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1. Introduction

e Stochastic analysis on interacting particle systems is important to provide use-
ful models describing equilibrium and non-equilibrium phenomena studied in
statistical physics.

e Determinantal process is a stochastic system of interacting particles which is in-
tegrable in the sense that all spatio-temporal correlation functions are given by de-
terminants. And all of them are controlled by a single function called the spatio-
temporal correlation kernel.

e The stochastic integrability of determinantal processes is proved by showing
that the Laplace transform of any multi-time joint probability density is expressed
by the spatio-temporal Fredholm determinant associated with the correlation
kernel.

[BR0O5]| Borodin, A., Rains, E. M.: Eynard-Mehta theorem, Schur process,
and their Pfaffian analog. J. Stat. Phys. 121, 291-317 (2005)

[KT07] Katori, M., Tanemura, H.: Noncolliding Brownian motion and de-
terminantal processes. J. Stat. Phys. 129, 1233-1277 (2007)



The purpose of this talk is to present new kinds of determinantal processes in which
the interactions between particles are described by the logarithmic derivatives of
Jacobi’s theta functions.

A classical example of determinantal processes is Dyson’s Brownian motion model with
parameter [ = 2, which is a dynamical version of the eigenvalue statistics of random
matrices in the Gaussian unitary ensemble (GUE), and we call it simply the Dyson
model.

[K16a] Katori, M.: “Bessel Processes, Schramm-Loewner Evolution, and
the Dyson Model”, SpringerBriefs in Mathematical Physics 11, Springer,
Tokyo, (2016)

We will extend the Dyson model to the elliptic-function-level in this talk.

We use the notion of martingales in probability theory and the elliptic determi-
nantal evaluations of the Macdonald denominators of the seven families of
irreducible reduced affine root systems given by Rosengren and Schlosser (2006).

[RS06] Rosengren, H., Schlosser, M.: Elliptic determinant evaluations and
the Macdonald identities for affine root systems. Compositio Math. 142,
937-961 (2006)



e The present talk is based on the following three papers;

For Type An_:

[K15] Katori, M.: Elliptic determinantal process of type A. Probab. Theory
Relat. Fields 162, 637-677 (2015)

[K16b] Katori, M.: Elliptic Bessel processes and elliptic Dyson models real-
ized as temporally inhomogeneous processes. J. Math. Phys. 57, 103302 /1-
32 (2016)

For Types B\ B\< C\ C\< BC\ D\

[K17] Katori, M.: Elliptic determinantal processes and elliptic Dyson mod-
els. arXiv:math.PR/1703.03914




Martingales and 1-dim. Brownian Motion

Martingales are the stochastic processes preserving their mean values and thus they
represent fluctuations.

A typical example of martingale is the one-dim. standard Brownian motion.
Let B(t).t > 0 denote the position of the standard Brownian motion in R starting
from the origin 0 at time ¢ = 0.

The transition probability density from 2 € R to y € R in time t > 0 is given by

e~ (x—y)? /2t

t >0,
pem(t, ylo) = o ,
o(z —y). t=0.

For an arbitrary time sequence 0 =t <t; < --- <ty <oo, M e N={1,2,...}, and
for any A,, € B(R), m=1,2,..., M, (xqg =0),

M
P [B(tr”) € A-'m.: m = 1? 2 Tt ﬂ[] - / dq/(l) o / dilf(iu) H pBl\I(tn'e._tn'e.—l: -T(m) ‘-T(m_l)).
. ;41 . ;41\[

m=1



The collection of all paths is denoted by 2 and there is a subset Q c Q such that
P[Q2] = 1 and for any realization of path w € Q, B(t) = B(t,w),t > 0 is a real
continuous function of ¢. In other words, B(t),t > 0 has a continuous path almost
surely (a.s. for short).

For each t € [0, 00), we write the smallest o-field (completely additive class of events)
generated by the Brownian motion up to time t as F;, = o(B(s) : 0 < s < 1).

We have a nondecreasing family {F; : t > 0} such that F, C F; for 0 < s <t < o0,
which we call a filtration, and put F = J,5, F+.

The triplet (2, F, P) is called the probability space for the one-dimensional standard
Brownian motion.

