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Background | BC,-type Jackson integrals (g-series)
Fixg e C*as |q| < 1. For £ = (&1,...,&n) € (C)™ and v = (v1,...,Vpn) € Z™,
we set

£q” := (614", ..., &nq"™) € (C*)™

For a function ¢(2) = p(215...452n) on (C*)™ and & = (&1,...,&n) € (CH™, w
define

£oo
(0, €) = / o(2)2(2)A ()"
= (1—q)" > (¢q”)®(£q")A(EgY),

veEZ™

Z1 Zn

where g™ = a,,, q" =t and

2542 — +1
P(z) := ﬁ ﬁ 1/2—am(qa 123 @) o H Z1'—27-(qt 1ijlk 5(1)c>o7
i=1m=1 (@mzi; @)oo 1<j<k<n ’ (tzjzk 5 q) oo

-1 — 22 1 —2z;/2)(1 — 2,2
Z\(Z)::::[I i I]: ( J/ k)( J k).
B Z3 ; 24
i=1 1<j<k<n J
We call (¢, &) the BC),-type Jackson integrals if it converges. ®(z) has the parameters
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We denote by

W, ={£1}" x &,
the Weyl group of type €, acting on (C*)™ through permutations and inversions of the
coordinates z; (¢ = 1,...,n).

For the W,,-symmetric holomorphic function ¢(z) on (C*)™, we define

(s 2) = (P, 2)/O(2),
- z50(z2: .Zil.
where O(z) := H H(zz’ q) H H(ZJ q)

2s+2 )
i=1 ,,,SL 1 ?me(amzu(I) 1<j<k<n 2"'9(tzgz 5q)

Then {(p, z)) is also W,,-symmetric holomorphic function of z € (C*)™. We call this
function the regularization of (¢, z).

Remark (s = 1 case) [van Diejen, Publ. RIMS 33 (1997)]

— —(n—%k —1 —1.
(45 @)oo (qt %3 @)oo [ 1<icj<a(@t™ " Ma; a7 @) oo
(@t 59)00  (qt—(m+k—2a:'as 'az 'a; ' q) oo

(1,z) = [[@—a)
k=1

which is equivalent to the g-Macdonald—Morris identity of type (C),C,) studied by
Gustafson (1990).
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Set

an—{“’_(u'lali% 7”S)€NS;“1+M2+...+“S

where N = {0,1,2,...}. Then |Z .| = ("771).

n

Forx = (x1,T2,...,2s) € (C*)® and p € Z,,,, we set

—_ —1 —1
(w)t,u e (331, mlt,ooo’mltul ,mz’ mzt,ooo,mztuz ’ooo,ms’ mst,ooo

\ s 4 \

— n}7

Vo N

F1 2

e (CH)™.

From the viewpoint of the (Jackson) integral representation of ((¢, z)), it is known
that (¢, z)) satisfies a g-difference system of the rank (" 8_1), and the g-difference
system is independent of the choice of cycles z. [Aomoto—1, Adv. Math.221 (2009)].
The set {{p, ()¢t,u) | € Zs,n} is regarded as a basis of the solution space of the
q-difference system. It means that ({0, 2)) is expressed as a linear combination in terms
of (¢, (x)t,u) (1 € Zs,n). We call this the connection formula between {{(¢, z)) and

(ps (T)t,u) (1 € Zsn).
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Theorem [|-Noumi, Adv. Math.299 (2016)]. If ¢(z) is W,-symmetric holomorphic
function on (C*)™, then (¢, z)) is expanded as

(e, 2)) = E cx (s ()e,0))
AEZs,n
(k 1) +1

O(x;t
whee  e= S TTTT 1O f;”,‘jil)” 2 59

Kgu LIK;'L 1 keEK; 1<;<s O(x;t™7  (x;t )£1; q)
- 127 s JF1
Here >‘() |K; N {1,2,...,k}| and the summation is taken over all index sets K; (i =

1,2,...,8) satlsfylng|Kz| :)\,,;and Kiu-.--UK;={1,2,...,n}.

Remark The connection coefficients ¢y as functions of z are characterized by the
elliptic Lagrange interpolation functions of type B(C),, which will be explained later.

Remark (n = 1 case). When n = 1, the connection formula is written simply as

0(x;z%'; q)
(p,2) = ) e, xi) ISR
Z 1<JH<S 0(z;z;; q)
J#t
In particular, if ¢(z) = 1, then the above formula coincides with Slater’s very-well-poised

ora. hypergeometric transformation formula. [I-Sanada, Ramanujan J. 17 (2008)].




