String Theory and Integrable Lattice Models

Junya Yagi

University of Warsaw

March 24, 2017

Elliptic Hypergeometric Functions in Combinatorics, Integrable Systems and Physics, Erwin Schrödinger Institute, Vienna

Integrable Systems

Integrable Systems

Quantum Field Theories

Integrable Systems
Quantum Field Theories
Quantum ISs

Integrable Systems

Quantum Field Theories

Quantum ISs Supersymmetric QFTs

Integrable Systems

Quantum Field Theories

Quantum ISs Supersymmetric QFTs

Integrable Lattice Models

Integrable Systems

Quantum Field Theories

Quantum ISs Supersymmetric QFTs

Integrable Lattice Models

String Theory

Integrable Systems

Quantum ISs Supersymmetric QFTs

This talk

String Theory

Integrable lattice models can be embedded in String Theory.
What does this buy us?
A lot!

Today:

- Construct an integrable lattice model that unifies
- Belavin model
- Jimbo-Miwa-Okado model group
- Bazhanov-Sergeev model
- Relate it to 4d SUSY QFTs.

Fix

- $N \in \mathbb{N}, N \geq 2$
- $\tau, \gamma \in \mathbb{C}, \operatorname{Im} \tau, \operatorname{Im} \gamma>0$

Let

- $V=\mathbb{C}^{N}$
- $\mathbb{V}=\left\{\right.$ meromorphic symmetric functions of $\left.\left(z_{1}, \ldots, z_{N}\right)\right\}$

Belavin model [Beavin ${ }^{81}$]

Belavin model is a lattice model in Statistical Mechanics:

It's a vertex model: spins \bigcirc live on edges, interact at vertices.
Spin variables $i, j, k, l, \ldots \in\{1, \ldots, N\}$.
Each line carries a spectral parameter $u \in \mathbb{C}$.
Lattice can be drawn on any surface Σ; in this talk $\Sigma=T^{2}$.

Interaction is governed by the R-matrix $R^{\mathrm{B}}(u) \in \operatorname{End}(V \otimes V)$.
Local Boltzmann weight:

$$
u_{1}-\underset{\substack{(i)-i \\ \text { (i) } \\ i \\ u_{2}}}{\stackrel{\hat{i}}{(k)} \rightarrow}=R^{\mathrm{B}}\left(u_{12}\right)_{i j}^{k l}, \quad u_{12}=u_{1}-u_{2} \text {. }
$$

Partition function

$$
Z=\sum_{\text {spin configs vertices }} \prod_{\text {local Boltzmann weight } . ~}^{\text {. }}
$$

Explicitly,

$$
R^{\mathrm{B}}(u)_{i j}^{k l}=\delta_{i+j, k+l} \frac{\theta_{1}(\gamma)}{\theta_{1}(u+\gamma)} \frac{\theta^{(k-l)}(u+\gamma)}{\theta^{(k-i)}(\gamma) \theta^{(i-l)}(u)} \frac{\prod_{m=0}^{N-1} \theta^{(m)}(u)}{\prod_{n=1}^{N-1} \theta^{(n)}(0)},
$$

where i, j, k, l are treated $\bmod N$ and

$$
\begin{aligned}
\theta\left[\begin{array}{l}
a \\
b
\end{array}\right](u \mid \tau) & =\sum_{n=-\infty}^{\infty} e^{\pi \mathrm{i}(n+a)^{2} \tau+2 \pi \mathrm{i}(n+a)(u+b)}, \\
\theta^{(j)}(u) & =\theta\left[\begin{array}{c}
1 / 2-j / N \\
1 / 2
\end{array}\right](u \mid N \tau), \\
\theta_{1}(u) & =-\theta\left[\begin{array}{c}
1 / 2 \\
1 / 2
\end{array}\right](u \mid \tau) .
\end{aligned}
$$

When $N=2$, we get the 8 -vertex model.
R^{B} satisfies the Yang-Baxter equation

$$
R_{12}^{\mathrm{B}}\left(u_{12}\right) R_{13}^{\mathrm{B}}\left(u_{13}\right) R_{23}^{\mathrm{B}}\left(u_{23}\right)=R_{23}^{\mathrm{B}}\left(u_{23}\right) R_{13}^{\mathrm{B}}\left(u_{13}\right) R_{12}^{\mathrm{B}}\left(u_{12}\right) .
$$

Graphically,

It follows the model is integrable.
This is quantum integrability:
2d lattice model \leftrightarrow 1d quantum spin chain .
Belavin model $\leftrightarrow \mathfrak{s l}_{N}$ generalization of $X Y Z$ spin chain.

