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Let €*(= exp(z)) denote the formal power series »_, ., ‘Z—Ij

A.1. Use suitable special cases of the Lagrange inversion formula to prove the following
identities:
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A.2. Solve the recurrence

go =0, g =1,

Gn = —20Gn— 1+Z( )gkgnk, for n>1,

using the exponential generating function G(2) :==} . gk%.
Is there a (nice) explicit product formula for g,,?

A.3. Show (possibly with the help of generating functions) the following identities for the
Fibonacci numbers (defined by Fy = Fy =1, F,, = F,,_1 + F,,_o, for n > 2):
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where m > 1. (The formula in the case m = 1 is known from the lecture course Discrete
Mathematics. We implicitly assume F_; = 0, consistent with the recursion.) [Hint: Make
use of the following ingredients (which have to be shown): ¢™ + ¢™ = Fp_o + F,, and
¢gmdm = (—1)™, for 1 — z — 22 = (1 — ¢2)(1 — $z). Work out the complete details!]

A.4. How many possibilities are there to arrange the numbers {1,2,...,2n} in a (2 X n)-
matrix such that the numbers appear in ascending order in each of the two rows (from left
to right) and n columns (from top to bottom)? For instance, for n =5

1 2 45 8
3 6 7 9 10

1

is such a valid arrangement.



