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1[0,1] to c[0,1] which

may not be approximated by norm attaining operators with re-

We construct an operator from [,

4. .Spect to the operator norm. This solves a question raised #n-

[1] (see also-[3],[7}) and furnishes the first example of a

{’pair of classical Banach spaces such that the norm attaining

operators are not dense. C[0,1] is the first example of a
classical Banach space which does not have property B
(et 5l .

On the other hand, we show that a weakly compact operator
from C(K) into a Banach space X may be approximated in
norm by norm attaining operators. This shows in particular
that the norm attaining operators are dense in B(C(K),L1[O,1])
and B(C(K),K2
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), thus solving two other questions ef-[4].
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Let X,Y be Banach spaces, B(X,Y) the Banach space
of bounded linear operators A . from X to Y and NA(X,Y)
the subset of norm attaining operators A, i.e. there is
x € X, llxll = 1 with [IAXIl = IAll. The question of density
of NA(X,Y) in B(X,Y) was studied in [1],[31,[04]1,[5]1,[7]
and [8]. As regards classical Banach spaces it was shown in
[3] that NA(L' (#),L'(v)) is dense in B(L'(w),n'(v)) and
it was shown in [4] that NA(C(K),C(L)) is dense in B(C(K),
C(K)), Dbut the cases treated in the present paper were left

open.

After a preparatory part 1 we shall construct in part 2

an example from which the subsequent result follows

Theorem A: NA(L1[O,1], Cc[0,1]) 1is not dense in B(L1[O,1],

clo,1]).

Finally, in part 3, which may be read independently of

part 1 and 2 we prove

Theorem B: Let K Dbe a compact Hausdorff space, X a Banach
space and A : C(K) - X a weakly compact operator. Then A
may be approximated in the operator norm by elements of
NA (C(K) ,X) .

Hence, if X does not contain c isomorphically (in
particular if X = L1(u) or X = Kz),o NA(C(K),X) 1is dense

in B(C(K),X).

Our notation will be standard. L1 will denote the usual
Lebesgue space over [0,1] equipped with Lebesgue measure,
T the compact space [0,1] and C the Banach space of conti-

nuous functions on T. Our Banach spaces will be real.



1. Denote o*C(T,Lm) the Banach space of functions
© *
FeT=1IL which are continuous with respect to the o -topo-

fee)

logy of L , equipped with the norm

IFIl = sup {IF t € T}.

tIILco :
We shall need the following trivial but useful represen-

tation:

1.1. Proposition:

The Banach spaces B(L1,C) and O*C(T,Lw) are naturally

isometrically isomorphic. The correspondence between

A €B(L,c) and F € o¥c(T,17) is given by F, = a%(5.),

t t

where A" denotes the adjoint of A and 6t the Dirac

measure at T.

A is norm attaining iff there is t € T such that the

function IFtI equals |IIFIl on a set of positive measure.
a

1.2. Hence the problem of whether we may approximate

A€ B(L1,C), an = 1, by A € NA(L1,C) (with 1Al = 1 say)
up to e 1is equivalent to the following question: Given

F € o*C(T,Lm),HFH = 1, does there exist F € o*C(T,Lw),

IFl =1 and IF - FIl < ¢ such that F hits at some point
t a norm attaining element of the unit sphere of L  (i.e.

IFtl equals 1 on a set of positive measure).

There is a natural guess for the construction of such a
F for a given F with |IIFll = 1 : By changing sign if neces-
Sary we may suppose that there is tO € T such that
Fto is greater than 1-¢ on a set of positive measure. Then

Ft=(Ft+€)/\1

defines a function F into the unit ball of L~ with

_~ S -
HFt Ftu < ¢ for t € T and such that Ft

Gk . . o ;
a set of positive measure. The crux is, however, that it may

equals 1 on

happen that F is not o*—continuous. Suppose for example

that there is a sequence (s_).

_ in T tending to s
n’'n=1 o



such that Fg equals the n-th Rademacher function Rn
n o~
(and therefore by o*—continuity Fg = Q). Then for the ¥ con-
o

structed above (F. ) is a sequence of independent random

S
variables taking the values 1 and -1+e with probability
1/2-and so converges o to the constant function ¢€/2.