The expectation with respect to the probability law P is written as E.



e When we see ppum(t, y|r) as a function of g, it is nothing but the probability density of
the normal distribution with mean x and variance t, and hence it is easy to verify that

E[B(t)|Fs] = / rppum(t — s, x|B(s))dr = B(s), as. 0<s<t<oq,

— o0

which means that B(t),t > 0 is a martingale.

ime A
fime : Gaussian Dist
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B (S ) space

e We see, however, B(t)",t > 0,n € {2,3,...} are not martingales, since the generating
function of E[B(t)"|Fs],n € No ={0,1,2,...}, 0 < s <t < oo, with parameter o € C
is calculated as

2o 00 (- B(s))/2(t—s)

—E[B(t)"|F] = E[e""Y|F]= f e dx
n! o 27 (t — )

L GQB(S)--(t—S)@Z/Q 7& QQB(S)D a.s.

n

0

n=0



Complex BM and Conformal Invariance

e Now we assume that B (t),t > 01is a one-dimensional standard Brownian motion which
is independent of B(t),t > 0, and its probability space is denoted by (2, F, P).

Then we introduce the complex Brownian motion (i = /—1),

Z(t) = B(t) +iB(t), t>0.

~ o~ o~

The probability space of Z(t),t > 0 is given by the product space (2, F,P)® (2, F, P)
and we write the expectation as E = E ® E.

For the complex Brownian motion, by the independence of its real and imaginary parts,

oo

> LEZ()\F @ Bl = Bt R @ F

n=0
_ E[eaB(t)’]_—S} 5 E[emé(t)’]_’:s} _ BaB(ngt—s)am % emé(s;—(t_s)aQ/z

an
= ¢24(s) = —'Z(S)”? a.s. 0<s<t<oo.
n!

n=0

e The above implies that for any n € Ny, Z(¢)".¢ > 0 is a martingale.



e This observation will be generalized as the following stronger statement;

e If Fis an entire and non-constant function, then F'(Z(t)),t > 0 is a time change
of a complex Brownian motion:;

(F(Z(t))—F(Z(o») = T(m)

t>0 t>0

with a time change / £'(Z(s))[*ds, t>0.

e This theorem is known as the conformal invariance of the complex Brownian
motion, since F'(Z(t)),t > 0 is a conformal map of Z(t),t > 0 (see, for instance,
Section V.2 of [RY99]).

[RY99] Revuz, D., Yor, M.: “Continuous Martingales and Brownian Mo-
tion”, 3rd edition, Springer, New York, (1999)
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Example F'(z) = ze* (given by T. Shirai) 10



Hence F(Z(t)),t > 0 is a martingale;

E[F(Z(t)|F. @ F,| = F(Z(s)) as. 0<s<t< oo

—_~

If we take the expectation E with respect to SZ(-) = B(-) of the both sides of the
above equality, we have

E{E{F(Z(t))]‘fs} —[E[F(Z(s))]] as. 0<s<t<oo.

_~

In this way we can obtain a mjrtingale F\(t; B(t)) = E[F(Z(t))],t > 0 with respect to
the one-dimensional Brownian motion.

The present argument implies that if we have proper entire functions, then we will
obtain useful martingales describing intrinsic fluctuations involved in the in-
teracting particle systems.

11



Entire Functions and Det. Martingale

Let f;,j € Z, be an infinite series of linearly independent entire functions.

For N € {2,3...}, we define the Weyl chamber
Wy ={x = (v1,29,...,2N) eRY iy <y < - < TN}
and assume that w = (uy,us, ..., un) € Wy.

We then define a set of N distinct entire and non-constant functions of z € C as

det [ folum + (2 = 1)30)]

(Du.uj (Z) - 1§€‘T”SN d ) j — ]'7 27 et N'
132,7%th [fg(um)}
det | f(z)]
By this definition, | det [@u,uj(zk)} _ [k Lz =(21.29,...,2y) € CY.
LN det. [ f(u)
1<), k<N

12



e We consider N pairs of independent copies (By(t), Bi(t)),t > 0,k =1.2,..., N of
(B(t),B(t)),t > 0 and define N independent complex Brownian motions

Ze(t) = wy + Be(t) +iB(t), t>0, k=1,2,... N,
each of which starts from u; € R.

e The probability law and expectation of them are denoted by Pqy = Pqy ® P and
Eqy = Ey ® E, respectively.

e Then for each complex Brownian motion Zi(t),t > 0, k = 1,2,..., N, we have N
distinct conformal maps @y, (Zi(1)).t >0, j =1,

13



e By the conformal invariance of the complex Brownian motion mentioned above,
they are N distinct time-changes of complex Brownian motions started from
the real values, 0 or 1;

(I)uuj(Zk(O)) :Cbu,uj(uk) :5]',%? j?/f: 1,27...?N.

e Therefore, we can conclude that, if we take expectation ]:i we will obtain /N distinct
martingales,

