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This talk is mainly based on arXiv:1608.07265 .

It is known that the Painleve VI is obtained by monodromy preserving de-
formation of some linear differential equations, and the Heun equation is ob-
tained by a specialization of the linear differential equations. We inverstigate
degenerations of the Ruijsenaars-van Diejen difference opearators and show
difference analogues of the Painleve-Heun correspondence. The eigenvalue
problems of each degenerated Ruijsenaars-van Diejen difference opearator
may be regarded as g-Heun equations.



Heun’s differential equation
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Four singularities {O, 1,¢, oo}; they are regular. We impose the condition
v+ 0+ e=a+ [+ 1 so that the exponents at z = oo are o and [3.

Heun’s differential equation is a standard form of Fuchsian differential
equation with four singularities.

The parameter ¢ is called an accessory parameter.

Hypergeometric equation : Fuchsian differential equation with three sin-
gularities {0, 1, 0o},
No accessory parameter



q-Heun equation

Motivated by degeneration of Ruijsenaars-van Diejen system and speciali-
sation of linear g-difference equation related with g-Painlevé VI (explain later),
we define g-Heun equation as follows:

(- h1q1/2)(x - hz(]l/Q)g(l’/Q) + l3ly (7 — 51(]_1/2)(37 - 12(]_1/2)9(37(])
—{(ls + l)a* + Ex + (Lilalslahiha)V?(hy* + hyV?)}g(x) = 0.
(1)
(degree 2in x)g(x/q) — (degree 2 in x)g(x) + (degree 2 in x)g(xq) = 0.
It has a limit to the Heun equation as ¢ — 1.

Basic hypergeometric equation (  g-hypergeometric equation)

(x —q)f(z/q) — ((a+b)x —q—c)f(x) + (abx — ) f(gz) = 0.



Variants of g-Heun equation
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We obtain ¢-Heun equations (1), (2), (3) by two methods.

One is degenerations of Ruijsenaars-van Diejen operators . The other
IS specialisations of linear g-difference equation related with  g-Painlev é
equations .

In other words, degenerations of Ruijsenaars-van Diejen operators are re-
lated with specialisations of linear g-difference equation related with g-Painlevé
equations.



Ruijsenaars-van Diejen system (Ruijsenaars system of type BCy) is
a difference (relativistic) analogue of Inozemtsev system.

Inozemtsev system
Quantum mechanical system with /V-particles whose Hamiltonian is given by

H=— P 20(1+ 1) Z (p(@; — ) + p(z; + 25))

=1 2" 1<j<k<N
N 3
+ ) ) Ll + Dl +w),

Inozemtsev model of type BC'yy is quantum Liouville integrable, i.e.,
2k

ElHk:Z].V ( 0 ) + (lower terms) (k =2,..., N)

]:1 8a:j

S.L [H, Hk] = (0 and [Hklkag] =0 (k,]ﬁ,kg — 2,,N)



Inozemtsev system with one variable (N = 1):

H_——+le+ ( + w;)

dx?

For F/ € C, Hf( ) E f(x) is equivalent to Heun'’s equation, i.e.

<@ i Zl T+ w;) — E) f(x) = 0is an elliptic repre-

sentation of Heun S equation.
Eigenvalue £ < Accessory parameter .

Quantum Inozemtsev model is a generalization of elliptic form of Heun’s
equation

Ruijsenaars-van Diejen operator for one particle is an elliptic differ-
ence analogue of Heun’s equation



Ruijsenaars-van Diejen operator for one particle

ay,a_ - R>O -+ \V/ _]_R
R (z): modified versions of theta function defined by

Rj:(Z) _ H(l o Qik_l 271'@2:)(1 L q2k 16—27mz)’ gy = e Tat (4)
k=1

The Ruijsenaars-van Diejen operator of one variable is given by
Ay (h;z) =Vi(h;z)exp(—ia_0,) + Vi (h; —z) exp(ia_0,) + Uy (h; 2),
V (h Z) H’i 1R—|—(Z] h — 10 /2)
R.(2z; +iay /2)R (22, —ia_ +iay/2)
Zt o Pt (P)[Eey (p52) — &1 (5w )]
2Ry (p —iay [2) Ry (p —ia- —iay [2)

parameters: hq, ..., hg,a_,

exp(Fia_0,)f(z) = f(z £ 1a_)

U,(h;z) =




wo+ =0, w1y =1/2, wey =1a4/2, w3y =—-1/2—1day/2,

po+(h) = H Ry (hy), p1+(h) = H Ry (h, —1/2),

8

pay(h) = e 27 H e ™ Ry (hy — iy /2),

n=1
8

ps+(h) = e [ [ ™™ Ry (hy + 1/2 + ias /2),

n=1
Ert (15 2) =
Ri(z+p—iay/2—ta_/2 —wy )Ry (2 — pp+iay /2 +1a_ /2 —wyy)
Ri(z—1tay/2—ia_/2 —wi )Ry (z+iay /2 +ia_ /2 —w ) ’
(t=0,1,2,3).




