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Abstract:

We present an example, simplifying an earlier one due to R. C. James,
of a l-separated tree with empty wedge intersections such that its

closed convex hull has continuum many extreme points.

1. Introduction: The present paper deals with the (still open)

question, whether the two properties of Banach spaces mentioned in the

title (and abbreviated RNP and KMP) are equivalent. It is based on
[S] and we have tried to emphazise the importance of the notion of a

"complemented bush". This concept was defined and studied in [H] and

- implicitly used in [S].

We give a simplified version of an example due to R. C. James [J]. 1In
the language of trees and bushes we construct a tree such that its
closed convex hull - as well as the closed convex hull of many of its

asymptotic subtrees - has continuum many extreme points.

the aspects relevant for RNP in Banach spaces: One may formulate these
in terms of operators from Ll to X or in terms of trees and bushes -
(which again are just special martingales). These are only different 7
sides of the same coin. As we shall use the identification of a tree or
a bush and an operator from Ll to X often throughout this paper

we shall recall this here in some detail.

A will denote the Cantor set {-l,*}-l}]N and m the normalized Haar-

measure on A. The Rademacher-functions r, on A are the projections
onto the n'th coordinate. 8 will denote the Borel-o-algebra of A _ Qg_
and Lﬁ? the sub-o-algebra generated by LyreserXpe L.GQA
. . h
We define a tree in a Banach space X to be a collection :
- ] £ i € 401
T = {xn,i : 1 1="2 , n e IN}

in the unit-ball of X such that for each (n,i)



X . =1/2(x

n,i n+l,2i-1 T

)

Xn+1,2i

and such that there is a positive separation constant € > 0
such that for each (n,i)

: >
Hxn,i - xn+l,2i—ll|_ -

To a tree T we associate an operator T from Ll(A,m) to X in the

following way: For (n,i), n e IN, 1 £ 18 e (817--48__1) be

the unique element of {—l,l}n_l such that

n-1
I((8,+1)/2)2"7 %7 = 41
k=1
and let In,i be the atom of LEn consisting of all (ek)k=l such L;Q;h
that €y = Gk for k=1,...,n-1. Define

-(’.15,_4,.“ T(Zn—l XI ) = X .
n,i

 Then T extends by linearity and continuity to a bounded operator from

Ll(A,m) to X.

1. _We have treated the case of trees instead of the more general case of

bushes (see [H] for a definition) for notational convenience only; but
" the above identification carries over to this case analogously except -
that we have to use in an obvious way a more tedious index set, a dif- .

ferent Cantor-set and bigger finite o—algebras Zn.

Hence a tree T gives an operator T from Ll(A,m) to X which is
easily (almost by definition) seen to be not representable. Conversely,
given an operator from Ll(Q,Z,u) to X which is not representable one
c Q, u(A) > 0 and an increasing sequence of finite

o-algebras Zn such that by the identification sketched above the traces

may find a subset A

of Zn on A define a bush with strictly positive separation constant

(see [ST] for a detailed exposition).

In the sequel we restrict us to the notationally more convenient case of

trees and operators from Ll(A,m) corresponding to a tree.




There is a natural ordering among the indices (n,i) of a tree, which
is obtained from (n+l,j) > (n,i) if Jj = 2i-1 or Jj = 2i. A branch

of T 1is a sequence (xn,in)n=l such that ((n,ln?)n=l is totally

ordered. A wedge [H] of the tree T 1is a set of the type

W i = {x

n, : (mrj) > (nli)}.

(m,3J)

Recall the following notation from [S] and [ST] for an operator

T 2 Ll(A,m) + X and A eﬁ%, m(A)» O: ng X/

The connection between wedges of a tree T and these sets LA for the

corresponding operator T 1is given - in the case where A equals an

atom In i by the easily verified formula
’

WWhere co denotes the closed convex hull.

2.1. Definition: a) We say that a tree has empty wedge intersections

if for every branch ((n,ln))n=l_

o S -

n CoWw. . =4

b) We say that a tree is complemented ([ﬁ]) if therel)(

is © > 0 such that for each (n,1i) e
lu-v [1 20 min ([Jull,[lv]])
for every u ¢ linear span (Wn+l,21—l) and VvV € linear span (Wn+l,2i)"
It was shown in [H] and [S] that for a tree T satisfying a) and'b)
% mv |

has no extreme points. 1In fact, it was noticed in [S] that one may even




allow O > 0 to depend on (n,i) and still arrive at the same conclu-

sion.

It was shown in [ST] that, starting from any non-representable operator

T Ll(Z,Q,u) + X, one may associate (as sketched above) a bush, which
éven has empty wedge intersections (with the obvious extension of the
above definition to bushes). Hence the problem of showing that KMP
implies RNP is solved if we can achieve, in addition, the complementation

property of b).

The aim of section 3 of the present paper is to give an example of a

"badly uncomplemented tree" with empty wedge intersections but such that

co (T)

(and in fact LA for each A ¢ I, m(A) > 0) has continuum many extreme

points and equals the convex hull of its extreme points.

3. A tree whose closed convex hull has many extreme points: We define i

an operator T : Ll(A) > Sy coordinatewise. For the odd coordinates -

it will be the well-known "Rademacher operator" which is one of the arch-_

examples of a non-RNP-operator:

(Tf)zn_l = <f,rn> n = l‘,2,.on 1e

On the even coordinates we want T to be a compact operator, which is -

X

*
chosen in such a way that T : &7 - I?(A) maps ll into a dense subset -

of C(A). E.g., let (xn)o:l=l be a dense sequence in the unit-ball of
C(A) and let

~-
e

-n

(Tf)2n = 2 <f,xn> n=1,2,...