Slater’s very-well-poised 5,12, transformation (1950)

|f |ar_1qr_2/b3 R b2r| < 1, then, Gasper & Rahman, BHS 2nd edn, p.143, (5.5.2)

" qva, —q+/a, bs, + o vsbar a" " tq"?
arirer \/av _\/aa (Z_gw“ag—;’ ,bg...bgr

q q a4 a, aq aq
a/4,ooo,alrr"_,ooo,—’_’ooo’—, ,ooo,—,q
. ay a, a a a4 a, oo
o ( q q aq aq a4 a, asq asq q)
_’ e o 0o ’ 9 0 0 00 ’ _’ oo 0o —, —, e o 0o - )
b3 b2 b3 b2r a3 as aq ar o0
(agq asq aq aq_ 9. q)
9 9 yecey L9 9
< bs bar asbs asbay a o0
2
asay asa, aq ag azq aq
9 p 9 ) 9 2 9 q
a a asay asa, a as oo
gaz __gasz agbs agzbay ar—lqr—2
CL’ CL, a ’°°°? a .
X2'P¢2'P [\a/,; __ a3 asgq asq 4> b b ]
a’ Ja’ b3’ "7 b 3¢..02p

The symbol “idem(as; a4y ..., a,)" after the expression above stands for the sum of the » — 3

expressions obtained from the preceding expression by interchanging ag with each a; (4 < 7 < 7).
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Set
Bs,n: {A: (>\17>\29°°'9)‘n) CELY358—=12A1 2 X2+ 2> Ay 2 0}
then |Bs, | = (""271). We define the Schur functions of type C,, as
xA(2) := det ( AR AL zi_kj_(n_jﬂ)) /A(z).
1<%,j<n
Theorem (determinant formula) [Aomoto—1(2009), |- Noumi (2016)]

For generic x € (C*)*®, we have

det («XM (m)t,u»)}\eBs,n — ((1 - Q)n(q; CI)ZO>

nEZs,mn

(57

s+1—2

o H K(qt (n— ’“),q)oo) [Mickci<ossa(@™ ™ ag oy 5 q) 0] (i

qt 1&‘])00 (qt (ni— 2)0’_1 2_1' a’23+2’Q)00

s+1—3
1—1

T[T I ewanrsesal

=1 " =0 1<k<I<s

where e(u,v;q) = u=10(u/v; q)0(uv;q).

The aim of this talk is to present an elliptic analog of this formula.



BC(C,, elliptic hypergeometric integrals

Fix p,g € C* as |p| < 1 and |q| < 1. We define the W,,-symmetric meromorphic
function ®(z) as follows:

+1_+4
O s T (awz; ™5 py q) ['(tz;" 27 3P, q)
@(Z) - H I‘ :I:Z. H I1 +1 :|:1. ?

where T'(u;p, q) (u € C*) is the Ruijsenaars elliptic gamma function. ®(z) has the
parameterstand a; (1 <1< 2r+4, r=1,2,...).

For holomorphic functions f(z) and g(z) on (C*)™ we define

1 dz dz,
(F9)= [ I 9@ 2R wn() on(z) = o T

where T" = {z = (215.+.,2n) € (C)™||z;| =1 (:=1,...,n)}.

We call the integral {f, g) the BC,,-type elliptic hypergeometric integrals.



Theorem of this talk | Fix te C* and a; €e C* (1 <1< 2r+4) as |t| < 1

and |a;| < 1. Under the condition ay -+ @z, 4t*™ 2 = pq, we have the determinant
formula as

det ((E“(m; z;p), Eu (y; 2 q)>)/J,,VEZr,n - (

2mp ) ) ")

(p; )2 (a5 9)7

1+r—2

Kr(t”—i“;p,q))"" 1 F(tn_iakal;p’q)](i_l

X H n—i t+r—3\’

: (*t77
=1 . —i—i . O
[ H H e(t/z, t Txy3p) e(Pyr, t Tyi; q)]

7=0 1<k<I<r

where e(u, v;p) = u=10(u/v; p)0(uv; p).
Remark. If » = 1, then under the condition a; - - - agt®** 2 = pgq,
2™n/! ~ (T p, q) _;
1,1y =—— 1] ( e I T@E*arasp, q)>,
(p7 p)oo(q7 q)oo i=1 ( s Py q) 1Sk<l$6

which is the BC, elliptic Selberg integral established by van Diejen-Spiridonov, Spiridonov,
Rains.
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Definition of the functions E,,(x; z; p)

We denote by T, . the p-shift operator with respect to z;:

Tp,zif(zla“'azn) = f(z1,-++sPZiy---5,20) (1=1,...,n).