~ ~

However, FS equals the constant function € , i.e. F is
o
not o -continuous. Tt will be this phenomenon on which our

example is essentially based.

But it will be instructive to investigate this idea a
little further in order to get some information and motiva-
tion, how to construct our -example. On the unit ball OL"
of 1L° we also have the topology of the 'L1—norm, which is
finer than the o*—topology and for which OL~ is a complete
metric space. Suppose that F € c*C(T,Lw), IF = 1 1is conti-
nuous with respect to the L1—topology on ()Lw. Then it is
easy to check that F=(F+¢) A1 is also conti-
nuous with respect to the L1—norm, so a fortiori
F € ¢ C(T,L%).

Hence A € B(L1,C) is approximable by norm attaining opera-
tors if the corresponding F is continuous with respect

o

to the L1—norm on L .

Let us still note that this latter class of operators is strictly

larger than the class of Riesz-representable operators from

L1 to C (for definition see [2]). Indeed, it is easy to
check that A 1is Riesz-representable iff for tn - tO we
have that Ftn converges almostweverywhere to Fto. Note

that for bounded sequences in L the almost sure convergence
is strictly stronger than the convergence with respect to the
L1—norm. Hence the class of operators A such that the corres-
ponding F is H.H1—continuous includes the class of Riesz-
representable operators, and - after the above remarks - it

is not difficult to give examples showing that the inclusion
is strict. Hence the above observation gives, for the special
situation of operators from L1 to Cr a slightly more

general result than ([7], th. 2).

To finish the introductory part of the paper, we shall
show that for arbitrary F € o*C(T,Lm) there are "many"

points of T at which F is H.H1—continuous. This shows



the limitations for the subsequent construction of a counter-
example: The above described phenomenon can only occur at

"few" points.

1.3. Proposition: Let F € o*C(T,E”). There is a dense Gé—set

M €T such that, at every point of M, F 1is continuous

with respect to the L1—norm.

Proof: Let
1

K= {feL : ufu_s=s1},
which is compact if equipped with the weak topology of L1.
Definie
G: TXK —> R
(5} —* {F,.E)

where <:,.> denotes the scalar product between L.~  and L1.

Clearly G is separably continuous. It follows from ([6],
th. 1.2) that there is a dense G_-set M in T such that,

6
for t €M and £f € K, G 1is jointly continuous at (t,f).

In view of the compactness of K this implies that if

(t )m_ € T tends to some t € M, then F tends to F
n’ n=1 th 1 t
uniformly on K, i.e. Fg tends to Ft in the L -norm.
n

O

2. We now proceed to the proof of theorem A. It will be

convenient to introduce an ad-hoc-concept.

2.1. Definition: Let F € o C(T,L”), IFIl £ 1 and S be a

subset of T. For r € T, F 1is called "hopeless at r"

(resp. "S-hopeless at r") if
n
a) F_ = = (1-r.)x
Toi= 10Ry

for some partition (Ai) of Q@ and scalars

O < AaA. £ 1, and
i

b) for every A contained in some Ai and > O
there is 's € T (resp. s € S) with Ir-sl < ¢ and
p{w € A : IFS(m)I < g} 2 u(A).hi/2



2.2. Proposition:

Let F € o*C(T,Lw), IFIl = 1 be hopeless at some r € T and

F e oc(r,L”) with U0FI <1 and IF - Il < 1/2. Then for

i=1,...,n
ess sup {ﬁr(m) : 0 € Ai} <1 - xi/4 (1)

In particular if F satisfies in addition for every

p{F_ > 1 -2 7} <qa (2)
then %r satisfies for every n € WN

u{ﬁr > 1 - 27072y o (3) .

Remark:

The intuitive meaning of 2.2 and the reason for the concept
of "hopelessness": If F is hcopeless at r and the distri-
butieon of F_ obeys the inequalities (2) ‘and if F is a
perturbation of F , then the distribution of Fr obeys (3)
and Fr therefore is a "hopeless candidate" for being a

norm attaining = element of the unit sphere of L”.

