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I Introduction

• Garnier system [Garnier (1912)] is a 2N variable extension

of Painlevé VI equation (N = 1).

• q-Garnier system [Sakai (2005)] is its q-difference analog.

• In this talk, I will study the q-Garnier system and its

autonomous limit from geometric/physical point of view.

Ref: [Nagao-Y, (arXiv.1601.01099)]
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• Autonomous limit of discrete Painlevé equations are

integrable system (QRT system).

• Example : q-Painlevé VI [Jimbo-Sakai (1996)]

Tt :

 a, b, c, d
r, s, t, u

, x, y

 7→
 a, b, qc, qd
r, s, qt, qu

, x̄, ȳ

 , q =
abtu

cdrs
,

x̄ =
ab

x

(ȳ+ qt)(ȳ+ qu)

(ȳ+ r)(ȳ+ s)
,

ȳ =
rs

y

(x+ c)(x+ d)

(x+ a)(x+ b)
.

→ a discrete dynamical system on (x, y) plane. (non-

integrable in general)
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• When q = 1, q-PVI is integrable.

x 7→
ab

x

(y+ t)(y+ u)

(y+ r)(y+ s)
,

y 7→
rs

y

(x+ c)(x+ d)

(x+ a)(x+ b)
,

with a constraint
abtu

cdrs
= 1.
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→ conserved elliptic curve:

(x+a)(x+b)y2+{(r+s)x2+ab(t+u)}y

+rs(x+c)(x+d) = Hxy.

• We will generalize this to hyper-elliptic curves.
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I Plan of the talk

1. Derive a simple form of Lax pair and evolution
equations of q-Garnier system

2. Generalize QRT system to hyper-elliptic curve

3. Two dual formulations of q-Garnier system
from q-KP
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1. Lax pair and evolution equations of
q-Garnier system
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I Lax pair for q-Garnier (contiguous type)

L2 : F (x)ȳ(x) +G(x)y(x)−A(x)y(qx) = 0,

L3 : qxF̄ (x)y(qx) +G(x)ȳ(qx)− qtB(x)ȳ(x) = 0.

A(x) =
N+1∏
i=1

(x− ai), B(x) =
N+1∏
i=1

(x− bi),

F (x) =
N∑
i=0

fi x
i, G(x) = ct+

N∑
i=1

gi x
i+ xN+1.

ȳ(x) − ȳ(qx)
| |

y(x) − y(qx)

• Shift of parameters: (āi, b̄i, c̄, t̄) = (ai, bi, c, qt).

• We have 2N(+1) dynamical variables fi, gi. (Overall

normalization of f0, . . . , fN is a gauge factor)
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• L2 (or L3) describing a deformation of

L1 : A(x)F (
x

q
)y(qx)−R(x)y(x) + tB(

x

q
)F (x)y(

x

q
) = 0,

where R(x) is a polynomial of degree 2N +1.

• Compatibility of L2, L3 (or L1) → q-Garnier system:

xF (x)F̄ (x) = tA(x)B(x) for G(x) = 0,

G(x)G(x) = tA(x)B(x) for F (x) = 0.
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• Rewrite the L1 equation as[
A(x)F (

x

q
)T −R(x) + tB(

x

q
)F (x)T−1

]
y(x) = 0,

where Tx = qxT .

• In q → 1, the L1 equation is divisible by F (x) and becomes

A(x)T − U(x) +
tB(x)

T
= 0.

This is an algebraic equation in commuting variables (x, T )

of bi-degree (N + 1,2). → a hyper-elliptic curve of genus

g = N . (Seiberg-Witten curve)

• We will see that autonomous q-Garnier system

= generalized QRT system on hyper-elliptic curve.
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2. QRT system and its hyper-elliptic
generalization
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I QRT system [Quispel-Roberts-Tompson (1989)] [Tsuda (2004)]

• It is an integrable mapping on plane preserving a family

of curves of bi-degree (2,2):

Cu : φ1(x, y) + u φ2(x, y) = 0.

• We have two flips rx, ry

rx : (x, y) 7→ (x̄, y), ry : (x, y) 7→ (x, ȳ).

Iterations of rx, ry = QRT system.

→ The curve Cu is conserved.
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• We generalize this to hyper-elliptic curves
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• Consider a family of curves of bi-degree (N +1,2)

Cu : A(x)y − U(x) +
tB(x)

y
= 0,

passing through the following 2N +6 points:

x = 0 x =∞
y = 0

y =∞

u
u

u
u

u u · · · u

u u · · · u

(with one constraint)

• Coefficients of U(x) =
N+1∑
i=0

uix
i are free (except for u0, uN+1)

→ N-dimensional family of hyper-elliptic curves of g = N .
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• To fix the parameters ui, we need N points Qi = (xi, yi).