Jimbo-Miwa-Okado model [mo '87]

JMO model is an IRF model, i.e. spins live on faces:

Spin variables $\lambda \in \mathfrak{h} \subset \mathfrak{s l}_{N}: \lambda=\left(\lambda_{1}, \ldots, \lambda_{N}\right), \sum_{i=1}^{N} \lambda_{i}=0$.
Allowed configs: to each edge we can assign $i \in\{1, \ldots, N\}$ s.t.

$$
\underset{\mu}{i------>}, \quad \mu=\lambda-\gamma w_{i} .
$$

$w_{i}=e_{i}-\frac{1}{N} \sum_{j=1}^{N} e_{j}$ is the weight of $e_{i} \in V=\mathbb{C}^{N},\left(e_{i}\right)_{j}=\delta_{i j}$.

Alternatively, think of i, j, \ldots as spin variables living on edges.
We get a vertex model with a dynamical variable λ.
Specify λ on one face. Spin config determines it on the rest:

$$
\begin{aligned}
& \lambda \stackrel{\hat{i})}{\hat{l}} \lambda-\gamma \omega_{l} \\
& \text {--(i)- }- \text { - (k) }->
\end{aligned}
$$

This vertex model is described by Felder's R-matrix $R^{\mathrm{F}}(u, \lambda)$:
$\left(R^{\mathrm{F}}\right)_{i i}^{i i}=1, \quad\left(R^{\mathrm{F}}\right)_{i j}^{i j}=\frac{\theta_{1}(u) \theta_{1}\left(\lambda_{i j}+\gamma\right)}{\theta_{1}(u+\gamma) \theta_{1}\left(\lambda_{i j}\right)}, \quad\left(R^{\mathrm{F}}\right)_{i j}^{j i}=\frac{\theta_{1}(\gamma) \theta_{1}\left(u+\lambda_{i j}\right)}{\theta_{1}(u+\gamma) \theta_{1}\left(\lambda_{i j}\right)}$
[Felder '94, Felder-Varchenko '97].
For $N=2$, we get the 8VSOS model [Baxter '73].

Graphically represent R^{F} as

$$
R^{\mathrm{F}}\left(u_{12}, \lambda\right)=u_{1} \underset{\substack{\lambda \\ u_{2}}}{\hat{i}} .
$$

This time, we have the dynamical YBE:

Or

$$
\begin{aligned}
& R_{12}^{\mathrm{F}}\left(u_{12}, \lambda-\gamma h_{3}\right) R_{13}^{\mathrm{F}}\left(u_{13}, \lambda\right) R_{33}^{\mathrm{F}}\left(u_{23}, \lambda-\gamma h_{1}\right) \\
&=R_{23}^{\mathrm{F}}\left(u_{23}, \lambda\right) R_{13}^{\mathrm{F}}\left(u_{13}, \lambda-\gamma h_{2}\right) R_{12}^{\mathrm{F}}\left(u_{12}, \lambda\right) .
\end{aligned}
$$

h_{a} : the weight of the state on the a th line.

Bazhanov-Sergeev model [BS' 10, '11]

BS model is defined on a tricolor checkerboard lattice:

Lines carry multiplicative spectral parameters a, b, \ldots.
Spin variables: multiplicative dynamical variables z, w, \ldots on uncolored faces. They are all independent.

