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Let ez(= exp(z)) denote the formal power series
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A.1. Use suitable special cases of the Lagrange inversion formula to prove the following
identities:
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A.2. Solve the recurrence

g0 = 0, g1 = 1,

gn = −2ngn−1 +
n∑
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)
gkgn−k, for n > 1,

using the exponential generating function G(z) :=
∑

k≥0 gk
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.

Is there a (nice) explicit product formula for gn?

A.3. Show (possibly with the help of generating functions) the following identities for the
Fibonacci numbers (defined by F0 = F1 = 1, Fn = Fn−1 + Fn−2, for n ≥ 2):
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where m ≥ 1. (The formula in the case m = 1 is known from the lecture course Discrete
Mathematics. We implicitly assume F−1 = 0, consistent with the recursion.) [Hint: Make

use of the following ingredients (which have to be shown): ϕm + ϕ̂m = Fm−2 + Fm and

ϕmϕ̂m = (−1)m, for 1− z − z2 = (1− ϕz)(1− ϕ̂z). Work out the complete details!]

A.4. How many possibilities are there to arrange the numbers {1, 2, . . . , 2n} in a (2× n)-
matrix such that the numbers appear in ascending order in each of the two rows (from left
to right) and n columns (from top to bottom)? For instance, for n = 5(

1 2 4 5 8
3 6 7 9 10

)
is such a valid arrangement.
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