D = {Q1, · · · , QN} = dynamical variables.

However, the evolution equation (addition formula) on hyper-

elliptic curve is not bi-rational in (xi, yi)-coordinates.

• Following Mumford, we represent the divisor D by a pair

of polynomials F (x), G(x) (degree N,N +1) such that

F (xi) = 0, yi =
G(xi)

A(xi)
.

→ one can define two bi-rational flips

rx : (F,G) 7→ (F̄ , G), ry : (F,G) 7→ (F, Ḡ).
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• y-flip:
Cu is deg = 2 in y → hyper-elliptic involution

yi→ ȳi, yiȳi =
tB(xi)

A(xi)
.

Since yi =
G(xi)

A(xi)
for F (xi) = 0, we have

G(x)Ḡ(x) = tA(x)B(x) for F (x) = 0.

• This corresponds to the equation for G(x) of q-Garnier

system.
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• x-flip:
Note that

G(x)

A(x)y − U(x) +
tB(x)

y

/
. y =

G(x)

A(x)

= G(x)2 − U(x)G(x) + tA(x)B(x) =: P (x).

From Qi ∈ Cu (and some additional conditions), one can

define F̄ (x) by P (x) = xF (x)F̄ (x), i.e.

xF (x)F̄ (x) = tA(x)B(x) for G(x) = 0.

• This corresponds to the equation for F (x) of q-Garnier

system. Hence, autonomous q-Garnier = hyper-elliptic

QRT.
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I Numerical example. N = 2 case

log-log plot of (x1, y1), (x2, y2)
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• Conserved curve (amoeba)
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• Tropical limit (N = 3)

x = 0 x =∞

y = 0

y =∞
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I Variations.

• So far, the 2N + 6 points are on

four lines:

s
s

s
s

s s s s

s s s s

→ can be generalized to any bi-degree (2,2) curve.

• In the most generic case, we obtain hyper-elliptic QRT

system of elliptic difference type.

(5d→ 6d lift in gauge theory)

• Its non-autonomous deformation gives an elliptic Garnier

system. Equivalent (?) to the one constructed by Rains-

Ormerod [Rains-Ormerod(2016)].
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• An elliptic Garnier system. [x] = (x, p/x; p)∞

L2 : F (x)[
k

x2
]ȳ(

x

q
)−G(x)A(

k

x
)y(

x

q
) +G(

k

x
)A(x)y(x),

L3 : F (x)[
k

x2
]y(x)−G(x)B(

k

x
)y(x) +G(

k

x
)B(x)y(

x

q
),

A(x) =
N+3∏
i=1

[
x

ai
], B(x) =

N+3∏
i=1

[
x

bi
], F (x) = wx

N∏
i=1

[
x

λi
][
k

λix
],

G(x) = x
N+1∏
i=1

[
x

µi
],
N+1∏
i=1

µi = ℓ, k̄ = k/q, ℓ̄ = qℓ.

• It has special solutions given in terms of elliptic HG :

τ = det[ 2N+10V2N+9 ].

(N = 1→ ell-E(1)
8 . [Noumi-Tsujimoto-Y.(2013)])
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• One can also consider various degenerate configura-

tions of 2N +6 points.

Example. Differential Garnier system:

u
u

u
u

u u u u

u u u u -

�
�
�
�
�
�
�
�
�
��

u
u

u
u

u u u uu u u u

(5d→ 4d reduction in gauge theory)
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3. Two dual formulations from q-KP
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• (m,n)-reduced Lax operator for q-KP.

Ψ(qz) = AA(z)Ψ(z), AA(z) = d(t)Xm(z) · · ·X1(z),

Xi(z) =



xi,1 1
xi,2 1

.. . . . .
xi,n−1 1

riz xi,n


,

d(t) = diag(t1, · · · , tn).

• W (A(1)
m−1)×W (A(1)

n−1) symmetry [Kajiwara-Noumi-Y (2002)]

(← Tropical R-map, Yang-Baxter map.)

• Interpretation [Inoue-Lam-Pylyavskyy (2016)] as cluster integrable

system.
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I A duality : m ↔ n.
• This duality is known as

Spectral duality [Milonov-Morozov-Runov-Zenkevich-Zotov (2012)],· · ·
Fiber-base duality [Mitev-Pomoni-Taki-Yagi (2014)],· · · .