Boltzmann weights involve the elliptic gamma function

$$
\Gamma(z)=\prod_{m, n=0}^{\infty} \frac{1-p^{m+1} q^{n+1} / z}{1-p^{m} q^{n} z} ; \quad p=e^{2 \pi \mathrm{i} \tau}, q=e^{2 \pi \mathrm{i} \gamma}
$$

We assign Boltzmann weights

$$
\sum_{a_{1}}^{w / a_{2}}=M\left(\frac{a_{2}}{a_{1}} ; z, w\right), \quad{ }_{a}^{\text {ant }}=M\left(\frac{b_{2}}{b_{1}} ; w, z\right)
$$

where
$M(a ; z, w)=\prod_{i, j} \Gamma\left(a \frac{w_{i}}{z_{j}}\right) / \Gamma\left(a^{N}\right), \quad D(a ; z, w)=\prod_{i, j} \Gamma\left(\sqrt{p q} \frac{1}{a} \frac{w_{i}}{z_{j}}\right)$.
Each spin z is integrated over $\mathbb{T}^{N-1} \subset \mathrm{SU}(N)$ with measure $\frac{(p ; p)_{\infty}^{N-1}(q ; q)_{\infty}^{N-1}}{N!} \prod_{k=1}^{N-1} \frac{\mathrm{~d} z_{k}}{2 \pi \mathrm{i} z_{k}} \prod_{i \neq j} \frac{1}{\Gamma\left(z_{i} / z_{j}\right)} ; \quad(p ; p)_{\infty}=\prod_{k=1}^{\infty}\left(1-p^{k}\right)$.
$M(a ; z, w)$ defines the elliptic Fourier transform on $f\left(z_{1}, \ldots, z_{N}\right)$ [Spiridonov '03, Spiridonov-Warnaar '05].

We can reformulate the BS model as a vertex model.
Introduce double line notation $(a, b) \Longrightarrow=a_{a}^{b} \xrightarrow{\cdots \cdots \cdots \cdots \cdots}$.
BS R-operator $R^{\mathrm{BS}}\left(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\right) \in \operatorname{End}(\mathbb{V} \otimes \mathbb{V})$ is given by

Lattice made from R^{BS} gives a tricolor checkerboard pattern.
R^{BS} is an ∞-dim R-matrix; it's an integral operator [Derkachov-Spiridonov '12, Maruyoshi-Y '16].

YBE follows from an integral identity for Γ [Spiridonov ' 03 , Rains ' 10].

Summary of the three models

Belavin:

$$
R^{\mathrm{B}}\left(u_{12}\right)=u_{1} \underset{u_{2}}{\hat{i}} \underset{u_{2}}{1}-\rightarrow \operatorname{End}(V \otimes V), \quad \widetilde{R}^{\mathrm{B}}=u_{1} \underset{u_{2}}{\hat{i}}=\left(R^{\mathrm{B}}\right)^{T}
$$

Jimbo-Miwa-Okado/Felder:

Bazhanov-Sergeev:

String Theory tells me the three models can be unified [$\left.Y^{\prime} 17\right]$.

If different kinds of lines can coexist, we have more crossings:

$$
\begin{aligned}
& c-\underset{\sim}{z} \uparrow \rightarrow S\left(\begin{array}{l}
c \\
a
\end{array}, z\right), \\
& c \underset{z}{-\hat{e}_{z}}=S^{\prime}\left(\frac{c}{b} ; z\right), \\
& c-\widetilde{S}\left(\frac{c}{b} ; z\right), \\
& c-\overbrace{a}^{--\underset{z}{a}=\widetilde{S}^{\prime}\left(\frac{c}{a} ; z\right) .}
\end{aligned}
$$

These intertwining operators are matrix-valued functions.
They must solve many Yang-Baxter equations!

Yang-Baxter equations with one dashed line such as

allow us to determine the intertwining operators:

$$
\begin{array}{rlrl}
S(a ; z) & =a^{-N / 2} \Psi(u, \lambda), & \widetilde{S}^{\prime}(a ; z) & =a^{-N / 2} Z^{N / 2} \Phi(u, \lambda)^{T} \\
S^{\prime}(a ; z) & =S(\check{a} ; z)^{-1}, & \widetilde{S}(a ; z)=(-1)^{N-1} \widetilde{S}^{\prime}(\check{a} ; z)^{-1} Z^{N},
\end{array}
$$