Broof's

For A ¢ A, it follows immediately from definition2.1, the

o*—continuity of ¥ and the assumption IFI £ 1 that

[ F (o) dule) s ((A) « Ay/2) . 1/2 + b(R) (1-1,/2) .1
A
< u(A).(1—Ki/4).
This implies (1). The second part of the proposition is an

immediate consequence.

a

In the next proposition we shall fix the program for our

construction.

2.3. Proposition: There exists F € O*C(T,L“) and a dense

subset D € T such that

(1) H0NFN =1 and Ft 2 0 for t e T.
(2) For t € T and n € NN
piF 21 - 27" s 3 I¥a

(3) F 1is hopeless at every r € D.



Let us admit 2.3 for the moment and show how theorem A

follows:

Proof of theorem A: Let F € o*C(T,Lw) be given as in 2.3

and suppose there is some norm attaining T € c*C(T,Lw) with
IFI- FI £ 1/4. Let F = F/IFN; then IFNI =1 and

IF - FIl < 1/2.

For a € ]O,1[ define the function

o}

N : L —> 1R

a
f —> sup {([ffduy : uw(Ar) = a},
A

which is ¢ -lower semicontinuous. Applying 2.2 and assumption (2)

an easy computation shows that

n-6

N (F J 2 2 2p1-2707%

2-11 h g

for r € D and so by the o lower semicontinuity of Na for
r € T. This implies readily that, for no r € T, ﬁr equals
1 on a set of positive measure. As Fr z-1/2, for r e T,
we see that no Fr is a norm attaining element of the unit

sphere of L”. In view of proposition 14 this proves theorem A.

a

We still have to prove 2.3. and this will involve a
rather laborious construction. For preparation we need an ele-
mentary probabilistic lemma whose proof we include for the

sake of completeness.

2.4. Lemma:

Let (gn);=1 be an independent sequence of random variables so that
llgnll°° < 1 and E(gn) = 0. Let (hn)n=1 be a sequence of

random variables suely that thnw £ 1 and each hn is inde-
pendent of the seiruence (gk)k=1' Then (gn hn)n=1 tends to

zero in the o*—topology of L .

Proof: Suppose not. After passing to a subsequence and changing
signs, if necessary, we can find A €  and o > O such that,

for every n,



By may be passing to a subsequence once more we may

assume (by Komlos' theorem),that the Cesaro means

=1

s, =n (g1h1 + sse F gnhn)

converge almost surely to a random variable s. Of course
J s dp 2z «
A

Hence there is R > O such that the set B = {s > B}
has positive measure. B 1is independent of every T hence

for every n

é 9h, dv = E(g).E(h_.x5) = O,
which implies that
J s du = 0O,
B
the required contradiction. E]
Proof of proposition 2.3.:
Define for k =0,1,2,..
SK = {g € [0,1[ : there is £ £ k s.t. q=ﬁ}+..+ﬁl}u{o},

where n, are supposed to be natural numbers. It is plain to
check that

- S & S, &5, ¢
o~ 1 2
= Sk is compact .
- - : . :
Sk Sk—1’ i.e. Sk—1 consists precisely of the
accumulation points of Sk'
- U s _=@en [0,1].
k=0
y k k 2k
We shall also prepare for k € N partitions A" = (A7) 5 4
of Q into sets of p-measure 2—k and for g€ @ n [0,1[,
A€@n ]Jo,17] and n € N a "biased Rademacher function"

BRE’K such that BRE’K equals -(1-A) with probability A/ (2-17)
and equals A/2 with probability (2-21)/(2-A).
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The sequence of partitions (Ak)]c:=1 and the family of
random variables {Bg'x :geeoen o1, »e€@n ]JOo,1, n€ N}
are supposed to be all independent.