My, (t, Bi(t)) = El®y, (Bi(t) +iBi(t))]
det {fg(t(smﬁ U + (Br(t) = ) Omj)]

: 1§£,THSN f, ’ tzoy j:1727-.-7N?
1§2§;%N{f€(07 umﬂ
for each one-dimensional Brownian motion By (t),t > 0, k=1,2,..., N, where

ﬁ@@_ﬁm@+@@ﬂ—ffﬁ@+ﬁmm@§®ﬁ?EEZ

14



e Then we define a function of t > 0 and & = (11, 2s,...,2n) € RY by

Dy(t,x) = det [My (t.21)],

1<jk<N
which is a martingale as a functional of B(t) = (B (t), Bao(t),..., Bn(t)),t > 0;

Ew|Du(t, B{))|F. = Du(s, B(s)), 0<s<t< oo

e By the multi-linearity of determinant, we see

A

det [f;(t, wp)]

S 1<,k<N
Dylt.e) = E| det [Py (vp +i1BL(t — — .
u(t, ) 1§j,k§N{ wou; (T K(0)] det [f;(0, u)]
1<5,k<N

~

o We call Dy (t,B(t)),t > 0, the determinantal martingale.

15



Determinantal Measures and Processes

e Now we introduce a measure [Py, which is complex-valued in general, but is absolutely
continuous to Py as

P

P

= Dy(t, B(t))Pu

Fi

. >0

Fi
e This measure defines /N particle systems on R,
X ()= (X1(t)....,Xn(), t>0,

starting from uw € Wy and each particle of which has a continuous path a.s.

e We consider the unlabeled configuration (a measure-valued process) of /)A(\(t) as

N
Z(Sy : > (),

where, for y € R, 0,(-) denotes the delta measure such that 9,({z}) =1 if x = y and
d,({x}) = 0 otherwise.

[I]>

16



e Consider an arbitrary number M € N and an arbitrary set of strictly increasing times
t={ti,to,....tn}, 0=ty <ty <--- <ty < oc. Let C.(R) be the set of all continuous
real-valued functions with compact supports on R. For g = (¢, Gt, - - - Gt,,) € Ce(R)M,
we consider the following functional of g,

M
exp{ /me x)=(t,,, d’r)}] ,

]EU[t:g} = I@u

m=1

which is the Laplace transform of the multi-time distribution function @u, on
a set of times ¢ with the functions g.

e If we put xy; = e — 1, then the above can be written as

M N
H H{l T Xt ()?j(fm))}] :

m=1 j=1

Lot

e Explicit expression is given by the following multiple integrals,

Lult.g) = /R \,dw(”--- fR dz ) Dy (tyr. &™)

a () m—1) m
X H H I:pB\I b — =1, 1 | { ){1+ ng(.,-‘.( ))} ,

m=1 j=1

where :vff”) =wu;,j = 1,2,...,N, 2™ = (:z:'(,m)._....,:;«:E{f”)ﬁ and dx™ = ]_[J\:1 d:r:f,-m)._17
m=12,...,M.



e Let 1(w) be the indicator function of w; 1(w) = 1 if w is satisfied, and 1 = 0 otherwise.
e The following was proved as Theorem 1.3 in [K14].

[K14] Katori, M.: Determinantal martingales and noncolliding diffusion
processes. Stochastic Process. Appl. 124, 3724-3768 (2014)

Proposition 1

N
Put ]Ku(s, it y) = ZpBM(s, 2|u;) My, (T y) — 1(s > t)ppals — £ |y).

J=1
s,t > 0, x,y € R. For an arbitrary number M € N, an arbitrary set of strictly increasing
times £ = {t1,to, ...ty }, 0=tg <ty <+ <ty <oo,and g = (Gs,, s, - - -+ G,,) € Ce(R)M,

Lult. g]—}?g‘f { 5z —y) + Ku(s. x:t, y)ve(y) .

where the RHS denotes the spatio-temporal Fredholm determinant with ]ﬁu,

Det {5“6(.’!: —y) + ]Ku(b’: x:t, ’!})Xt(y)}

s,lEt,
r.yeR
f\m
E H Az Hx, (m det [Ku(t. 2. ¢ ’r(n))]
T, w, Nom 1<J<N,” 1<k<N,,. oty Tk b
0< N, <N, Y =1 W =1 1<m,n<M
1<m<M
where d;r:,{n — H o dr ™ m =1,2,.... M, and the term with N,, = 0,1 < Vm < M in

the RHS should be 111T91pre‘red as 1. 18




Problem

This proposition is general and it proves that the N-particle system
X(t)=(X1(f),.... Xn(t)), t > 0 is determinantal.