For each » = 1,2, ... we introduce the C-vector space
HP, = {f(2) € O((C))W" | Ty, f(2) = f(2)(2D) " (i =1,...,n)}

of all W,,-symmetric holomorphic functions on (C*)™ with quasi-periodicity of degree

r — 1. In [Rains, Ann.of Math.(2) 171 (2010)], ’Hf}?l,n is called the space of the
BC,,-symmetric theta functions of degree » — 1. It is known that the vector space

?-tffo_)l,n has the dimension ("%,
dimcHP,| = |Zowm| = ("7,
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Recall  Zppn ={p = (p1sp2y---5p0) €EN"5 1 +po + -+ + pp = n}.
Forx = (x1,x2y...,2,) € (C*)" and u € Z,.,, we set

(), = (T1, 1ty ooyt T, Tt . e tPT ) € (CH)™

\ 4 \

"~ "~

H1 Hr

Theorem ([I-Noumi, Adv. Math.299 (2016)])

Suppose € (C*)" is generic. For the set {(x)¢,u |t € Z, n} of the reference

points, there exists a unique C-basis { E,,(x; 2;p) | € Z,. n } of Hi@l,n satisfying the
interpolation condition

Eu(w; (w)t,u;p) — 5/1,,1/ (“9 vV C Zr,n)

where 0,,.,, is the Kronecker delta.

we call E,(x; z;p) (1 € Z, ) the elliptic Lagrange interpolation functions of type

BC,, and call {E, (x; z;p) | 0 € Z, n} the interpolation basis of P

r—1,n With respect
tox € (C*)".
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Bilinear form associated with the elliptic hypergeometric integral

With respect to the two bases p, q, for the two vector spaces 1P 1D

r—1,m Hp_1 .y, We define
the C-bilinear form

() HEP L xHD, L~ C

r—1,n r—1,n

by (9= | F@9RREHwn(z)  (fEH L, g R, ).

Fixing generic x = (x1,...,2;) and y = (y1,...,Yr), We take the interpolation bases
for these two vector spaces with respect to & and y respectively:

%'S’p—)l,n: @ (CE“(CU;Z;p), H§°(1—)1,n: @ CEH(y;z;q)'

HEZrn HEZrn

For each pair (u,v) € Z, , X Z, p, we introduce the elliptic hypergeometric integral

(Eu(xs z5p), Eu(y; 25q)) = o E,(x;z;p) Eu(y; 2; ) ®(2)wn(2) (1, € Zry),

and consider that (n+:;_1) X (n+;';_1) matrix ((Eﬂ(m;z;p),EV(y;z;q))) .
TS r,n

which is the matrix representation of the bilinear form (, ) with respect to the

interpolation bases. "



Remark. (Proof for the connection formula of the Jackson integral case)

Since we see (¢, z)) € %g@l,n, we have {(p, z)) = Z d,FE,(x;2;q). From the
MEZs,n
interpolation property E,,(x; (€)¢,,3P) = 0., we have d;, = (@, (T)¢,.)). O

In the previous setting, the connection coefficients ¢y as functions of z coincide with
Ex(z; 25 q):

cx = Ex(x; 25 9).

Explicit expression of E,,(x; z;p) Sete(u,v;p) := u=10(uv; p)f(uv=1;p).
When m = 1, the interpolation functions are parametrized by the canonical basis
€1,...4,€. of N", and given explictly as

B, (23uip) = H e(u,xy;p) _ H 0(x1/u; p)0(xiu; p)
e 1<1<r e(@e, zi;p) /2, 0(@1/®w; )0(Tizy; p)
Ttk 14k
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Recursion formula Suppose n = k +1. For z = (21,...,25,) € (C*)™ we set
2/ = (215...,2k) € (C)* and 2" = (2Zk11s---52n) € (C*)!, so that z = (2/, 2").

Recursion formula Ey(x; z;p) = g E, (x; z'sp)E, (xth; 2”5 p),
HEZy ks VEZ, ]
pHr=>A

where xtt = (x1tH, ...,z tF") for x = (1,...,2,.) € (CH)".

Explicit expression Repeated use of the above recursion formula, we have

Ex(x; 25 p)
= ) E (% 213p)Ec, (2115 255 p) Ec, (wt1™ 2 255 p) - - -
st e B, (et i 2 )

of the case n = 1.

e(u, ;;
which reduces to E (z;u;p) = H (u, x5 p)
1<j<r e(xi, Tj; p)
7 14



The proof of the recursion formula is due to the following:

Dual Cauchy formula The interpolation functions Ey(x; z; p) satisfy

n r—1
Dual Cauchy Kernel H H e(zi, Y3 p) = Z Ex(x; z3p) Fa(x; y; p),
i=1 j=1 AEZrm
where 1
Fu(zy) =] |] e@isyjsp)eu; for @€ (C)", y € (C)" 1,
i=1 j=1
and

e(u,v;p)s,i = e(u,v;p)e(ut,v;p)---e(ut* ', v;p) (i=0,1,2,...).

The functions F,,(x; y) satisfy the property | F,,(z; y; p) Fo(xt*;y; p) = Fuiv (595 D)

which is used effectively for the proof of the recursion formula.
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