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Integrable lattice models can be embedded in String Theory.

What does this buy us?

A lot!

Today:
I Construct an integrable lattice model that unifies

I Belavin model
I Jimbo–Miwa–Okado model group
I Bazhanov–Sergeev model

I Relate it to 4d SUSY QFTs.



Fix

I N ∈ N, N ≥ 2
I τ , γ ∈ C, Im τ , Im γ > 0

Let

I V = CN

I V = {meromorphic symmetric functions of (z1, . . . , zN)}



Belavin model [Belavin ’81]

Belavin model is a lattice model in Statistical Mechanics:

u1

u2

u3 u4 u5

It’s a vertex model: spins live on edges, interact at vertices.

Spin variables i, j, k, l, . . . ∈ {1, . . . ,N}.

Each line carries a spectral parameter u ∈ C.

Lattice can be drawn on any surface Σ; in this talk Σ = T2.



Interaction is governed by the R-matrix RB(u) ∈ End(V ⊗ V).

Local Boltzmann weight:

u1

u2

i
j

k
l

= RB(u12)kl
ij , u12 = u1 − u2 .

Partition function

Z =
∑

spin configs

∏
vertices

local Boltzmann weight .



Explicitly,

RB(u)kl
ij = δi+j,k+l

θ1(γ)

θ1(u + γ)

θ(k−l)(u + γ)

θ(k−i)(γ)θ(i−l)(u)

∏N−1
m=0 θ

(m)(u)∏N−1
n=1 θ

(n)(0)
,

where i, j, k, l are treated mod N and

θ

[
a
b

]
(u|τ) =

∞∑
n=−∞

eπi(n+a)2τ+2πi(n+a)(u+b) ,

θ(j)(u) = θ

[
1/2− j/N

1/2

]
(u|Nτ) ,

θ1(u) = −θ
[

1/2
1/2

]
(u|τ) .

When N = 2, we get the 8-vertex model.



RB satisfies the Yang–Baxter equation

RB
12(u12)RB

13(u13)RB
23(u23) = RB

23(u23)RB
13(u13)RB

12(u12) .

Graphically,

u2

u1

u3

=
u2

u1

u3

.

It follows the model is integrable.

This is quantum integrability:

2d lattice model↔ 1d quantum spin chain .

Belavin model↔ slN generalization of XYZ spin chain.



Jimbo–Miwa–Okado model [JMO ’87]

JMO model is an IRF model, i.e. spins live on faces:

Spin variables λ ∈ h ⊂ slN : λ = (λ1, . . . , λN),
∑N

i=1 λi = 0.

Allowed configs: to each edge we can assign i ∈ {1, . . . ,N} s.t.

i
λ

µ
, µ = λ− γwi .

wi = ei − 1
N
∑N

j=1 ej is the weight of ei ∈ V = CN , (ei)j = δij.



Alternatively, think of i, j, . . . as spin variables living on edges.

We get a vertex model with a dynamical variable λ.

Specify λ on one face. Spin config determines it on the rest:

i
j

k
lλ

λ− γωi

λ− γωl

λ− γ(ωi + ωj)
= λ− γ(ωk + ωl)

This vertex model is described by Felder’s R-matrix RF(u, λ):

(RF)ii
ii = 1 , (RF)

ij
ij =

θ1(u)θ1(λij + γ)

θ1(u + γ)θ1(λij)
, (RF)

ji
ij =

θ1(γ)θ1(u + λij)

θ1(u + γ)θ1(λij)

[Felder ’94, Felder–Varchenko ’97].

For N = 2, we get the 8VSOS model [Baxter ’73].



Graphically represent RF as

RF(u12, λ) = u1

u2

λ
.

This time, we have the dynamical YBE:

u2

u1

u3

λ

=
u2

u1

u3

λ

or

RF
12(u12, λ− γh3)RF

13(u13, λ)RF
23(u23, λ− γh1)

= RF
23(u23, λ)RF

13(u13, λ− γh2)RF
12(u12, λ) .

ha: the weight of the state on the ath line.



Bazhanov–Sergeev model [BS ’10, ’11]

BS model is defined on a tricolor checkerboard lattice:

Lines carry multiplicative spectral parameters a, b, . . . .

Spin variables: multiplicative dynamical variables z, w, . . . on
uncolored faces. They are all independent.