We obtain four degenerated operators from Ruijsenaars-
van Diejen operator with /V-particles.
For simplicity, we observe degenerations of Ruijsenaars-van

Diejen operator with one-particle, which is related with g-Painlevé
equations.



Trigonometric limit
The function R, (z) satisfies

Ri(z Fiay) = —" e R, (z)
and we have the following expansion as g, — 0 (or a,. — +00):

Ri(z)=1— (e +e ™) + ¢ + 0(q+)
Ri(z %0, /2) = (1= €27 (1 = (7 4 )2 1 0(qh)

We set h,, = h,, — iay /2. As ¢, — 0, we have

., Ri(z — hy —ia_/2 +ia, /2)

h;z) =
Vie(h; 2) Ry(2z +iay/2)Ry (22 — ia- + iay/2)
8 —2miz  2mihy —Ta—
— VW (h;2) = [l —e - - )

(1 _ e—47rz'z)(1 _ 6—47Tiz6—27ra_) )



First degeneration

Proposition 1. Let A(h, q+; z) be the Ruijsenaars-van Diejen operator. As
g+ — 0, we have

~

H8 ' ewihn
n=

(A(h, q+;2) + = em_)qu2 + C) f(2) = A (h: 2) f(2)

for any f(z), where C'is a certain constant,

AN (h; 2)
= V(h; 2) exp(—ia_0,) + VI (h; —2) exp(ia_0,)) + U (h; 2),



where

H8 (1 o 6—2m’z€27riﬁn e—wa_)

V<1> h: _ n=1 ' |
( ’Z) (1 _ e—47rzz)(1 _ 6—47mz6—27ra_)’
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U<1>(h' Z) _ Hi:1(€2mhn - 1)

2(1 _ 627riz€7ra_)(1 _ 6—27rize7ra_)

H8 (627Tiibn + 1)

_I_ n=1
2(1 + 627Tiz€7ra_)(1 + 6—27T7jze7m_)
8 8
4 e H eﬂ'ihn ) {(627&2 4+ 6—27T'L'z) Z(GQWihn 4+ 6—27T’ihn)
n=1 n=1

_ (€7TCL_ i e—wa_)(eélmlz i 6—47r7jz)} .



By the gauge transformation
AW (h,2) = R-(2)72 0 AV(h,z) o R_(2)%,
we have the operator:

AW (h: 2) = VO (h; 2) exp(—ia_0.)+W W (h; 2) explia_0,)+U Y (h; 2),

()
8 —2miz 27ihy, —Ta—
VU (h;2) = H“:.1<1 —c . e )
) e—2ma— 6—47mz(1 _ 6—47mz)(1 _ 6—477@26—27m_)7
& T2 7T7:~n —Ta—
W(l)(h; Z) _ anl(l — e2mizg2mihn o )

e—2ma— 647r7jz(1 _ 647riz)(1 _ 647r7jze—27ra,_) |

This operator was essentially obtained by van Diejen in the multivariable case.



Second degeneration

Proposition 2.  In Eq.(5), we replace z by z + iR, hy, (n=1,2,3,4) by h,, + iR, ho,
(n=1>5,6,7,8) by h,, — iR and take the limit R — +00. Then we arrive at the operator

AP (h; 2) = V& (h; 2) exp(—ia_0,) + W' (h; 2) exp(ia_0.) + U (h; 2),

4
V(2> (]'L, Z) — phmiz H (1 _ e 2miz, 27ihy, e~ Ta- H 2mihy,
n=1
. 8 . .
W<2> (h, Z) _ 6271'a_€—47mz H (1 o 6271'1,2'627mhn€—7Ta_)7
n=>5
2> h Z H 27ihoy, {(Z 2mihog, _|_Z —2mihy, ) —ma 2miz (1_|_€—27ra_)647m'z]

n=>

8
+ H ewihn {(Z —2mih, 4+ Z 2wthy, ) —Ta_ —27Tz'z o (1 4 6—27ra_)€—47riz} .

n=1 n=1



Namely we have
e 1 RAN (h 4 iRv; 2 + iR) f(2) — AP (h; 2) f(2)

as R — +ooforany f(z), wherev =(1,1,1,1,—1,—1,—1,—1).



Setl, = —h,y4 (n = 1,2,3,4). By the multiplication and the gauge
transformation given by

8
AP (B, 1y z) = e [ [ e - ™2 0 AP (R, z) 0 e,
n=y
we have the operator
A® (k1 2) (6)

~

= V& (h; 2) exp(—ia_0,) + W2 (I; 2) exp(ia_d,) + U (h,1; 2),



where

4
‘7<2> (h, Z) _ pAmiz H (1 . 627Tz'hn€—7ra_ 6—27rz'z),
n=1
4
W<2> (l, Z) _ 6471'@,2 H(l . 627‘(‘2lneﬂ'a_6—271'@2)7
n=1

U<2> h,l,Z (Z 2mihg, _|_Z 27il, ) 27z ( Ta_ _|_6—7Ta_)6471'7jz

4+ H Tt (hn+1n )[(Z —2mihy, 4+ Z —2mily, ) —2miz (ewa_ _|_€—7Ta_)6—47m'z}.

n=1

This operator was also essentially obtained by van Diejen.