Ψ(qz) = AA(z)Ψ(z) = d(t)Xm(z) · · ·X2(z)X1(z)Ψ(z).

We put Ψ1 = Ψ, Ψi+1 = XiΨi (1 ≤ i ≤ m), and ψi,j =

(Ψi)j, then

ψi+1,j = xi,jψi,j + ψi,j+1,

ψm+1,j = t−1j Tzψ1,j, ψi,n+1 = rizψi,1.

These relations are symmetric under the exchange:

m↔ n, ψi,j ↔ ψj,i, xi,j ↔ −xj,i, rk ↔ t−1k , z ↔ Tz. �



I Two Lax form of q-Garnier system

Ψ(qz) = AA(z)Ψ(z), Ψ̄(z) = BB(z)Ψ(z).

(i) (m,n) = (2,2N +2) case: [Suzuki (2015)]

AA(z) =



∗ ∗ ∗
∗ ∗ ∗

... ...
∗ ∗
∗


+

 ∗
∗ ∗


z.

(ii) (m,n) = (2N +2,2) case:(= [Sakai (2005)], up to gauge)

AA(z) =

 ∗ ∗
∗

 +
 ∗ ∗
∗ ∗

 z+ · · ·+
 ∗ ∗
∗ ∗

 zN +

 ∗
∗ ∗

 zN+1.
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• Case (i): We consider the deformation

AA(z) = X2(z)X1(z), BB(z) = X1(z),

d(t) = 1. The time evolution equation (← compatibility

condition ĀA(z)BB(z) = BB(qz)AA(z)) is explicitly written as

follows: (the Yang-Baxter-map)

x̄j = xj
Pj+1

Pj
, ȳj = yj

Pj

Pj+1
,

P1 =
n∑

k=1

k−1∏
j=1

xj


 n∏
j=k+1

yj

 , Pj+1 = µπ(Pj),

where π(xj) = µ−δj,nxj+1 (similar for yj) , µ =
r2
qr1

, r̄1 = r2,

r̄2 = qr1.
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• Case (ii)

AA(z) =

 r−11 0
0 r−12

X2N+2 · · ·X1, BB(z) =

 0 1
z y1 − x̄1

 .
Then, for F (z) = AA(z)12, G(z) = AA(z)11, we have

zF (z)F̄ (z) = −detAA(z) for G(z) = 0,

G(z)Ḡ(z) = detAA(z) for F̄ (z) = 0.
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I Summary

We studied the q-Garnier system (and elliptic Garnier sys-

tem) from a geometric points of view.

• Simple form of the Lax pair and evolution equations are

given.

• Autonomous limit is interpreted as generalized QRT

system.

• As reduction of q-KP, two dual Lax formulations are

obtained.

Thank you!
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I Special solutions. [Nagao-Y (2016)]

Consider the configurations where the points • are in spe-

cial position (ratio ∈ qZ).

(1) x
x

x
x

t t t t

t t t t

(2) x
t

x
t

t t t x

t t t x

Then the q-Garnier system has terminating HG solutions

such that the τ-functions are given by determinants of

(1) q-Appell-Lauricella functions φD of N-variables,

(2) generalized q-hypergeometric functions N+1φN .
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• The idea of the derivation : Padé method.

(1) Padé approximation (differential grid):

ψ(x) =
N+1∏
i=1

(aix; q)∞
(bix; q)∞

=
Pm(x)

Qn(x)
+O(xm+n+1), x→ 0.

(2) Padé interpolation (on q-grid):

ψ(x) = clogq x
N∏
i=1

(aix; q)∞
(bix : q)∞

=
Pm(x)

Qn(x)
, (x = 1, q, . . . , qm+n).

• Key fact. The functions y(x) = Pm(x), ψ(x)Qn(x) give

the solutions of the Lax linear equations L2, L3 (and L1) .
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• Schur function representation of τ-function

q-Garnier:

τm,n = det
[
pm−i+j

]n
i,j=1

, exp(
∞∑
k=1

tkx
k) =

∞∑
k=0

pkx
k,

tk =
N+1∑
i=1

bki − aki
k(1− qk)

.

differential Garnier:

ai = siq
αi, bi = si, q → 1, hence tk =

N+1∑
i=1

αis
k
i

k
.

r
r

r
r

r r r r

r r r r -
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r
r

r
r

q q q qd d d d
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