The measure

Py| = Duy(t,B(t))Py| . t>0.
Ji Ji

which governs this particle system is, however, complex-valued in general, and
hence the system is unphysical.

The problem is to clarify the proper conditions to construct a non-negative-definite
real measure, i.e. the probability measure, which defines a physical system of
interacting particles.

As a matter of course, this problem depends on the choice of an infinite set of
linearly independent entire functions f;, j € Z. 5

- —

(I)’U,,uj — M’u,uj (Tf, ZC) — Du(lf, ZU) = Py = Pu

19



2. Results

In this talk we report the results when we choose f;,j € Z as

An_ N
) = Y0y, (JAN‘I(j)T+N 2 L2 ),

2mr 4

R N Z
Ry, zJ jz/r R . A/R

—iJ®(5)z/r Ry : NRZ R v
— e (T — N7 | for R = By, BY,
27r
GG/ , Ny 1
) = @0y (M) G )
ﬂ R( . NRZ 1
- TR0z, ( Rij)r — - +§;NRT) for R = Cy, C}Y, BCy,

. H N (A S NDNY ]_
Pt = (P XL
Dn - 1
—iJPN ()= 19 JPN NoN2 2. A/Dn
e ( U ==+ N )

zeC,jeZ,with NeN, 0<r<oo,and 7€ C,0< 37 < oo, where

( N: R:Af\’fl
j - 1’ R = A]V*lfBNrB*7 D]V; 2N - 1’ R - BCI7 y
"t ' R 2N, R = BY.CY,
j—1/2, R=CY 2(N+1), R= CN.
; N+ 2N +1, R = BCy,
Q(N_ 1): R:DN,

and 1 is one of Jacobi’s theta functions defined below. Zo



Let
Z — GUTN? q — 67_7”

where v € C and &7 > 0. Here the Jacobi theta functions are denoted as follows,

190(7);7') _ Z( 1)71,(]712 271_1_1_22 n T?'m COS(ZTUTU)

=y n=1
191 (T); ’T) _ Z n (n 1/2)? 2n L _ QZ n 1 TrL(n 1/2)2 8111{(271 . 1)7_‘_,0}’
nez n=1
Vo(viT) = Z gt 2t = g Z eTmi(n=1/2)* cos{(2n — 1)mv},
ne n=1

Us(v;7) = Z ¢ =142 Z ™™ cos(2nmo).

nez n=1

21



e These functions ij(z; 7),j € Z were used to express the determinant evaluations
by Rosengren and Schlosser [RS06] for the Macdonald denominators Wr(x)
for the seven families of irreducible reduced affine root systems R = Ay_q, By,
BY, Cy, C¥, BCn, Dy.

[RS06] Rosengren, H., Schlosser, M.: Elliptic determinant evaluations and
the Macdonald identities for affine root systems. Compositio Math. 142,
937-961 (2006)

22



o Let 0 <r<oo, 0<t, <oo,and N € {2,3,... }.

e Assume that

U c W([}er — {x _ ('El

we W™ = {z = (:z:l,... J;\r) c RY

e Assume ¢ € [0,¢,) and let

TF{.(t) _ ?-'NR(t* B t)

22

TN) €

with

RY .0 <2 < -

2N

2N,
NR. — ¢ ’

0< < -

2N + 1),
ON + 1,
2(N — 1),

- <IN < 27T'?“}

for R = A_,r\r_l,

<ay <mr} for R#An_.

R=AN_;

R = By,

R = BN C\/\T
R = Cy,

R = BCy,

R = Dy.

23



e For R =

where

(I)’U,,*u,j = Mu:uj (t, .I?) = Dy (t, CC) — @u = Py

An_1, we obtain

oM (T (1) (D e — k) /2mr TR (1)

DQALN_l(t,ZB) _ . ( L /
co " H(TAN=1(0)) iD=y e — Kin) /2w 7AN=1(0))
9 Vi ((xx — ) /2mr; TN (1))
Al 5w e oy
B mr(N —1), N is even,
N = { mr(N —2), N isodd,
COAJ\ 1(7_) _ U(T)_(N_l)(N_Q)/Q.

e Here n(7) denotes the Dedekind modular function

oo

77(7-) _ 677?1'/12 H(l . 62117%2’)? S > 0.

