PROPERTY

by

Křesomysl Blizzard (Špindlerův, Mlýn)

We construct a separable Banach space E and a bounded, closed, absolutely convex subset B such that B is the closed convex hull of its extreme points but such that not every point in B is representable as the barycenter of a probability measure on the extreme points of B.

Let X be a separable Banach space not having the Radon-Nikodym property and such that its unit ball U is the closed convex hull of its extreme points E(U). The space of converging sequences c for example is such a space. (Note in passing that the unit ball of c has countably many extreme points and that every point in the unitball of x is the barycenter of probability measure on the extreme points).

Let Δ be the Cantor set and let $E = I(C(\Delta), X)$ be the space of integral operators from $C(\Delta)$ to X, i.e. the linear operators $T: C(\Delta) \to X$ such that $\|T\|_{I} = \sup \{ \sum_{i=1}^{n} \|T|_{X_{A_i}} \| : A_i \text{ disjoint clopen sets in } C \} < \infty.$ Let $B = \{T: \|T\|_{I} \le 1 \}$ and equip E with the topology t of pointwise convergence on $C(\Delta)$, i.e. $T_{\alpha} \to T$ if for each $f \in C(\Delta)$, $\|T_{\alpha}(f) - T(f)\| \to 0$.

There are obvious extreme points in B, namely the $\delta_t \otimes x$, $t \in \Delta$, $x \in E(U)$. It is also obvious that these are the only extreme points of B, hence we write

 $E(B) = \{ \delta_t \otimes x, t \in \Delta, x \in E(U) \}$. We shall show that B is the closed convex hull of E(B).

By the Hahn-Banach theorem this is equivalent to say that the polars of $E\left(B\right)$ and B coincide. Let

 $\stackrel{n}{\underset{i=1}{\smile}} f_i \otimes x_i^*$ be an element of E', that belongs to the polar of E(B). Evidently this means just that for $t \in \Delta,$

 $\| \underset{i=1}{\overset{n}{=}} f_i(t).x_i^* \|_{X^*} \leq 1 \quad \text{and this latter condition implies that}$ $\underset{i=1}{\overset{n}{=}} f_i \otimes x_i^* \quad \text{belongs to the polar of B, as is readily seen}$ from the definition of B. Hence $\overline{\Gamma}(E(B)) = B$.

We shall now show that there are points in B not representable as barycenter of probability measures on the extremals. Let T_O be an integral operator in B that is not nuclear and suppose there is a probability μ on E(B) such that for each $f \in C(\Delta)$ and $x^* \in x^*$

$$\left\langle x^{*}, T_{O}(f) \right\rangle = \int_{E(B)} \left\langle x^{*}, \delta_{t} \otimes x \right\rangle d\mu (\delta_{t} \otimes x).$$

Note that E(B) is homeomorphic to E(U) * Δ . As E(U) is always a coanalytic set (if X is c, E(U) is even a countable discrete set), there exists a desintegration of μ , i.e. there are probability measures μ_t on E_U and a probability measure ν on Δ such that $\mu = \int_{\Delta} \mu_t \ d\nu(t)$, i.e. we get for $f \in C(\Delta)$ and $x^* \in X^*$

For $t \in \Delta$ write $F(t) = \int_U x d\mu_t(x) \in U$ (the integral taken in the weak sense) to get a Radon-Nikodym derivative of T_0 , i.e. for $f \in C(\Delta)$

$$T_{O}(f) = \int f(t) \cdot F(t) dv(t)$$
.

This means just that T_0 is nuclear, which is a contradiction.

Remark: We have contructed our example in a locally convex space E which is not even a Fréchet space, but it is not difficult to make the example live in a Banach space. Let $\{f_n\}_{n=1}^{\infty}$ be any total sequence in $C(\Delta)$, tending to zero in norm, and define the norm $\|.\|_E$ in E to be

$$\|\mathbf{T}\|_{\mathbf{E}} = \sup \{ \|\mathbf{T} \ \mathbf{f}_{\mathbf{n}}\| : \mathbf{n} \in \mathbb{N} \}.$$

It is easily verified that $\|.\|_E$ is indeed a norm and defines on B the topology τ . Letting \widetilde{E} be the completion of $(E,\|.\|_E)$ we have imbedded our example into a separable Banach space.

An inspection of the above argument shows, that we may imbed our example into the space $\,c_{_{O}}({\tt X})\,$ or even $\,\ell^{\,2}({\tt X})\,.$