(H). We may- apply the-Banach-Steinhaus theorem
in its form for F-spaces ([4]; th.-III, 4.6) to infer that Inti(k) - is con-

tinuous.
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2.3. Remark: The idea of cﬁttiné k‘down to kh and to apﬁly'the Banach-Stein-
haus'theorem in the above proof is due to J.B. Cooper, who thus re-
placed a cumber some gliding—hump—aréument, that I had épplied previous-

ly.



2 4 Corollary Let E be a Banach subspace of L (V), F an F-subspace

of r° (W and k(x y) a measurable functlon such that
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(1) for g €E k(x,9(.) €L for p-a.e. x € X
and
(2) . for-g EE. .= fdx) = [ -k(x,¥)a(y)dv(y). € F,-

Y

<5: - Thens Imti(k) - induces: a continuous operator: from E to F.

. 2.5. Remark: The: corollary applies.in particular to. the case, where E is
"va closed subspacé:oﬁ;L%(w):and fF;snL?(u);\thus;answering problem
3.12 of [1] initha;positive, Fa: bows oty 948

-2

Proof of 2. 4 By 2 2 and condltlon (1) the graph of Int(k) is a closed

subspace of E % L (u) By condltion (2) the graph of Int (k) is contained

ln Ez(F and,_as F lnjects contlnuously lnto L (u), lt is closed in EXF,

“irhe %losed graph theorem ([4], th. IIT, 2.3) ‘implies that Int(k) is a con-

tlnuous operator from E to F.

By weaw o e - .

3. SOLUTION TO PROBLEM [1], 8.2:

We have -already indicated -in-'[3] one possible way to recapture the kernel

k from the values of the operator Int (k) "effectively".

We now present a different "effective procedure", which uses only the
(scalar-valued) Radon-Nikodyn theorem. Of course,*by tha;vagueness of
the term "effective" it will depend,on the taste of the reader if he
accepts the following qpnst;uctipnﬁas'agsatisﬁagtqry answer to problem

8. 2.

Let k be“a; kernel inducing an operator Int (k). from Lz(v) to Lz(u) and



suppose for the moment k€ Ll (0 %) . Given measurable-sets-A =X,
B ¢V, | | :
I x(x,y)dv(y)du(x) = (Int(k)XB,XA)
A B
The right hand side depends only on the values of Int(k). If we denote
by A the measure k(x,y).(UxV) on X x Y, the above expression equals
A(A xB). By the integrability of k the measure A is finite and absolutely

continuous with respect to U XV.

The above formula giVeswthelvalueslof'A on the rectangles, the usual

Caratheodory procedure extends A:to the product O+algebra - X xy and
ax :

the Radon-Nikodym theocrem gives ki(x,y) = <y -

Unfortunately a kernel k may induce a contlnuous (even compact) operator
from L (V) to L (u), w1thout k belng 1ntegrable (although the-measure

spaces (X,U) and (Y v) ‘are assumed to be flnlte) e

In this case we may not apply brutally the above constructlon nBut,

given a kernel kf,obeerve that fo;ueach Eﬁ? Q_there‘;e\ XE svg,%u(x \xe)'< €
such that k restricted to X€ x Y is ihtegrable.elqdeed ;he:fugo;;on

X — IIk(x,.)H is U-measurable and U-almost everywhere finite,

)

hence we only have to take XE = {x : Hk(x,.)[[ 1 ) < M} for M large
L7 (v
enough. Having this in mind we may present our construction.

3.1. Proposition: Let T : L2(v)'* Lz(u) be an operator of the form

T = :Int (k). Thén there is an "effectiwve procedure" to recapture k

from the values of T.

Proof: For measurable sets A & X, B £ Y define
R L X = ( . )
A (A % B) (TXB,XA)
Clearly Xﬁmay be extended to a finitely aédiﬁiVe set fuhction on the

algebra generated by the rectangles. Let

n .
A (axB) .= sup { Z‘IA(Aix‘Bi)], A, x B, disjoint subrectangles of AxB}.
i=1



It iseasily seen, that - .- ,”;i &
M @xB) =1 J |[kexy | av (y) du(x) &
T s, G B -~ ; ok R

~This expression may be:equal +® .. But:we know from:the discussion pre-
ceding the proposition that for £€>0. there is X4-with»u(x‘\x ) < € and
[XI(X x ¥) < ®. Hence we may extend the -restriction of X to X.x ¥ to
the product O-algebra and by the Radon—leodym theorem we may flnd the

values of k on XEx Y (to be exact: almost everywhere on Xex ¥).

