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» INntroduction

e Garnier system [Garnier (1912)] is @ 2N variable extension
of Painlevé VI equation (N = 1).

e g-Garnier system [sakai (2005)] is its g-difference analog.

e In this talk, I will study the ¢-Garnier system and its
autonomous limit from geometric/physical point of view.

Ref: [Nagao-Y, (arXiv.1601.01099)]



e Autonomous limit of discrete Painlevé equations are
integrable system (QRT system).

e Example : g-Painlevé VI [Jimbo-Sakai (1996)]
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— a discrete dynamical system on (z,y) plane. (non-
integrable in general)



e When g =1, ¢g-P IS Integrable.

ab(y +¢)(y + u)
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bt
with a constraint abtu = 1.
cdrs

— conserved elliptic curve:

(z4a)(@+b)y?+{(r+s)z*+ab(t+u)}y

+rs(z4+c)(x+d) = Haxy.

e \We will generalize this to hyper-elliptic curves.



» Plan of the talk

1. Derive a simple form of Lax pair and evolution
equations of g-Garnier system

2. Generalize QRT system to hyper-elliptic curve

3. Two dual formulations of g-Garnier system
from g-KP



1. Lax pair and evolution equations of
d-Garnier system



» Lax pair for ¢-Garnier (contiguous type)

Ly : F(z)y(z) + G(z)y(z) — A(z)y(gqz) = 0O,

L3 : qeF(z)y(gz) + G(x)y(qz) — qtB(x)y(xz) = 0.

y(z) — y(gx)

| N+l N Nl ) | |
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e Shift of parameters: (a;,b;,¢,t) = (a;,b;, ¢, qt).
e We have 2N(+1) dynamical variables f;, g;. (Overall
normalization of fp,..., fy iS @ gauge factor)



e [» (or L3) describing a deformation of
Ly : A(@F(g)y(q@ ~ R(z)y(x) + tB<§>F<x>y<§> =0,

where R(z) is a polynomial of degree 2N + 1.

e Compatibility of Lo, Lz (or L1) — g-Garnier system:

v F(x)F(z) =tA(x)B(z) for G(x) = 0,

G(x)G(x) = tA(x)B(x) for F(x) = 0.




e Rewrite the L4 equation as
X I _
A@)F( )T = R(e) + tB( )F(@)T Hly(z) =0,

where T'x = qxT'.

eIn g — 1, the L1 equation is divisible by F(x) and becomes

tB(x) —5

A(x)T — U(x) n

This is an algebraic equation in commuting variables (x,T)
of bi-degree (N 4+ 1,2). — a hyper-elliptic curve of genus
g = N. (Seiberg-Witten curve)

e We will see that autonomous ¢-Garnier system
— generalized QRT system on hyper-elliptic curve.



2. QRT system and its hyper-elliptic
generalization

10



» QRT system [Quispel-Roberts-Tompson (1989)] [Tsuda (2004)]

e It is an integrable mapping on plane preserving a family
of curves of bi-degree (2,2):

Cu @ p1(z,y) +u po(z,y) = 0.
e We have two flips 7,y |

Tx . (Clj,y) — (an)a Ty : (xay) — (xag)

Iterations of rg, 7y = QR'T system.
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— The curve C, is conserved.

e \We generalize this to hyper-elliptic curves
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e Consider a family of curves of bi-degree (N + 1,2)

v Ay — Ua) - th) —o,

passing through the following 2N 4+ 6 points:

Y = OO -~ """
. | (with one constraint)
Yy — O ° ° o
x =20 T = OO
N+1
e Coefficients of U(x) = Z w;z" are free (except for ug, UN+1)
=0

— N-dimensional famlly of hyper-elliptic curves of g = N.
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e To fix the parameters u;, we need N points Q; = (x;,v;).
D={Q1, - ,Qn} = dynamical variables.

However, the evolution equation (addition formula) on hyper-
elliptic curve is not bi-rational in (x;,y;)-coordinates.

e Following Mumford, we represent the divisor D by a pair
of polynomials F(x),G(x) (degree N, N + 1) such that

_ G(x5)

— one can define two bi-rational flips

re (F,G) — (F,Q@), ry:(F,G)— (FG).
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o y-flip:
Cyisdeg=2iny —  hyper-elliptic involution

i _ tB(CIZZ)

Yi Yis  YiY; — -

1 1 1I1 A(CC,L)

Since y; = Glwi) for F(x;) = 0, we have
A(z;)

G(z)G(z) = tA(z)B(z) for F(z) = 0.

e This corresponds to the equation for G(x) of g-Garnier
system.

14



o x-flip:
Note that

6(a) [ Ay - UG) + ] [y = S0

y |/ A
= G(2)2 - U(2)G(z) + tA(x)B(x) =: P(z).