Now we shall construct inductively a sequence (Fk):=1

in o*C(T,Lw) satisfying the following

Induction Hypotheses:

k, k . _ <

(a) e = iup {HESHL S € Sk\Sk 1} 1 2

and Ft 2 0 for t e T.
(b) For t ¢ T and O < n < k-1
" Ft . 1-97D P 2—n+2 2—k

() Fk is Sk—hopeless at every «r € Sk 1 and, for £ < k,
k _ _2 -

Fr = Fr for all x € SK'

(d) For all teo@n [0,1[, Fi is a simple function with
rational coefficients and measurable with respect to the
c-algebra generated by the partitions {AL, £ =1,..,k}
and the random variables {Bg’x : g € Sk_1,x € @n]O,1],neEN },

k. . s .

(e) Ft is locally Lipschitzian with respect to .l on
T\Sk—1’ L., fOr £ € T\Sk-1 there is a constant Lk(t)
such that for t'e T, It-t'l < Lk(t)_1 we have

k k k
HFt = Ft,lloo s L (k) . lt=t'i.
k - —
(£) M{Ft;éF]E1}§2k vt € T.

To start the induction define F° by letting Fi be identically
the constant function 1/2. For the convenience of the reader and
in order to make the idea of construction clearer we carry out
the first induction step, which is technically simpleg before passing to

the general one.

Step 1: A: Definition of F1 on SO : Let F; = O,
ot RO el e}
By Definition of F1 on S{\SO: We define
T _o 0,1/2
Fg = Fg # BRn . XA1



_‘]O_.

=1

if s € S1\So is of the form s =n for ocdd n and
! = p° 4+ 8RO/ 1/2 4
] S n A2
if s € S'l\ SO is of the form s = 1’1_‘I for even n.

C: Definition of F' on T\S,: For every s € SN\Sg

we define e€(s) = dist (s,S{\{s})/2, which is strictly
positive and rational. Let t € T\S1; if there is a (necessari-

ly unique) s € S{\SO such that It-sl < e(s) then we define

+ (1 - It—sl/s(s))[F; - Fg].

If there is no such s we define simply

It is plain to check that (a),(b), (d), (e) and (f) are
satisfied for F1. Let us show (c): F1 is 51-hopeless at

O. Write F; as

F1 =
o

™M

1-1/2) . % .
E ( /2) XAT
1

Fix A € Al, say A ¢ A]. Then

1im wia n (8RO /2 = —1/2)) = u(a) .2 = —1/2)
n-—>oe
= pu(Ap). 1/3.
Hence if s = n_1 where n 1is large and odd

ales & B & F; =0} > 1/4.u(n),

which readily shows that F1 is S1—hopeless at oO.

Finally we have to show that F1 is o -continuous.

In view of (e) we have to check the o*-continuity only at O.

oo

Let (t_j)j:1 & T tend to O. By passing to a subsequence

we may suppose that for s € S1\So’ there is at most one tj
which lies in Js - €(s), s + €(s)[. Then the sequence

Fl. = F; is cf the form described in lemma 2.4: It is the
pr%duct of some BO’1/2 with a scalar multiple (less or equal
to one) of either ixA1 Or Xp]i ' SO we may conclude that

Fl' - F; tends 0* td zero, i.e. F1 is o*—continuous at

t £ 0.
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1 k-1 k-1

Step k: Suppose F ,...,F and L (t) defined.
A: Definition of Fk on S : Let Fk = Fk_1 for
— k-1 r r
r € Sk—1' .
B: Defimition of F on Sk\Sk_1 ¢ First fix

r € S, _\S, _, and write

m(r)
k-1 _ _ _.r
Fr B .E (1 Ki)XBg

i=1

where {BE}?L?) is a partition of @, belonging to the
oc-algebra generated by {A£ : £ <k } and

{Bg’x : g €8 and where the Ki are rational co-

k—2} —k r
efficients with 2 < Ay S 1. Now find a strictly

positive rational number 6&6(r), such that

§(r)smin{dist (r,S, N{r}), L5 1) .min(at, 1-2F:a5<1) ).
k=1 i i*7i

Note that the intervals {]r,r+6(r)[ : r € Sk—1\sk—2} are
mutually disjoint.