Clearly T is not a RNP-operator. _2a

In fact the tree T associated to T has separation constant 1 and

empty wedge intersections: Indeed for each (n,i) each element of B

co (Wn,i)

has entries of absolute value 1 in the coordinates 1,3,...,2n-1.




Proposition 3.1: For any measurable set A ¢ A, m(A) > 0, the set

has continuum many extreme points and equals the closed convex hull of

its extreme points.

Proof: Note that

el > )

takes its values in C(A). Hence we may define (with an abuse of

notation} /X/

P TR

. *
-+ which is one to one by the density of the range of T in C@).

(N

“—Now let us first assume that A =A. Let -

%*
Ky = (o (W) : U probability measure on A}

*
K, 1s a o -compact subset of #%° and it is easily verified that

1 e £
- K = KA ncye. 1z
_ - o . - : 17

Now let t = (ek)k=l and t' = (ek)k=1 be elements of A satisfying
]
€ = “€p for all but finitely many k. (*)

' We claim that .
'y = T (1/2(5,+6
is an extreme point of Ky s where 6t denotes the Dirac-measure at t.
Indeed e(t,t') Dbelongs to € because the odd coordinates are

eventually zero while the even coordinates tend to zero (without any

problem). On the other hand the segment

A

1}

A

E(t,t') = (A +(1-N)8 ., : 0




is an extremal set in the simplex of probability measures on A. From

! the injectivity of T** we get that T**(E(t,t')) is an extremal set
in KA. As T**(dt) evidently is not in K, we infer that e(t,t')
is the only point of T**(E(t,t')) erA and therefore an extreme point
of KA’

Let us finally show that KA is the closed convex hull of the extreme

points e(t,t'). 1Indeed let s = (dkf1=l in A be given and define
s" = (8p),-y by

Sp = Oy k =1,...,n

62 = -6k k > n

Clearly the pairs (s,s™) satisfy (*) and

lim (1/2(8_ + § )) =&
s oo s e s

. % *
the limit taken in the ¢ -topology of M(A). Hence the ¢ -closed convex
hull of all (1/2(6t + Gt.)) with (t,t') satisfying (*) are all the

probability measures on A. It follows from the o(M(A), C(@A)) - o(lw,zl}

*
- continuity that KA is the 0 =-clossed convex hull of the corresponding

e(t,t'), hence K the o-closed (and therefore norm-closed) convex hull

A
of the extreme points e(t,t').

Let us now pass to the case of A ¢.8, m(A) > 0 instead of the whole L_&;

L

set A. Let A be the closure of all points of Lebesgue-density one
of A. It follows easily that

* %

K~ : ={T u : u probability measure supported by R}

A
equals the o*-closure of

K, : = I .

Again the points e(t,t') such that ¢t,t' ¢ A and t,t' satisfy (%)

are extreme points of K and an argument similar to b€ above and using x

A Ehe




. the Lebesgue density shows that the closed convex hull of these e(t,t'")

equals KA.
0
Remarks: (1) The example is astonishingly simple; it consists only of a
compact perturbation of the well-known "Rademacher-operator".
However, it is entirely based on the previous very technical one of
James [J], which displays essentially the same phenomena.
It was only by gradually understanding and simplifying James' example
that the author finally arrived at this version.
Our example is a tree-version (this corresponds to c; = 2 for i 21
in [J], which implies that the function g is just constant on All)
of James' example, the functions @n K in [J] correspond to the
. r
"Rademacher-part" of our T while the functions wp correspond to the
"compact part" of T.
Finally let us illustrate why the tree T corresponding to our T 1is
"badly uncomplemented" i.e. badly fails condition b) of definition 2.1.
Of course we know from [H] and [S] that T cannot be complemented
(otherwise KA could not have extreme points). But it seems worth
while to see this explicitly. —
Fix any tree index (n,i). We shall show that the linear spans of the
wedges Wn+1,21—l and Wn+l,2i are not complemented: Let m > n+l
and find Jj such that Im,2j-l c In+l,21-l' Then
Xn,25-1 " ¥m,23 € 1P SP Wnig 0441
and
m-1 > s
% oiq= % ,qll = 27 T[[T(X ~. X Il = X
m,23~1 m,2] I 25-1 Im,2j)
J
2 2™, ~x o=z
m’2j_l mlzj’ m

Similarly,



m-n-1_; - X .,,m-n-1 € 1lin sp wn+l,21

Xm, 23+2 m,2j+2

and

m-n-1 m-n-1]| 2 2.

me,2j+2 -17 *m,2j+2

On the other hand

Lim 1%y 55-1" %, 25 = (%p, 294207071y = Xg, 234200 D1 =

Indeed, all the odd coefficients of the above element of co are zero

while the even coordinates tend to zero uniformly. This shows that the

__of co). Hence X has no chance to.have KMP.

tree T 1is badly uncomplemented.

_Finally let us observe why the present example cannot furnish a counter-

example to the general questions of whether RNP and KMP are equivalent:

If X denotes the closure of the space spanned by T then X contains

“—a subspace isomorphic to <5 (as does any infinite-dimensional subspace

‘However, this shows one interesting fact: So far, all the pathologies

C : A
- arising in the absense of RNP could be shown to happen in some set of ‘/f

the form KA (see [ST] for a convincing presentation of this fact).

" But the present example shows that if one tries to prove the equlvalencefm
_of RNP and KMP one may ont restrict oneself to such sets but has to adopt. A

. other methods of constructing "bad" sets.
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