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LAGRANGE INVERSION

Theorem 1. Let

f(z) = f1z + f2z
2 + · · · , f(0) = 0, f1 ̸= 0, and

g(z) =
∑
k

ckf
k(z).

Then

cn =
1

n
[[z−1]] g′(z)f−n(z), n ̸= 0, (i)

cn = [[z−1]] g(z) f ′(z)f−n−1(z), n ∈ Z. (ii)

Let ez(= exp(z)) denote the formal power series
∑

k≥0
zk

k!
.

Proposition 2. The following expansions (due to J.H. Lambert [1758]) hold (as
formal power series, or analytically when |z| < 1):

eaz =
∞∑
k=0

a(a+ bk)k−1

k!
zke−bzk, (L1)

eaz

1− bz
=

∞∑
k=0

(a+ bk)k

k!
zke−bzk, (L2)

(1 + z)a =
∞∑
k=0

a

a+ bk

(
a+ bk

k

)
zk(1 + z)−bk, (L3)

(1 + z)a

1− bz
1+z

=
∞∑
k=0

(
a+ bk

k

)
zk(1 + z)−bk. (L4)

For b = 0, (L1) and (L2) reduce to Euler’s expansion for the exponential func-
tion, and (L3) and (L4) to Newton’s binomial series expansion.

Proof of Prop. 2. We apply Theorem 1 with different instances of f(z) and g(z).
To show (L1), we take

f(z) = ze−bz and g(z) = eaz.

Then c0 = 1, and using (i) we have for n > 0

cn =
1

n
[[z−1]] g′(z)f−n(z)

=
1

n
[[z−1]] aeazz−nebnz

=
a

n
[[zn−1]] e(a+bn)z

=
a

n

(a+ bn)n−1

(n− 1)!
,

as claimed.
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To show (L2), we take

f(z) = ze−bz and g(z) =
eaz

1− bz
.

Then using (ii) we have for n ≥ 0

cn = [[z−1]] g(z)f ′(z)f−n−1(z)

= [[z−1]]
eaz

1− bz
(1− bz)e−bzz−n−1eb(n+1)z

= [[zn]] e(a+bn)z

=
(a+ bn)n

n!
,

as claimed.
To show (L3), we take

f(z) = z(1 + z)−b and g(z) = (1 + z)a.

Then c0 = 1, and using (i) we have for n > 0

cn =
1

n
[[z−1]] g′(z)f−n(z)

=
1

n
[[z−1]] a(1 + z)a−1z−n(1 + z)bn

=
a

n
[[zn−1]] (1 + z)a+bn−1

=
a

n

(
a+ bn− 1

n− 1

)
=

a

a+ bn

(
a+ bn

n

)
,

as claimed.
To show (L4), we take

f(z) = z(1 + z)−b and g(z) =
(1 + z)a

1− bz
1+z

.

Then using (ii) we have for n ≥ 0

cn = [[z−1]] g(z)f ′(z)f−n−1(z)

= [[z−1]]
(1 + z)a

1− bz
1+z

(
−bz(1 + z)−b

1 + z
+ (1 + z)−b

)
z−n−1(1 + z)b(n+1)

= [[zn]] (1 + z)a+bn

=

(
a+ bn

n

)
,

as claimed. □


