THE BANACH-SAKS PROPERTY IS NOT L²-HEREDITARY

BY WALTER SCHACHERMAYER

ABSTRACT

We construct a Banach space E, which has the Banach-Saks property and such that $L^2(E)$ does not have the Banach-Saks property. The construction is a somewhat tree-like modification of Baernstein's space.

1. Introduction

Recall that a Banach space E has the Banach-Saks property (abbreviated (BS)) if for every bounded sequence $\{x_n\}_{n=1}^{\infty}$ in E there is a subsequence $\{x_n'\}_{n=1}^{\infty}$ converging in Cesaro-mean (i.e., $\|n^{-1}\sum_{1}^{n}x'_k - x\| \to 0$ for some $x \in E$).

We construct an example of a Banach space E having (BS) such that $L^2_{[0,1]}(E)$ does not have (BS).

After constructing this example I have been informed that J. Bourgain has already constructed a Banach space with this property ([3], [6]). However, our construction is quite different and — as we believe — simpler and there might be some interest in the technique of the construction.

Our space E will be a somewhat tree-like modification of Baernstein's space [1] and is based on a very elementary probabilistic lemma. It will be convenient to use interpolation theory (following an idea of B. Beauzamy [2]) to avoid certain technical difficulties arising in Baernstein's construction. Let us note however that it is possible to construct our example following exactly the lines of [1].

2. An elementary probabilistic result

LEMMA 1. Let $N \in \mathbb{N}$ and let X_1, \dots, X_N be independent random variables taking their values in the set $\{1, \dots, N\}$ in a uniformly distributed way (i.e. for $1 \le i, j \le N$, $P\{X_i = j\} = N^{-1}$). Let

Received January 26, 1981 and in revised form March 12, 1981

 $Y(\omega) = \operatorname{card}\{j : \text{there is an } i, 1 \le i \le N, \text{ such that } X_i(\omega) = j\}.$

Then

(1)
$$P\{Y \ge N/4\} \ge 1/4$$
.

PROOF. For $0 \le n \le N$ let $Y_n(\omega) = \operatorname{card}\{j : \text{there is an } i, 1 \le i \le n, \text{ such that } X_i(\omega) = j\}$. Clearly

$$0 = Y_0 \le Y_1 \le \cdots \le Y_N = Y.$$

Assume that (1) does not hold; then it fails for each Y_n . Fix $1 \le n < N$ and let A be an atom in the σ -algebra generated by X_1, \dots, X_n such that, for $\omega \in A$, $Y_n(\omega) < N/4$. As X_{n+1} is independent of Y_n and the law of X_{n+1} is uniformly distributed,

$$P\{\omega \in A: Y_{n+1}(\omega) = Y_n(\omega) + 1\} \ge \frac{3}{4} \cdot P(A).$$

Summing over the atoms on which Y_n is less than N/4 we see that on a set of probability greater than or equal to $\frac{3}{4} \cdot \frac{3}{4}$ we have $Y_{n+1} = Y_n + 1$, hence

$$E(Y_{n+1}) \ge E(Y_n) + 9/16 \ge E(Y_n) + 1/2.$$

It follows that $E(Y) = \sum_{n=0}^{N-1} E(Y_{n+1} - Y_n) \ge N/2$. On the other hand $Y \le N$; hence if (1) does not hold, then

$$E(Y) \leq \frac{3}{4} \cdot N/4 + \frac{1}{4} \cdot N < N/2,$$

a contradiction.

3. Construction of the space

Let Φ_0 be the space of finite sequences and let $\{e_n\}_{n=1}^{\infty}$ be its natural base. We write n (uniquely) as $2^u + v$ ($0 \le v \le 2^u - 1$), and associate to n the number $t(n) = v/2^u \in [0, 1[$.

A finite subset $\gamma = \{n_1, \dots, n_l\}$ of N, where $n_1 < n_2 < \dots < n_l$, will be called admissible, if:

- (1) $l \le n_1$ (Baernstein's condition).
- (2) Let p be defined by $2^{p-1} < n_1 \le 2^p$. For every $0 \le j < 2^p$ there is only one i so that $t(n_i) \in [j/2^p, (j+1)/2^p]$.

For example, for $u \in \mathbb{N}$ the set $\gamma = \{2^u, 2^u + 1, \dots, 2^{u+1} - 1\}$ is admissible.