n=1

24




q)u’uj = Mu:uj (t, .I) = Du(t, CC) — @u = Py

e or R = By, By, Cy, CX,BCxy, Dy, we obtain

" B cﬁ-(frﬁ(t)) Uy (Bag/2mr; RrR(t))
Dult.z) = e (TR(0)) E V1 (e /2mr; RTR(0))
01((on — /25 T(0) Dy (e + 2,)/2; T (D)

' - f 'R:Bir.B}/:,C,r.va.
. V1 ((ug — wy)/2mr; 7R(0)) O ((ur + ;) /27r; 7R(0)) o Vo PN N N

1<j<k<N
DiY(ta) = St ) H 0o/ 2773 72N (1)) Do(e/mrs 277 (1))
oSN (TBON ( (0)) 5= Vil (we/27r; TBON(0)) Yo (ug/7r; 27BC~ (0))
<1 Vr (@ —%)/QT? TEON () 1 ((ak + ) /27 TBC*"U))_
1<J<A<\ W ((ue — uj) /21 TBEN(0)) O ((uge + uy) /27r; TBEN(0))
Pt ay = DD Tp il a2 ) Dt )/ @)
DN (7D~ (0)) ety Oh ((uge — wy) /21 7PN (0)) O ((ug + uy) /2700 7PN (0)
where and
ct(r) = nir)" "™V for R = By,Cy. By c?v _ L C?}{, _ N =9
(E\{(T) = ()" v "a(2r) Y, ey =gV = c‘?‘\'{' = 2, (:S‘\'{"zl/?.
q(r) = n(r)" N Va(r/2) 0, R
¢ V(1) = n(r) NV p2r)” “,.
N (r) = nlr) NV, 25




‘I)'u,uj = Mu:uj (t, .I) = Du(t, CC) — @u = Py

()

e On a circumference of circle [0, 277), consider the N-particle system of one-dimensional
standard BMs, B(t) = (B, (1), ..., By(t)), t > Ostarted at w = (uy,...,uy) € W™
with the following ‘wrapped’ transition probability densities.

For R =AxN_1:

e When N is even,

Z pem(t,y + 2mrk|x)

k=—o00

i(y —x)r 2mir (y—x it
— -{- ) - — ) [ 9
Pyt ylr)vs ( t Lot ) 27 ( 2rr  27r? )

and when N is odd,

devennt (1 ])

P evem’\f

Do (t.ylr) = > (=D*peul(t.y + 27rk|a)
k=—oc0
iy —x)r 2mir? 1 y—ax it
= t.ylx)v : = —1): : - | .
peM(t, yl2)vo ( t ot orr 2\ 2mr 272 )’

e We write the probability law of such a system of wrapped Brownian motions on a
circumference of circle [0, 277) as Pl 2, 26



For R = B_,-\,-', B\<r C_.-\,-', C“{r BC\ D‘.-\.'Z

e In the interval [0, 7], consider the N-particle system of one-dimensional standard BMs
B(t) = (B(t),...,Byx(1)), t > 0 started at w = (uy,...,uy) € W({}m) with either an
absorbing or reflecting boundary conditions at 0 and 7r.

e The transition probability density of each particle is denoted by p>*1. By the reflection
principle of Brownian motion, if both boundaries are absorbing, it is given by

[0,77]

puts (t,yle) = Z {pem(t,y + 2mrk|x) — ppalt, y + 2mrk| — 2)}

k=—0c
- (ily —x)r 2mir? - (ily +x)r 2 ir?
= pB.\I(t:yliF)US( (jf ) 3 )—])Bm(t-y\—ﬂf)’dg( (jf ) T )

1 y—a it C(y+ax ot
= — VU5 - : — | — U5 | - : , . ox.y e (0.mr), t >0,
27" { s ( 27r 21??“2) ’ ( 2rr Q?TT-’)}' -y € (0,77),2 >0,

and if both are reflecting, it is given by

pl[,(i‘[m'](t, yle) = Z {pem(t,y + 2mrk|x) + peum(t,y + 27rk| — x)}

k=—o0

- (ily —x)r 2mir? iy + 2 )r 2mir?
= IJml(t:?/|fU)19:;( (Jf ) — )+pm1(t,y\—m)-ﬁg( (Jt ) = )

1 y—a it S (y+a ot
= —— < Ja |- : : Va | - : . .ox.y e 0.t = 0.
27 { 3 ( 27 '2:rr-r'2) U3 ( 2mr 2%-?'2) } yelmr]t2

e We write the probability law of such a system of boundary-conditioned Brownian
1 i 0,7
motions in [0, 7r] as P,[u"'”],
27