Now fix s € Sk\Sk_1 : if s is of the form s = r+n_1
for some r € S, NS, , with L 5(r) (in which case r
is unique), define

K = K71, [1-1r-s1/s(r) ] X T x.k . BRr’Xi

S s Bi Aj n
if n equals i + (j-1) m(r) modulo ka(r), where
123522 and 12 i s m(x).
If s € S\S,_, is not of the gbove form, define simply F]; = F];_1 .

‘L:, Definition of Fk on T\Sk : First find for each

s E Sk\Sk_1 a strictly positive number ¢ (s) which is

smaller than dist(s,S, {s})/2 and Lk_1(s)—1 multiplied

by the minimum of the A's and (1-A)'s, where A runs through

the (finitely many) values different form zero, which Fz-1

assumes.

Note again that the intervals {]s-e(s), s+e(s)[: s € Sk\Sk_1

are mutually disjoint.

Now fix t € T\Sk; if t 1is such that there is a

(necessarily unique) s € Sk\Sk_1 with t € ]s=-e(s),s+e(s)I[

we define

F, =F + [1 - ls—t|/e(s)].[F: - F:_1].
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k-1

If t is not of thdis form, define simply Ft = Ft

We have defined Fk on all of T and we now have to
check properties (a) to (f):

(a) Let r € s, .\s

; then it follows from the definition
r k=1""k=2

of BE’K} and the hypothesis
0sps g - 27k
r
; k
that for n € W, 1 £ i £ m(r), 1 £ 3 £ 2
k- r,Aj _ ~=k-1
O = Fr + XBF'XAK'BR <1 2
1 J
The factor [1-lr-s!/6(r)] 1is chosen small enough to get for
s € 8,\sy _, . .
OsF. <1 -2
S
and the factor [1-Is-tl/e(s)] is small enough to get for
t € T\S
* K g1
0 < Ft <1 -2
Finally, in order to show that
k., _ k | _ _ 5—k-1
HF I = sup {FS : s € Sk\sk-1} =1 2
. r r -k
find, for € > 0, r € 8 \S and A, such that A, < 2
k-1 k-2 i k 1
If n 1is sufficiently large and n equals i modulo 2.
then, for s = r+n—1
iRy s> o1 - 27K 4
S (o)
) k -k k .
(b) and (f): Since u(Aj) = 2 7, we see that Ft differs
from Ft_1 at most on a set of measure Z_k, from which

(f) and (b) follow

(&) Fk is Sk_1—hopeless at every 1r € Sk—2 by induction

hypothesis. For r € Sk—f\sk—z write
k
k=1 Kk 2 m(r)
Fx TF.= B L M XgTaaky-
j=1 i=1 i3
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For every A, contained in BiﬂA? for some i and Jj, we

have

¥
lim p{o € A : BR;‘;’}\i

n-—>o

RN - r, , .
=1 Ki} H(A).Ki/(Z ki)

It follows that given e > O for n large enough and equal
to i + (j=1)m(r) modulo ka(r) we have for s = r+n—1

p{o € A : IFS(w)I < e} > pu(h) . KE/Z.
(d) and (e): obvious.

Finally we have to show that Fk is ¢ -continuous.
In view of (e) we have to check the o*—continuity only at

I

Let (tj)c;=1 € T tend to So € S By passing to

k-1°
a subsequence we may assume that, for each s € Sk\Sk_1
there is at most one t.j which lies in J]s-e(s),s+e(s)[.
Hence

. AL
k k-1 5,5
.BRk

J J J J
where cj is a constant between O and 1, Cj is a set

depending only on {BRE’K : g € Sk—2} and {AK}KSk while

sj is some element of Sk—1\sk—2 (and xj and kj are
some elements of @ n J]O,1] and 1IN respectively).
If j # 1 then either Sj # s, or ij # k%i1 SO we may*
apply lemma 2.4 and conclude that Ft. - Ft. tends o
to zero. Since J J

* - - —

o = l%m th1 = F§O1 = on

we see that Fk is indeed o -continuous. This finishes
the induction step.
It follows from (f) that the sequence (F]E);;1 is

H.H1-convergent uniformly in t € T, hence

_ A k
Ft = H.H1 iiz Ft
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is a welldefined element of o*C(T,Lm). It follows from (a),
(b) and (c) of the induction hypothesis that F satisfies
the corresponding assumptions of 2.3 if we let D = @n[0o,1][.
This finishes the proof of prop. 2.3 and therefore of theorem
A.

