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LAGRANGE INVERSION

Theorem 1. Let
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Let €*(= exp(z)) denote the formal power series >, -, Zk—lf

Proposition 2. The following expansions (due to J.H. Lambert [1758]) hold (as
formal power series, or analytically when |z| < 1):
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For b =0, (L1) and (L2) reduce to Euler’s expansion for the exponential func-
tion, and (L3) and (L4) to Newton’s binomial series expansion.

Proof of Prop. 2. We apply Theorem 1 with different instances of f(z) and g(z).
To show (L1), we take

f(z) = ze7% and g(z) = e*.

Then ¢y = 1, and using (i) we have for n > 0
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as claimed.
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To show (L2), we take

f(z) = ze7% and g(z) =

Then using (ii) we have for n > 0
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as claimed.
To show (L3), we take
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Then ¢g = 1, and using (i) we have for n > 0
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as claimed.
To show (L4), we take
1 a
f(z)=z2(142)" and g(z) = (1 i 2 .
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Then using (ii) we have for n > 0
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as claimed.