Boltzmann weights involve the elliptic gamma function

Γ(z) =

∞∏
m,n=0

1− pm+1qn+1/z
1− pmqnz

; p = e2πiτ , q = e2πiγ .



We assign Boltzmann weights

a1 a2

z

w
= M

(a2
a1

; z,w
)
,

b1 b2

z

w
= M

(b2
b1

; w, z
)

a b

z w = D
(b

a
; z,w

)
,

b a

z w = D
(a

b
; w, z

)
,

where
M(a; z,w) =

∏
i,j

Γ
(

awi
zj

)/
Γ
(
aN) , D(a; z,w) =

∏
i,j

Γ
(√pq1

a
wi
zj

)
.

Each spin z is integrated over TN−1 ⊂ SU(N) with measure

(p; p)N−1
∞ (q; q)N−1

∞
N!

N−1∏
k=1

dzk
2πizk

∏
i 6=j

1
Γ(zi/zj)

; (p; p)∞ =

∞∏
k=1

(1−pk) .

M(a; z,w) defines the elliptic Fourier transform on f (z1, . . . , zN)
[Spiridonov ’03, Spiridonov–Warnaar ’05].



We can reformulate the BS model as a vertex model.

Introduce double line notation (a, b) = ba .

BS R-operator RBS((a1, b1), (a2, b2)) ∈ End(V⊗ V) is given by

RBS((a1, b1), (a2, b2)
)

= (a1, b1)

(a2, b2)

= b1a1

b2a2

.

Lattice made from RBS gives a tricolor checkerboard pattern.

RBS is an∞-dim R-matrix; it’s an integral operator
[Derkachov–Spiridonov ’12, Maruyoshi–Y ’16].

YBE follows from an integral identity for Γ [Spiridonov ’03 , Rains ’10].



Summary of the three models
Belavin:

RB(u12) = u1

u2

∈ End(V ⊗ V) , R̃B = u1

u2

= (RB)T

Jimbo–Miwa–Okado/Felder:

RF(u12, λ) = u1

u2

λ ∈ End(V ⊗ V)

Bazhanov–Sergeev:

RBS((a1, b1), (a2, b2)
)

= (a1, b1)

(a2, b2)

= b1a1

b2a2

∈ End(V⊗V)



String Theory tells me the three models can be unified [Y ’17].



If different kinds of lines can coexist, we have more crossings:

c

a

z
= S

( c
a
; z
)
, c

b

z
= S′

( c
b

; z
)
,

c

b

z
= S̃

( c
b

; z
)
, c

a
z

= S̃′
( c

a
; z
)
.

These intertwining operators are matrix-valued functions.

They must solve many Yang–Baxter equations!



Yang–Baxter equations with one dashed line such as

= and =

allow us to determine the intertwining operators:

S(a; z) = a−N/2Ψ(u, λ) , S̃′(a; z) = a−N/2ZN/2Φ(u, λ)T ,

S′(a; z) = S(ǎ; z)−1 , S̃(a; z) = (−1)N−1S̃′(ǎ; z)−1ZN ,

with a = e2πiu/N , zj = e2πiλj , ǎ = q−1/N√pqa, and

Z = diag(z1, . . . , zN) ,

Φ(u, λ)
j
i = θ(j)

(
u−Nλi +

N − 1
2

)
,

Ψ(u, λ)
j
i = Φ(u,−λ)

j
i

/ ∏
k( 6=i)

θ1(λki) .

Similar analysis in [Sergeev ’92, Quano–Fujii ’93, Derkachov–Spiridonov]



Yang–Baxter equations with two dashed lines such as

= and =

or
RBS1S2 = S2S1RF and RFS′1S′2 = S′2S′1RB

describe the vertex–face correspondence [Baxter ’73, JMO].

They relate RB and RF, vertex and IRF models.

Those in different colors,

= and = ,

also hold.



We can also construct an L-operator

LB = = ∈ End(V ⊗ V) .

It’s a matrix of difference operators [Hasegawa ’90, Sergeev, Quano–Fujii].

It satisfies two RLL relations, one with RB and another with RBS:

= and =

or
LB

1 LB
2 RBS = RBSLB

2 LB
1 and RBLB

1 LB
2 = LB

2 LB
1 RB .

This is the elliptic lift of the chiral Potts/six-vertex relation
[Bazhanov–Stroganov ’90, Bazhanov–Kashaev–Mangazeev–Stroganov ’91].