0

One may ask for which compact spaces K the norm
attaining operators are dense in B(L1,C(K)). It is easily
deduced from the representation 1.1 that this is the case
if K has a dense set of isolated points (oberved in[5]). On the
other hand the above construction may be applied to some
other concrete examples of compact spaces. The author has
checked this, apart from [0,1], for the torus, the Cantor
set, a countable product of the me point compactification of
IN and for products of these compact spaces with an arbitrary
compact space. This leaves of course open the question of
characterising the class of compact spaces K for which the

norm attaining operators are dense in B(L1,CCKH.

3. We now pass to the proof of theorem B. It is based on a
simple lemma. In the sequel K will denote a compact Haus-

dorff space.

3.1. Lemma: Let W be a weakly compact subset of the space

M(K) of Radon measures on K and let o € M(K).
For € > O there is an operator S : M(K) - M(K),IlsSll =1
such that
(i) there is (K) , HfoH = 1 with

fo e C
lag !l = <%O,suo>
(ii) Sy = upull < ¢ for all u € W.

+ -
Proof: Take the Hahn-decomposition o = Mg = Mg of Ko

into its positive and negative part and find a partition of

K into two Borel sets B+ and B~ such that

+ _+ - -
ho(BT) + u (B7) = lin .
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Since W 1is weakly compact, it is uniformly inner regular
([2],1lemma VI.2.13) and we can therefore find compact subsets

K+ and K  of BY and B~ respectively such that
lut (BN\KT) + 1wl (BT\KT) < e/2,

for all u € W.
+ _ _+ - -
Fix points x € K and x € K and let F : K - K

be the map
for x € K+ UK
F(x) = X+ for X € B+ \ K+

T for x € B \K

Clearly F is Borel measurable. Define S:M(K) - M(K) by

S(u) = F(u),
F(pn) denoting the image measure of p under F. Evidently
nsn =1 and ISy - pll < €, for p € W. Find fo € C(K),
Hfon = 1 such that fO equals 1 on k" and -1 on K ;

then

)

Proof of theorem B: Let A* : X* - M(K) denote the adjoint
of A and W the image of the closed unit ball of x*

under A". 1In view of the weak compactness of W we may
apply Stegall's theorem ([8], p. 176) to find an operator
T : M(K) - M(K) (of rank 1) such that ITI < ¢/(21Al) and
such that W1 = (Id + T)W has an element, say bt of
maximal norm, i.e.
il = sup {lul: w € W,} = 1(Id + YA .

Now we apply lemma 3.1. to find S : M(K) - M(K), usut =1,
such that

(1) sup {NISp = pll ¢+ p € W} £ ¢/2

(ii) there is fo € C(K), HfOH = 1 with

lug Il = <fo’s“$>'

Denote A" the operator S(Id + T)A*.
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1A% - a¥n < usa® - a*y +usTa*

I\

e/2 + usu.nrn.1atn  <e.

The adjoint of i*, namely Z** : C(K)** - x°F given

by A = A**(Id + T*)S*, takes C(K)** into X, as B h
does so. Finally let A : C(K) - X be the restriction of
%% to C(K). It is plain to justify the above introduced
notation, i.e. that A% is the adjoint of A. Also

IA - All < ¢ and
AN = 12%n < n(zd + ™a*u.

On the other hand

IA(£)I = sup {<fo, S(1d + T)A*x*> soxT o< 1)

sup | <fo’ Su> TN < W1}

*
<fo, S“o) = 1(Id + T)a%

which shows readily that

v

1A fo = 1lAll.