Let Δ be the set of admissible γ 's. For $\gamma \in \Delta$ and $x = \{x_i\}_{i=1}^{\infty} \in \Phi_0$ define $\sigma(x, \gamma) = \sum_{i \in \gamma} |x_i|$ and $||x|||_F = \sup \{\sigma(x, \gamma) : \gamma \in \Delta\}$.

Clearly $\| \|_F$ defines a norm on Φ_0 , $\| \|_1 \ge \| \|_F \ge \| \|_{e_0}$. Let F denote the completion of $(\Phi_0, \| \|_F)$ and $i: l^1 \to F$ the canonical injection.

Recall [2] that an operator T from a Banach space A to a Banach space A_1 is said to have (BS) if any bounded sequence $\{x_n\}_{n=1}^{\infty}$ in A contains a subsequence $\{x_n\}_{n=1}^{\infty}$ such that the Cesaro averages $n^{-1}\sum_{n=1}^{\infty}Tx_n'$ converge in A_1 . It is shown in [2] that an operator T has (BS) iff the Lions-Peetre interpolation spaces $(A/\text{Ker }T,A_1)_{q,p}, 1 (or equivalently the Davis-Figiel-Johnson-Pelczynski factorisation space [4]) have (BS).$

PROPOSITION 2. The map $i:l^1 \to F$ has (BS).

PROOF. Let $\{x_n\}_{n=1}^{\infty}$ be a bounded sequence in l^1 . We may suppose that x_n is bounded in norm by 1 and converges coordinatewise to zero and by a standard perturbation argument we may assume that

$$x_n = \sum_{i=r(n-1)+1}^{r(n)} \lambda_i^{(n)} e_i$$

where r(n) is an increasing sequence.

We now choose inductively a subsequence $\{n_k\}_{k=1}^{\infty}$ and infinite subsets M_k of N. Let $M_0 = \mathbb{N}$ and $n_1 = 1$ and suppose M_{k-1} and n_k are defined. Let p be such that $2^{p-1} < r(n_k) \le 2^p$ and consider the partition of [0,1[into $[j/2^p,(j+1)/2^p[$, $j=0,\cdots,2^p-1.$ For $n \ge n_k$ define

$$\mu_i^{(n)} = \max\{|\lambda_i^{(n)}|: t(i) \in [j/2^p, (j+1)/2^p[\}.$$

Note that, for every n, $\sum_{j=0}^{2^{p}-1} \mu_{j}^{(n)} \leq 1$ as the x_n are bounded by 1 in the l^1 -norm. Find a subsequence \bar{M}_k of $M_{k-1} \cap [n_k+1, \cdots, \infty[$ such that, for every $j=0,\cdots,2^{p-1}$, the sequence $\{\mu_{j}^{(n)}\}_{n\in\bar{M}_k}$ converges, to μ_j say. Clearly $\sum_{j=0}^{2^{p}-1} \mu_j \leq 1$. Finally let M_k be the subset of \bar{M}_k consisting of those n for which, for every $j=0,\cdots,2^{p}-1$, $\mu_{j}^{(n)} \leq \mu_j+2^{-p}$ and define n_{k+1} by picking an arbitrary member of M_k . This completes the induction.

Note that for $\gamma \in \Delta$ and k such that $\inf(\gamma) \le r(n_k)$ and for every $l \in \mathbb{N}$

(2)
$$\sigma(x_{n_{k+1}} + \cdots + x_{n_{k+l}}, \gamma) \leq 2.$$

Indeed, γ may pick for every $j = 0, \dots, 2^p - 1$ at most one index i with $t(i) \in [j/2^p, (j+1)/2^p]$ (p defined as above), hence the contribution of this index is at most $\mu_i + 2^{-p}$. Summing over j we obtain (2).

Hence for n, l as above and γ such that $r(n_{k-1}) < \inf(\gamma) \le r(n_k)$

$$\sigma(x_{n_k}+\cdots+x_{n_{k+1}},\gamma) \leq \sigma(x_{n_k},\gamma)+\sigma(x_{n_{k+1}}+\cdots+x_{n_{k+l}},\gamma) \leq 3.$$

It follows readily that for every $K \in \mathbb{N}$

$$||K^{-1}(x_{n_1} + \cdots + x_{n_k})||_F \leq 3K^{-1}$$

from which the proposition follows.

Let $(E, \| \|_E)$ be the Davis-Figiel-Johnson-Pelczynski factorisation space of the injection $i: l^1 \to F$. As mentioned above, Proposition 2 implies that E has (BS). We may and do consider E as a space of sequences, containing l^1 and contained in F.