: ; | : 5% A
Finally.it is clear how.to find k on all of X x Y. Let € = n and find
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successively k on X
n

Y. .
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4. SOLUTION to [1], 17.6:

The answer is no: There exists an integral operator Int(k) : L2(V) g Lz(u),

o] G e
an orthonormal basis {en}n=1 in'LQ(V) and a square summable sequence
[o0]

o)
{an}n=1 of positive scalars such that I |an.Int(k)(en)} is infinite on
‘ n=1
. a set.of positive.measure. .

Actually it is easy to provide such an example in view of the remark in
[1], 17.6 that a poéi%ive"soiu;igg_tb R iﬁ}é'wbﬁld solve positively
problem [1], 11.8. As we have seen’in [3], the answer to {1], 11.8 is nega-
tive and a close look at the counterexamples?[B];‘616}:6;8‘and 6.9 shows

that they also provide counterexamples to [1], 17.6.

However we prefer not to repeat these examples but rather to give a very

easy counterexample, taylormade for preblem {1] 17 6

' . +00
“Fix a sequen:ce,-.‘{'E>n.]'l-_l;’..-_.m of .scalars, which:iS"not"squargispmmable but
" oosuch: .that ~=- o SRR UGB P RN P » v
. 2Ti
a0t Ine(e) = T B . e ‘}th MR
n=—00 2

. 1 U : ;
converges in L (T), where T denotes the onedimensional torus equipped with



Lebesgue measure. For example {np};:_w for ?ﬂ%é <-0° is: such a sequence
(c.f. [2], ex. II, 1.3).’ . o
Denote by C the convolution operator oﬁ Lg(f) induced by ¢ (c.f. [1],
th. 12.2). Clearly C dis anzabsolutely bounded integral: operator: and the
kernel corresponding to C:is. given by: ‘=7 o oo onooroun L

k(trﬁi fJCkg?QS},'” 2 3 2ﬂln(tf )-;
' - » ‘ " T A==

2min 2mi ] 2min |
Note that the operator C maps e to B .e n. Indeed, as e n is an
element of L (T), it deflnes a contlnuous llnear functlonal on Ll(T),

hence the following equations hold true.

400
2T} i i -
F ki sle ins .o _ 7 [ e2 lns.Bm.e2ﬂ1m(t s)d
T Swoo
+m © e s e W - e ...“-. -
- g
- I B .e2 lmt. f e2Tr1(n m)s ds
= =00 i, 1Y
- f 2Tint -
- e CE, Bn' N
400 e
Find a square-summable sequence {a } ~such:that % ‘Ian,Bﬁj =
Then e
ﬁ»ﬁ- 2 2ﬂ1n > oo C SETIONIE L. Jc SIS L S O AR
[a C(e )(t)] =z |a.B | ="

n-—OO . ’ =00
: Fhre £, 3 - et ondRLSEl g

for almost every t € T..

5. SOLUTION TO PROBLEM [1], B.4:

5.1. Proposition: There is an ﬁa:-valued Lebesgue measurable function
k(x,y) on [0,1] x [0,1] such that for every Lebesgue measurable
R4—valued function g on [0,1], whcih is different from O on a set

of positive measure,



[ k(x,y)g(y)dy =

for almost each x EWLQ,QJ.?J o "hrre s i

Whence, in the langﬁeqe‘éfkﬂIig-alL ﬁontfivialjsubkernels of k have

z-.<§9main.i9}r PRI gl d B9 weo

‘Proof: Let h be the function on [0,1] x [0,1],

-1
Ix - vl if x Ty
0 if x =vy.

h(x,y)

h (le)

It is shown in [1], ex. 3.2, that for any positive, measurable function

g on [0,1], not vanishing almost everywhere, the set
a ={x:fowhxydy ==}

ﬂﬁﬂhaéésppictly;quit;veumeasugeJHQQQ task is to replace h by some k such

that this set is always of.measure 1. ..

Let {r } be an ennumeratlon of the ratlonals in [O 1] and let hn(x,y)

‘__~,.1
B ! r’\,

) be the r —th translate of h i e.

colBie

:“hﬁ(er) = h(x ﬁ\rﬁfﬂylh:ﬂ; - S e

o]
where = denotes subtraction modtle 1. Let‘!?pg}n_l be a sequence of

strlctly positive numbers, such that
-

m {(ij) ; p h kx;y) é_ n}

where m2 denotes Lebesgue measure on [O,l X [O,l].

Define -

k(x,y) = L pn.hn(x,y).
n=1
By the Borel-Cantelli lemma k is mz—almost everywhere finite.
By changing k on a set of measure zero, we may assume that k is everywhere

R+-valued.

Let g be a positive function on Y, different from zero on a set of posi-

tive measure. The set



A = {x : [ gyhix,y)dy = =}

is of strictly positive measure. As the set

Ay =k ] gk x,yrdy £

contains all rational translates of Ah (modulo 1), Ak has measure 1.

D
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