—~

‘I)'u,uj = Mu:uj (t, .I) = Du(t, CC) = Pu

[Py

$

o In PE’QW) for R=Ay_; and in P%m for R # Ay_;. put
Teotiision = inf{t > 0: B;(t) = By(t) for any j # k},

i.e., the first collision-time of the N-particle system of Brownian motions.

e Then we define

PﬁN_l T - 1(Tcollision > t)DﬁN_l(a B(t))P.[&QWT) - , t e [07 t*)7
Pa o= UTtision > t)DX (t, B(t))Pyy™ Lo telot). forR# Ay,

28




Theorem 1

(i) The above defined P§, give probability measures and define measure-valued stochastic
processes

N
=Rt ) =) Ok (), te[0t).
1=1

ii) The processs ((Z%(t))icior. PR) are determinantal with the spatio-temporal cor-
I elo.t.) L P P
relation kernels

N

Ko (s wity) = > p0 (s, alu) My, (£y) = 1(s > 2™ (s — t,aly)
j=1
N
Ky (s.ait,y) = Zp[o’“"](s, ;1:|-'u,j)f\--15,u‘j(t, y) — 1(s > )p™I(s —t,aly) for R # An_;,
=1
where -
A’ITI},M.J- (t CL) - E[(I)'If},'u.j (:L + lé(t))] - / (I)g,-u,j (QL + z’a’v)pB\[(f! E’f‘o)d’i’

29




I\q)u’uj = Mu:uj (t, LZ?) = Du (t? CC) = @u = Pu

Here

(0, e + 2 — uj) /21 T28=1(0)) V1((2 — ) /2mr; 7R(0))

1}1(2?21 e /2mr; TAN-1(0)) 1<EZN, V1 ((uj — ue)/2mr; TR(0)
Rz

An—
(I)u?u,j] (3) -

V(2 /2mr; cBrR(0))

) = V1 (e, /2mr; B rR(0))
y H V1 ((2 = we) /27 7R(0)) 91((2 + ) /27r; 7R(0))
01 ((wy — ue) 2mr; 7R(0) D4 ((wy + we) /2mr; TR(0))

1<(<N,

2

(D% ”J(

f()T R — B.Ns B\'{' CJ’V: C}{f

7]
o1y () — DELETTPONO0) thlr 27 (0)
u‘“’-f(z) B (u}/i"rrr“ TBEN(0)) Do (u; /mr; 27BEN(0))
y H 01 ((z — we) /27r; TBON(0)) 91((2 + we) /270r; TBEN(0))
S 191 ((u; —ue)/2mr; TBON(0) U4 ((uj + we) /27r: TBON(0))
Uy
N — ) /27 TPV (0)) U1 ((2 + we)/27r; 7PN (0))
(I)%”“-f(w) B <1_<[N WV ((wj; — up) /27 7PN (0) 04 ((w; + up)/2mr; 7PN (0))
UE]

Note that T8(t) and &, & for R = By, BY,, Cn, CX are given before.
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e Assume £, > 0,7 > 0, N > 0, and let

1 d
AV (te —t,r) = |=——log(v;7)

2mr dv v=w/2mr,7=iN (t+—t)/2mr?
L 0 (x/2mr;iN (t, — t)/2mr?)
2mr Oy (/2w ANt — 1) 2mr2)

where 9] (v; 7) = diy(v; 7) /dv. As a function of x € R, A3 (t, —t,x) is odd,
A (t, — t, —x) = A7 (t, — t, ),
and periodic with period 27r
AV (t, — t, o+ 2mar) = A (t. — t.x), mE L.

It has only simple poles at & = 2mmr, and simple zeroes at * = (2m + 1)7r,m € Z.
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Theorem 2

Put an absorbing (resp. reflecting) boundary condition at both endpoints in [0, 7r] for
R = By (resp. R = Dy). Then the determinantal processes with R = Ay_;, By and
Dy solve the following systems of SDEs, respectively, for ¢t € [0, t,),

! N
(An—1) X3V7H(E) = uy + Wi(t) + / A (L — 5.) XN (s) — k) ds
0 (=1
4
+ Z / AT (1, s,X_?‘“‘”(s) — Xﬁ"\"l(s))ds, j=1,...,N,in R,
1<k<nN, 0
=y

t
By) X0 =i+ W0+ [ At~ 5. XY (5))ds
J 0

+ ) / (AJT (t — 5, X2V (5) — XPN(s)) + AZV_ (e — 5. X2V (5) + X2V (s)))ds,
1<kk;é<r\
7

j=1,2,...,N,in the interval [0, 7r] with an absorbing boundary condition at 0 and 77,
(Dn) X7 (t) = uy + Wy(t)