From Q; € C, (and some additional conditions), one can
define F(z) by P(z) = zF(z)F(z), i.e.

cF(x)F(z) =tA(z)B(x) for G(z) = 0.

e This corresponds to the equation for F'(x) of g-Garnier
system. Hence, autonomous ¢g-Garnier = hyper-elliptic
QRT.
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» Numerical example. N =2 case
log-log plot of (x1,y1), (z2,y2)
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e Conserved curve (amoeba)
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e Tropical limit (N = 3)

y:oo o o

r — OO
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» VVariations.
e SO far, the 2N 4 6 points are on

four lines:

— can be generalized to any bi-degree (2,2) curve.

e In the most generic case, we obtain hyper-elliptic QRT
system of elliptic difference type.
(5d — 6d lift in gauge theory)

e Its non-autonomous deformation gives an elliptic Garnier
system. Equivalent (?) to the one constructed by Rains-
Ormerod [Rains—Ormerod(2016)].
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e An elliptic Garnier system. [z] = (z,p/7;p)oo

Ly : F@L51IC) = G@ACYC) + G A@@).
Ly : F@l5lu@) — G@ By + COB@C).
N+3 N+3 . L
A@ = T 1), 5@ = T £ F@) = we TGS
N—I—l N+1 '

Cy=o 11 15, 11 wi="t F=k/a [=at.
i=1 Mi =1

e It has special solutions given in terms of elliptic HG :

T =det[ ont10Von49 |-

(N=1— eII—Eél). [Noumi-Tsujimoto-Y.(2013)] )

20



e One can also consider various degenerate configura-
tions of 2N + 6 points.

Example. Differential Garnier system:

(5d — 4d reduction in gauge theory)
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3. Two dual formulations from g-KP
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e (m,n)-reduced Lax operator for ¢-KP.

W(gz) = A(2)¥(z), A(z) =d(t)Xm(z)- - X1(2),

Xi(z) = ,

d(t) = diag(te. - . tn).

o W(A%ll) X W(Af%l_)l) symmetry [Kajiwara-Noumi-Y (2002)]

(< Tropical R-map, Yang-Baxter map.)

e Interpretation [moue-Lam-Pylyavskyy (2016)] as cluster integrable
system.
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» A duality : m < n.

e [ his duality is known as
Spectral duality [MiIonov—I\/Iorozov—Runov—Zenkevich—Zotov (2012)] gt
Fiber-base duality [Mitev—Pomoni—Taki—Yagi (2014)] R

U (gz) = A(2)¥(z) = d(t) Xm(z) - - X2(2) X1(2)¥(2).

We DUt \Ill = \I’, \I’H_l — XZ'\IJ,,; (1 S 1 S m), and ¢i,j —
(\Iji)jv then
Vi1, = Tij¥ij + Vi j41,
Y41, = tj_sz%,j, Y pa1 = Tz 1

These relations are symmetric under the exchange:
—1
m <> n, wz,] > ’gbjﬂ', T 5> —Tjg, Tt~ 215 []



» TwWo Lax form of ¢g-Garnier system
U(qz) = A(2)¥(2), P(z)=B(2)¥(2).

(i) (m,n) = (2,2N + 2) case: [Suzuki (2015)]

A(z) = P -+ Z.

X ok

(i) (m,n) = (2N + 2,2) case:(= [sakai (2005)], up to gauge)

A(z)z[* :]4_[: :]Z+..._|_ : I]ZN‘F{I ]ZN—I—l.

S
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e Case (i): We consider the deformation
A(z) = X2o(2)X1(2), B(z) = X1(2),

d(t) = 1. The time evolution equation (+ compatibility
condition A(2)B(z) = B(qz)A(z)) is explicitly written as
follows: (the Yang-Baxter-map)

szaj‘] JP_I_]-’ g]:yjpj ,
J J+1

n k—1 n
PL= ) (H xj) ( 11 yj)» Piyq1 = pr(P)),

k=1 \j=1 j=k+1

. .. r _
where 77(333') — /vb_éj’nxj—l—l (s|m|Iar for yj) , b= —2, 1 — Tro,
) qr1
rp — qri.

25



e Case (ii)

1
r 0] 0] 1
A(Z)={ B 702_1]X2N+2“°X17 B(Z)={z y1—51]'

Then, for F'(z) = A(z)12, G(z2) = A(z2)11, we have

2F(2)F(z) = —det A(2) for G(z) =0,
G(2)G(z) = det A(2) for F(z)=0.
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» Summary

We studied the ¢-Garnier system (and elliptic Garnier sys-
tem) from a geometric points of view.

e Simple form of the Lax pair and evolution equations are
given.

e Autonomous |limit is interpreted as generalized QRT
system.

e As reduction of ¢-KP, two dual Lax formulations are
obtained.

T hank you!
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» Special solutions. [Nagao-Y (2016)]

Consider the configurations where the points e are in spe-
cial position (ratio € ¢%).

Then the g-Garnier system has terminating HG solutions
such that the r-functions are given by determinants of
(1) g-Appell-Lauricella functions ¢ of N-variables,

(2) generalized g-hypergeometric functions n_py.
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e | he idea of the derivation : Padé method.
(1) Padé approximation (differential grid):

N-+1 o P

i—1 (bir; @)oo Qn(x)

(2) Padé interpolation (on ¢-grid):

b(z) = 997 ﬁ (air; @)oo Pm(x)

— m-+n .
i—=1 (0,7 @)oo Qn(z)’ ! )

(aj:]'?q?"'?

e Key fact. The functions y(x) = Pn(x), ¥ (x)Qn(x) give
the solutions of the Lax linear equations Lo, L3z (and L) .
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e Schur function representation of r-function
d-Garnier:

n o k = k
Tm,n = det |y, iyl exp( ), tpr") = > prx,

Ly=1 k=1 k=0
L Nz—lfl b,]f . aéﬂ
k —_— .
=1 k(1 —¢")
differential Garnier:
N1 . gk
a; = s;q%, b; =s;, g — 1, hence tp, = > 22.
i=1

[/I
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