with $a=e^{2 \pi \mathrm{i} u / N}, \quad z_{j}=e^{2 \pi \mathrm{i} \lambda_{j}}, \check{a}=q^{-1 / N} \sqrt{p q} a$, and

$$
\begin{aligned}
Z & =\operatorname{diag}\left(z_{1}, \ldots, z_{N}\right) \\
\Phi(u, \lambda)_{i}^{j} & =\theta^{(j)}\left(u-N \lambda_{i}+\frac{N-1}{2}\right) \\
\Psi(u, \lambda)_{i}^{j} & =\Phi(u,-\lambda)_{i}^{j} / \prod_{k(\neq i)} \theta_{1}\left(\lambda_{k i}\right) .
\end{aligned}
$$

Similar analysis in [Sergeev '92, Quano-Fujii '93, Derkachov-Spiridonov]

Yang-Baxter equations with two dashed lines such as

or

$$
R^{\mathrm{B}} S_{1} S_{2}=S_{2} S_{1} R^{\mathrm{F}} \quad \text { and } R^{\mathrm{F}} S_{1}^{\prime} S_{2}^{\prime}=S_{2}^{\prime} S_{1}^{\prime} R^{\mathrm{B}}
$$

describe the vertex-face correspondence [Baxter ${ }^{7} 73, \mathrm{JMO}$].
They relate R^{B} and R^{F}, vertex and IRF models.
Those in different colors,

also hold.

We can also construct an L-operator

$$
L^{\mathrm{B}}=-\hat{-} \rightarrow \rightarrow \rightarrow \in \operatorname{End}(V \otimes \mathbb{V})
$$

It's a matrix of difference operators [Hasegawa ' 90 , Sergeev, Quano-Fujii].
It satisfies two RLL relations, one with R^{B} and another with R^{BS} :

Or

$$
L_{1}^{\mathrm{B}} L_{2}^{\mathrm{B}} R^{\mathrm{BS}}=R^{\mathrm{BS}} L_{2}^{\mathrm{B}} L_{1}^{\mathrm{B}} \quad \text { and } \quad R^{\mathrm{B}} L_{1}^{\mathrm{B}} L_{2}^{\mathrm{B}}=L_{2}^{\mathrm{B}} L_{1}^{\mathrm{B}} R^{\mathrm{B}} .
$$

This is the elliptic lift of the chiral Potts/six-vertex relation
[Bazhanov-Stroganov '90, Bazhanov-Kashaev-Mangazeev-Stroganov '91].

Another L-operator

$$
L^{\mathrm{F}}=--\hat{\hat{\vdots}} \rightarrow
$$

satisfies an RLL relation with Felder's R-matrix:

Or

$$
R^{\mathrm{F}} L_{1}^{\mathrm{F}} L_{2}^{\mathrm{F}}=L_{2}^{\mathrm{F}} L_{1}^{\mathrm{F}} R^{\mathrm{F}} .
$$

L^{F} defines an ∞-dimensional representation of Felder's elliptic quantum group $E_{\tau, \gamma / 2}\left(\mathfrak{s l}_{N}\right)$.
L^{B} gives a vertex-type elliptic algebra. Sklyanin algebra for $N=2$.

Brane construction [Yamazaki' ${ }^{13}$, Maruyoshi-Y' $\left.{ }^{\prime} 6, \mathrm{Y}^{\prime}{ }^{\prime}{ }_{17}\right]$

Our model can be constructed from branes in String Theory:

We have
Z of the brane system $=Z$ of our model.
YBEs become brane movements.
A 2d TQFT with "extra dimensions" underlies the correspondence [Costello '13, Y '15, '16].

Correspondence with 4d SUSY QFTs

The branes allow us to map our model to 4d SUSY QFT. BS model \leftrightarrow quiver gauge theory [Spiridonov '10, Yamazaki '13]:

Now \bigcirc is an $\operatorname{SU}(N)$ gauge group, \longrightarrow is a matter field.
Z of this theory on $S^{3} \times_{p, q} S^{1}=Z_{\mathrm{BS}}$.
YBE = invariance of Z under Seiberg duality (quiver mutation).