Another L-operator

LF =

satisfies an RLL relation with Felder’s R-matrix:

=

or
RFLF

1LF
2 = LF

2LF
1RF .

LF defines an∞-dimensional representation of Felder’s elliptic
quantum group Eτ,γ/2(slN).

LB gives a vertex-type elliptic algebra. Sklyanin algebra for
N = 2.



Brane construction [Yamazaki ’13, Maruyoshi–Y ’16, Y ’17]

Our model can be constructed from branes in String Theory:

D5

D3

N D5

NS5

(N, 1)

N D5

NS5
(N,−1)

We have

Z of the brane system = Z of our model .

YBEs become brane movements.

A 2d TQFT with “extra dimensions” underlies the
correspondence [Costello ’13, Y ’15, ’16].



Correspondence with 4d SUSY QFTs
The branes allow us to map our model to 4d SUSY QFT.

BS model↔ quiver gauge theory [Spiridonov ’10, Yamazaki ’13]:

Now is an SU(N) gauge group, is a matter field.

Z of this theory on S3 ×p,q S1 = ZBS.

YBE = invariance of Z under Seiberg duality (quiver mutation).



Introduce an operator supported on a T2 ⊂ S3 × S1.

It acts on Z by a difference operator [Gadde–Gukov,
Gaiotto–Rastelli–Razamat, Gaiotto–Razamat,. . . ].

In the lattice model, it appears as a dashed lines [Maruyoshi–Y, Y ’17]:

Recalling LB = and LF = , we can write it as

Tr(LB · · · LB) = Tr(LF · · · LF) .

This is a transfer matrix constructed from LB or LF.

Two choices for T2 compatible with symmetries related by
p↔ q lead to the elliptic modular double [Faddeev, Spiridonov].



By fusion (OPE of surface ops), we can construct a dashed line
associated with any irrep R of slN :

R

Tr(LF
R · · · LF

R︸ ︷︷ ︸
k

) is a surface op for class-Sk theories [Gaiotto–Razamat].

For R =
∧n V and k = 1, we get Ruijsenaars’ ops [Hasegawa ’95].

The proof uses the theta function identity

∑
σ∈Sn

sgn(σ)
n∏

r=1

[
Φ

(
v+(r−1)γ, λ−γ

r−1∑
s=1

ωis

)−1
Φ

(
u+(r−1)γ, λ−γ

r−1∑
s=1

ωiσ(s)

)]ir

iσ(r)

=
θ1
(
v + (u− v)n/N

)
θ1(v)

∏
i∈I
k/∈I

θ1
(
λki + (u− v)/N

)
θ1(λki)

; I = {i1, . . . , in} ⊂ {1, . . . ,N}.

Reproduces the QFT result [Bullimore–Fluder–Hollands–Richmond ’14].



The transfer matrices match QFT results [Maruyoshi–Y, Y ’17] for

I R = V, k = 1 [Gaiotto–Rastelli–Razamat, Gadde–Gukov]

I R = V, k > 1 [Gaiotto–Razamat, Maruyoshi–Y, Ito–Yoshida]

I R =
∧n V, n > 1, k = 1 [Bullimore et al.]

Comparison in progress [Vaško–Y]:

I R = SnV, n > 1, k = 1 [Gaiotto–Rastelli–Razamat, Gadde–Gukov]

I R = SnV, n > 1, k > 1: partial results [Ito–Yoshida]

Need the symmetric analogue of Hasegawa’s formula.

Other cases: no QFT results yet.



Conclusion
String Theory allows us to construct integrable lattice models
and relate them to 4d SUSY QFTs.

Further directions:

I Change S3 × S1 to M3 × S1 to get new R-matrices:
M3 = S3/Zr [Yamazaki, Kels], S2 × S1, Σ× S1, . . .

I Dimensional reduction [Y ’15, Yamazaki–Wen,
Gahramanov–Spiridonov, Gahramanov–Rosengren, Gahramanov–Kels]

I Relation to the works of Costello & Nekrasov–Shatashvili
[Costello–Y, in progress]

I Zamolodchikov’s tetrahedron equation [Y ’15]

I Chiral Potts model and monopoles [Atiyah ’91]

I Geometric Langlands and AGT correspondences
I Categorification of lattice models
I Little String Theory, AdS/CFT correspondence, . . .