PROPOSITION 3. $L^2([0,1]; E)$ does not have (BS).

PROOF. Let $\{f_u\}_{u=1}^{\infty}$ be a sequence of independent random variables such that f_u takes the value e_{2^u+v} (i.e. the 2^u+v th unit vector) with probability 2^{-u} $(v=0,\cdots,2^u-1)$.

 $\{f_u\}_{u=1}^{\infty}$ is a bounded sequence in $L^{\infty}([0,1]; l^1)$ hence in particular it is bounded in $L^2([0,1]; E)$.

Also for almost every $\omega \in [0,1]$, $\{f_u(\omega)\}_{u=1}^{\infty}$ converges weakly to zero in F. (Indeed, it is shown in the proof of Proposition 2 that for any sequence of unit vectors there is a subsequence converging strongly to zero in Cesaro-mean.) It follows from [4], that $\{f_u(\omega)\}_{u=1}^{\infty}$ converges weakly to zero in E. By [5], theorem IV.1.1, we conclude that $\{f_u\}_{u=1}^{\infty}$ tends weakly to zero in $L^2([0,1]; E)$.

Now fix any subsequence $\{f_{u_k}\}_{k=1}^{\infty}$. As the norm of $L^2(E)$ is stronger than that of $L^1(F)$ the following assertion will prove Proposition 3:

(3)
$$K^{-1} \| f_{u_1} + \cdots + f_{u_K} \|_{L^1(F)} \ge 1/32, \quad K = 2, 4, \cdots, 2^p, \cdots$$

Indeed, assume $K = 2^{p+1}$ and for $k = 2^p + 1, \dots, 2^{p+1}$ define the random variables X_k with values in $\{0, \dots, 2^p - 1\}$ by

$$X_k(\omega) = j$$
 if $f_{u_k}(\omega) = e_n$ and $t(n) \in [j/2^p, (j+1)/2^p]$.

The random variables $\{X_k\}_{k=2^p+1}^{2^{p+1}}$ satisfy the assumptions of Lemma 1, hence on a set B of probability $\geq 1/4$ the sequence $\{X_k(\omega)\}_{k=2^p+1}^{p+1}$ hits at least 2^{p-2} different j's. Fix such an ω and find a set $\gamma = \{n_1, \dots, n_l\} = \{u^{u_{k_1}} + v_1, \dots, 2^{u_{k_l}} + v_l\}$ such that

- (i) $n_1 < \cdots < n_l$,
- (ii) $l=2^{p-2}$,
- (iii) $f_{u_{k_i}}(\omega) = e_{2^{u_{k_{i+v_i}}}}$ for some $k_i \in \{2^p + 1, \dots, 2^{p+1}\}$,
- (iv) the $v_i/2^{u_{k_i}}$ lie in different $[j/2^p, (j+1)/2^p]$.

Then it is easy to check that γ is admissible and therefore

$$K^{-1} \| f_{u_1}(\omega) + \cdots + f_{u_K}(\omega) \|_F \ge 2^{-(p+1)} \sigma(f_{u_1}(\omega) + \cdots + f_{u_K}(\omega), \gamma)$$
$$\ge 2^{-(p+1)} \cdot 2^{p-2} = 1/8.$$

Integrating over B we obtain (3).

REMARK. The proof actually shows that for $1 , <math>L^p(E)$ does not have (BS) and that $L^1(E)$ does not have the weak Banach-Saks property (called (BSR) in [2]).

REFERENCES

- 1. A. Baernstein, On reflexivity and summability, Studia Math. 42 (1972), 91-94.
- 2. B. Beauzamy, Banach Saks properties and spreading models, Math. Scand. 44 (1979), 357-384.
- 3. J. Bourgain, On the Banach-Saks property in Lebesgue spaces, Vrije Universiteit Brussel, preprint, 1979.
- 4. W. J. Davis, T. Figiel, W. B. Johnson and A. Pelczynski, Factoring weakly compact operators, J. Functional Analysis 17 (1974), 311-327.
- 5. J. Diestel and J. J. Uhl, Jr., Vector Measures, Surveys of the Amer. Math. Soc. 15, Rhode Island, 1977.
- 6. S. Guerre, La propriété de Banach-Saks ne passe pas de E à $L^2(E)$, d'après J. Bourgain, Séminaire d'Analyse Fonctionelle, Ecole Polytechnique Paris, 1979/80.

DEPARTMENT OF MATHEMATICS UNIVERSITÄT LINZ

A-4040 LINZ, AUSTRIA