> / ATyt = 8, XDV (8) = XDV (8)) + AFTyy (1 — . XY (8) + XPY(9)))ds,
1<K<N,
k#j
j=1,2,...,N,in the interval [0, 7r] with a reflecting boundary condition at 0 and 7.
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1 T
We have lim AZT” t,—t,x)=—c t( )
* ve lim At —tw) = 5o cot {3

e Hence in the limit t, — oo, the above systems become the following temporally
homogeneous systems of SDEs for t € [0, 00);

An_ . 1 An_ y
(An-1) X)) = wy + W5(t) — o / tdn( E X, ) 1s
f\\—1 \A\-—J
. s)— X, S
E /(ot( / ()2 h ())ds. j=1,2,....N,in R,
,

]<L<\
k#j
17 X BN (s)
B XBN(t) =u; + W;(t)+ — [ cot . ds
Bx) XD = w00+ 5 [ ( .
XPN(s) — XPN(s XPN(s) 4+ XV (s
Ly {(Ot( B (s) - X ())mt( P+ X\
2r 2r
" 1<hen,
k#j
j=1,2,...,N,in [0, 7r] with an absorbing boundary condition at 0 and 7r,

(Dn)  XPN(t) = u; + Wi(t)

- it X,D\ XD\ XD\ XD\
+i Z / {(TO’(( s (8) = (s )) +('Ut( Ok (5) ds,
2’{’ . 0 2.’“ 23"
1<k<N,

j=1,2,...,N,in [0, 7r] with a reflecting boundary condition at 0 and 7r.
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1 X 1 1 T
e Moreover, we have lim — cot (L) = —, lim — tan ( ’ ) = 0.
2r 2r

r—00 21 x r—eo 2r

e Then in the r — oo limit, these systems are reduced to be the follows for ¢ € [0, 00),

An_q _ 7 .
(Av—1) X377 (t) = uy+Wi(t) + Z /X\\ Y _Xf.\\ 1(5)(_15?

1<k<N,
k#J

j=12,...,N,in R,
of 1
By XPN() = w4+ Wi(t) + / —ds
By)  XPY0) = wrWin+ [ X}_BN(S)

1
+ Z / {XB\ XB\ 5) + X}g\(b) n XE"\"(S) } ds,

1<k<N,
k#j

j=1,2,...,N,in (0, 00),
(Dy)  XPY() = uj+ W)

1
e /{XD“ - X () XPA(s)mEN'(S)}dS*

1<k<N,
k#j

j=1,2,...,N,in [0, 00) with a reflecting condition at the origin.

e They are the original Dyson model (Dyson’s Brownian motion model with parameter
3 = 2), noncolliding absorbing Brownian motions, and noncolliding reflecting Brownian
motions, respectively.
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3. Key Lemmas and Open Problems

e Please see the following for proofs.

For Type Ay_q:

[K15] Katori, M.: Elliptic determinantal process of type A. Probab. Theory
Relat. Fields 162, 637-677 (2015)

[K16b] Katori, M.: Elliptic Bessel processes and elliptic Dyson models real-
ized as temporally inhomogeneous processes. J. Math. Phys. 57, 103302/1-

32 (2016)
For Types By,BY.Cy, CY,BCy, Dy

[K17] Katori, M.: Elliptic determinantal processes and elliptic Dyson mod-
els. arXiv:math.PR/1703.03914

e Here I only remark the key lemmas for Theorems.
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A Key Lemma for Theorem 1

Lemmal

For R = AN—laBNanacNackaBCNaDNa

e t™(0)) = E[ff @ +iB(t):; 7(0)]

el 2 (R tR(1)), te0,t), jEL.
where
_NE ()

2772

(t)

taking expectation E of the imaginary parts — making martingales
—  time shift 7%(0) — 78(¢) and factors e’ ()7t/2
—> factors expressed by the Dedekind modular function 7(7)

e.., 0¥ (1) = p(r)” N-DIN=2)/2
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A Key Lemma for Theorem 2

Theorem 2 is proved by solving the backward Kolmogorov equations in the form; for
example for R = By,

op°~ (t, yls, )
—5,75) o
T,

Op°~ (t, yls, )

PPV (L yls.2) 1= PPV (L yls. ) o o
- =52 + ) ATt

9..2 2N—1
s =1 O'L.'i j=1

E 27mr 2mr 0 ) !
+ Az\r 1 P ?k) A2N—l (f* — S5, .I;j + :Lk-)) arr/
1<j k<N, -
J#k

