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Abstract

We construct elliptic Ruijsenaars-Schneider models whose completed center-of-mass phase
space is the complex projective space with the Fubini-Study symplectic form. For n par-
ticles, these models are labelled by an integer p € {1,...,n — 1} relative prime to n and
a coupling parameter y varying in a certain punctured interval around pw/n. Our work
extends Ruijsenaars’s pioneering study of compactifications that imposed the restriction
0 < y < w/n, and also builds on an earlier derivation of such compactified models with
trigonometric potential by Hamiltonian reduction. This is a joint work with Laszlo Feher.

Compactified elliptic Ruijsenaars-Schneider model

This model describes n interacting particles moving in one spatial dimension. The dynamics
s governed by the Hamiltonian

H(z, ¢)=> cos(¢j) 1] [s(w)?(0(y) — p(xj — xx))].

j=1 k7]

Here @ = (z1,...,zy) and ¢ = (¢1, ..., ¢y) collect the generalised coordinates and momenta
of the particles, while y is a real parameter responsible for the strength of the interaction.
The potential contains the Weierstrass o function with half-periods (w,w’) € R+ x iR~
and the 2w-antiperiodic odd function s defined using the Weierstrass o and ¢ functions as

s(x) = o(z) exp(—((w)a”/2w).

Without loss of generality, we can set w = 7/2. Then the Hamiltonian H is w-periodic in
the parameter y. Since y — 0 yields free particles, we can assume that

0<y<m.

Remarks. (1) The model introduced by Ruijsenaars [3] has a slightly different Hamiltonian.
Namely, the square root of each factor is taken in the products appearing in H.
(2) Sending w’ — ico gives rise to the compactified trigonometric RS model.

The local phase space

Fehér and Kluck [2] showed that the phase space of the (trigonometric) model can be one
of only two drastically different forms depending on the parameter y. These two types of
parameters form disjoint open subintervals that partition (0, 7). See the figure below.
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Figure. The range of y/m for n = 4,5,6,7. The numbers displayed are excluded values.
Admissible values of y form intervals of type (i) (solid) and type (ii) (dashed) couplings.

Here we only consider type (i) parameters, which can be characterised as follows. For a
fixed integer n > 2, choose p € {1,...,n — 1} to be a coprime to n, i.e., gcd(n,p) = 1, and
let ¢ denote the multiplicative inverse of p in the ring Z,, that is pg =1 (mod n). Then the
parameter y can take its values according to either

1 7 7 1
(2o Jr<y< o Pay<(Zs )=
n - ng n n n (n—qn

For such a type (i) parameter y, the local configuration space is the interior of a simplex in
the center-of-mass hyperplane £ = {x € R" | x1 + --- + x,, = 0}. Consider the parameter

M = pm — ny,

and note that M > 0 and M < 0 corresponds to y less/greater than pm/n, respectively.
Then the local configuration space is given by

Yy={x € E|sgn(M)(xj—xj1p—y) >0, j=1,...,n},

where we extended the indices in a periodic manner, that is x,, ;. = ;. — 7 for all k. The
local phase space is the symplectic manifold

n
P;OC = {(z,e'?) |z € Xy, e e T 1, W0 = Zda:j A do;.
j=1

where T"~! is the (n — 1)-torus in E.
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Embedding the local phase space into CP"~!

We now introduce the map
< Ploc . on iqb) s —
. P, ;o (x,e w = (ug,...,un)
with the complex coordinates having squared absolute values

|U]|2:SgH(M)(IJ—ZEJ_|_p—y), j:17°°°7n7

and arguments

n—1
arg(uj) =sgn(M) > Qi p(dp_1— ), j=1,....n—1,  arg(uy) =0,
k=1

where ¢g = 0 and the ;1. (j,k =1,...,n — 1) are integers chosen in such a way that
n
E* (i Z dﬂj A du]) = wloc.
j=1

Proposition. The matrix formed by the integers {); . can be written as ) = B — C, where
B is a (0,1)-matrix of size (n — 1) with zeros along certain diagonals given by

0, ifk—m=/{p (modn) for somel c{l,...,n—q},

Bm,k — .
1, otherwise,

and C' is also a binary matrix of size (n — 1) with zeros along columns given by

0, ifk=/¥p (modn) forsomelc{l,...,n—q},
Cm,k —

1, otherwise.

We use the above map £ to embed the local phase space P?}OC into the complex projective
space CP"~! equipped with the rescaled Fubini-Study form |M|wgs. This embedding reads

T M| o¢&: P;OC o Cpn_l,

where T\ M| denotes the natural projection of the sphere Sﬁ?ﬂl to CP"~1 ~ Sﬁj\nﬂl/U(l), L.e.

. . . . . . . . . . n )
T M| o £ is smooth, injective and its image is the open submanifold for which szl uj # 0.

Extension of the Lax matrix

A spectral parameter dependent local Lax matrix of the model is given by

s(y) S(xj — T + )\)
s(A)s(zj — o, + )

LY<(x, 91N 1, = Vi, )] Vid, —y)] 26, (w, ¢9) € PLC

with the spectral parameter A and the positive smooth functions

Vi(x, ty) = sgn(s(ny)) H

It can be shown that Vj(x,y) = \uj\QWj(w,y) and Vi(x,—y) = \uk_p|2Wk(a:, —y) with the
functions W;(x(u),y), Wi(x(u), —y) possessing smooth extensions to cpr—1.

Theorem. The local Lax matrix L%JOC(:U, e'®?|\) has a smooth global extension Ly’i<7T|M|<’U,>|)\>
to the complex projective space CP"~! such that it satisfies the following identity

LY () 0 €)@, €9)|N) = Al@) T Ly (x, € INA(B),  V(w,e'?) € P,

where A(¢) = diag(Aq,...,Ay) with A; = exp (i 37—, O p(dp—1 — ), 7 =1,...,n—1,

The explicit formula for the resulting global Lax matrix can be found in [1].
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