Introduce an operator supported on a $T^{2} \subset S^{3} \times S^{1}$.
It acts on Z by a difference operator [Gadde-Gukov,
Gaiotto-Rastelli-Razamat, Gaiotto-Razamat,...].
In the lattice model, it appears as a dashed lines [Maruyoshi- $\left.Y, Y^{\prime} 17\right]$:

Recalling $L^{\mathrm{B}}=-\hat{-} \rightarrow$ and $L^{\mathrm{F}}=-\hat{-}$, we can write it as

$$
\operatorname{Tr}\left(L^{\mathrm{B}} \cdots L^{\mathrm{B}}\right)=\operatorname{Tr}\left(L^{\mathrm{F}} \cdots L^{\mathrm{F}}\right)
$$

This is a transfer matrix constructed from L^{B} or L^{F}.
Two choices for T^{2} compatible with symmetries related by $p \leftrightarrow q$ lead to the elliptic modular double [Faddeev, Spiridonov].

By fusion (OPE of surface ops), we can construct a dashed line associated with any irrep R of $\mathfrak{s l}_{N}$:

$$
R----\rightarrow
$$

$\operatorname{Tr}(\underbrace{L_{R}^{\mathrm{F}} \cdots L_{R}^{\mathrm{F}}}_{k})$ is a surface op for class- \mathcal{S}_{k} theories [Gaiotto-Razamat].
For $R=\bigwedge^{n} V$ and $k=1$, we get Ruijsenaars' ops [Hasegawa '95]. The proof uses the theta function identity

$$
\begin{aligned}
& \sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) \prod_{r=1}^{n}\left[\Phi\left(v+(r-1) \gamma, \lambda-\gamma \sum_{s=1}^{r-1} \omega_{i_{s}}\right)^{-1} \Phi\left(u+(r-1) \gamma, \lambda-\gamma \sum_{s=1}^{r-1} \omega_{i_{\sigma(s)}}\right)\right]_{i_{\sigma(r)}}^{i_{r}} \\
= & \frac{\theta_{1}(v+(u-v) n / N)}{\theta_{1}(v)} \prod_{\substack{i \in I \\
k \notin I}} \frac{\theta_{1}\left(\lambda_{k i}+(u-v) / N\right)}{\theta_{1}\left(\lambda_{k i}\right)} ; \quad I=\left\{i_{1}, \ldots, i_{n}\right\} \subset\{1, \ldots, N\} .
\end{aligned}
$$

Reproduces the QFT result [Bullimore-Fluder-Hollands-Richmond '14].

The transfer matrices match QFT results [Maruyoshi-Y, Y'17] for

- $R=V, k=1$ [Gaiotto-Rastelli-Razamat, Gadde-Gukov]
- $R=V, k>1$ [Gaiotto-Razamat, Maruyoshi-Y, Ito-Yoshida]
- $R=\bigwedge^{n} V, n>1, k=1$ [Bullimore et al.]

Comparison in progress [Vaško-Y]:

- $R=S^{n} V, n>1, k=1$ [Gaiotto-Rastelli-Razamat, Gadde-Gukov]
- $R=S^{n} V, n>1, k>1$: partial results [Ito-Yoshida]

Need the symmetric analogue of Hasegawa's formula.
Other cases: no QFT results yet.

Conclusion

String Theory allows us to construct integrable lattice models and relate them to 4d SUSY QFTs.

Further directions:

- Change $S^{3} \times S^{1}$ to $M_{3} \times S^{1}$ to get new R-matrices: $M_{3}=S^{3} / \mathbb{Z}_{r}$ [Yamazaki, Kels], $S^{2} \times S^{1}, \Sigma \times S^{1}, \ldots$
- Dimensional reduction [Y'15, Yamazaki-Wen, Gahramanov-Spiridonov, Gahramanov-Rosengren, Gahramanov-Kels]
- Relation to the works of Costello \& Nekrasov-Shatashvili [Costello-Y, in progress]
- Zamolodchikov's tetrahedron equation [Y '15]
- Chiral Potts model and monopoles [Atiyah '91]
- Geometric Langlands and AGT correspondences
- Categorification of lattice models
- Little String Theory, AdS/CFT correspondence, ...