N

under the condition ll%llj) N(t,y|s,x) = Hc‘i(:{:}- —Yj).
( . .
J=1
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A Key Lemma for Theorem 2

Lemma 2

The backward Kolmogorov equations for R = Ay_1, By, Dy can be reduced to the following

simple equations which determine the factors cii(7(s)),

dlog ey~ (s) 1,
= —N(N —1)(N = 2)—ny(t. — 5),
. (¥ = (N =2k (k. ),
dlog c2¥ (s) 1,
= —N(N —1)(2N — 1)—non_4(ts — 5),
79 ( )( )zwnz;\._l( $),
dlogcg™ (s) 1
= —N(N — 1)(N — 2)—1ny te — ),
s ( )( )W?bw—n( 5),
where
,}71 (t, — s) = W_Z i -2 ng™"
N - ok ) wl ]_2 —1 ]_ —_ qzu — qz(f—N(fﬂr _.‘\_)Xg.‘.,g
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Open Problem 1

e We have identified the systems of SDEs which are solved by the three families of
determinantal processes of types Ay_1, By, and Dy.

e The systems of SDEs for other cases R = BY,, Cy, C¥, BCy are not yet clarified.

e We have used the functional equation
(Cnlts — 5.2 +u) — Cvlte — 5,2) — Cv(te — 5,u))?

= on(te — 8, 2+ u) + pn(te — 8.2) + pa(te — s,u),

with vt — 8, 2) = C(x]2w1, 2w3)

wy=mrw3=1tN (ti—s)/2r "

on (e — 5, 1) = (x|2wq, 2w: 3
o ( ) = p(2|2w1, 2ws) N ()

where the Weierstrass ¢ function and zeta function ¢ are defined by

ola2wr, 2ug) = 5+ 2 {(ZQ 2 Q 2]’
(m,n)eZ2\{(0,0)} m,n m.n

1 1 1 z
((2|2w1, 2wy) = -+ ( )E;{(O . L O + o + Qm_ﬂg] o Qo = 2mwy + 2nws,

e It seems to be that we need the similar equations for ¢, ¢ with different periods w, ws. 39



Open Problem 2

e Connections to other elliptic-function-level models 7

— random matrix theory

— probabilistic discrete models with elliptic weights

[Sch07] Schlosser, M.: Elliptic enumeration of nonintersecting lattice
paths. J. Combin. Theory Ser. A 114, 505-521 (2007)

[BGR10] Borodin, A., Gorin, V., Rains, E. M.: ¢-distributions on boxed
plane partitions. Sel. Math. (N. S.) 16, 731-789 (2010)

[Beteall] Betea, D.: Elliptically distributed lozenge tilings of a hexagon.
arXiv:math-ph/1110.4176

— stochastic Komatu-Loewner evolution in doubly connected domains

[CFR15] Chen, Z.-Q., Fukushima, M., Rhode, S.: Chordal Komatu—
Loewner equation and Brownian motion with darning in multiply con-

nected domain. Trans. Amer. Math. Soc. 368, 4065-4114 (2016)
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e The present talk was based on the following three papers;

For Type Ay_q:

[K15] Katori, M.: Elliptic determinantal process of type A. Probab. Theory
Relat. Fields 162, 637-677 (2015)

[K16b] Katori, M.: Elliptic Bessel processes and elliptic Dyson models real-
ized as temporally inhomogeneous processes. J. Math. Phys. 57, 103302/1-
32 (2016)

For Types BN: BX CN, CX/ BCN? DN:

[K17] Katori, M.: Elliptic determinantal processes and elliptic Dyson mod-
els. arXiv:math.PR/1703.03914

Thank you very much for your attention.
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e [ have shown that the complex structures and conformal invariance are hidden in the
determinantal solutions for nonequilibrium-statistical-physics models.

e The present argument for the solvability of the models using conformal invariance
and martingale processes can be discusses in a unified way including classical
diffusion processes, the Schramm-Loewner evolution (SLE), and the interacting

particle systems in the KPZ universality class.

A Lecture Note entitled
‘Bessel Processes, Schramm-Loewner Evolution,

and the Dyson Model’
was published (2016) as
SpringerBriefs in Mathematical Physics 11

SPRINGER BRIEFS IN MATHEMATICAL PHYSICS 11

Makoto Katori

Bessel Processes,
Schramm-
Loewner
Evolution, and

| the Dyson Model

EXTRAS ONLINE &) Springer
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