Set z = €2™%, g = e~ 2%~ and replace e>™" and e by h,, and [,,.

Then the difference operator A (h, I; ) is written as

(z)g(z)

A
=277 | [(@ = hndP)g(z/q) + 277 | [ (& = lng™")g(qz) + U(2)g(2),

n=1 n=1
4
U(./L') _ _(q1/2 —|_q_1/2)332 + Z(hn —|—ln)ﬂf
n=1
4 4
o B e R U e U S N (e A
n=1 n=1

The equation A? (x)g(xz) = Eg(x) is a variant of g-Heun equation in (3).



Third degeneration

Proposition 3. In Eq.(6), we replace z by z — iR, h, (n = 1,2) by h, — iR, h,
(n=3,4)by h, +iR, 1, (n =1,2,3,4) by l,, — i R and take the limit R — +00. Then
we arrive at the operator

AP (R, 1 2) = VI (b 2) exp(—ia_0,) + W (1 2) explia_0,) + U (b, 1; 2),

2
V<3> (h, Z) _ 647m':<: H(l o eQwihne—wa_e—%ﬂz),
n=1
4
W(3> (l, Z) _ 647r'1,z H (1 . 627Tzln€7ra,_ 6—2#22)7
n=1

U(3> h,l,z (Z 27ihy, _|_Z 278l ) 271z ( Ta._ _i_e—ﬁa_)€47riz

4
4+ 67‘(”ih1 67‘(”ih2 (ewi(hg—h4) 4+ eﬂ'i(h4—h3)) H eﬁiln _ 6—271'2'2

n=1



Set z = €2™%, g = e~ 2%~ and replace e>™" and e by h,, and [,,.

Then the difference operator A3 (h, [; z) is written as

) (2)g(x)
=[] = had"®)g(@/q) + 27> [ [ (& = lag)g(qz) + U(z)g(),

n=1

(Zh +Z ) 1/2+q_1/2)

+ (z1z2z314h1h2)1/2(h§/2h4 V2 PRt

—

n—

Let £ be a constant. By applying an appropriate gauge transformation and
replacing the parameters, the equation A (2)g(z) = Eg(x) is equivalent
to a variant of g-Heun equation in (2).



To obtain the fourth degeneration, we apply the gauge transformation
AB (B, 1:2) = R_(2)?2 0 A®(h,1:2) o R_(2) 2.

Then we have

A8 (R, 1 2) (7)
= VO (h; 2) exp(—ia_0,) + W (I; 2) exp(ia_0.) + U (h,1; 2),
where
i 2
V<3>(h, Z) _ 6—271'&_ H(1 L 627r7lhne—71'a_6—27r7jz)7
n=1

4
W<3>(l, Z) _ 6—27ra_ 687Tiz H(]- - 627Tilne7ra_ 6—27772,2).

n=1



Fourth degeneration

Proposition 4. In Eq.(7), we replace z by z + iR, h,, (n = 1,2,3,4) by h,, + iR, [,
(n=1,2)byl, +iR, 1, (n =3,4) by l,, — ¢R and take the limit R — 400. Then we
arrive at the operator

AR (R, 1 2)
= V& (s 2) exp(—ia_8,) + W (I; 2) exp(ia_0,) + U® (b, 1; 2),

2
V<4>(h; Z) — g 2ma- H (1 . eQwihne—wa_e—QmiZ),
n=1
2 4
W<4> (l, Z) — pAmiz; H(]- o 627mln o~ e—27mz> H 627mln’
n=1 n=3
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By the multiplication and the gauge transformation given by

AW (h,1;z) = =R_(2) '™ 0 AW(h, I 2) 0 R_(2)e™,

we have
AW (R, 1; 2)
= VW (h; 2) exp(—ia_0,) + Wj(4>(l; 2)exp(ia_0,) — U (h,1; 2),
where
i 2
V<4>(h, Z) _ 627r7jz H(l . 627Tihn€—7ra_ 6—2772'2’)’
n=1

2
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Set z = €2™%, g = e~ 2%~ and replace e>™" and e by h,, and [,,.

Then the difference operator is written as
A ()g(x)
=17 (& — lng"?)(x — hag?)g(a/q)
+ 2 Usly(z — g ) (x — g ?)g(qx)
— {5 + L)z + (hhalslahho) 2 (hy Ry 2 + 13 PRy e Y ().

Let I be a constant. The equation A (z)g(z) = Eg(x) is ¢-Heun equa-
tion in (1).



Ruijsenaars-van Diejen operator
(N = 1: elliptic difference Heun equation )

|} trigonometric limit ¢, — 0
Firstly degenerated Ruijsenaars-van Diejen operator
l 2= 2+iR hy = hpn £ iR, R — 400

Secondly degenerated Ruijsenaars-van Diejen operator
(N = 1: a variant of g-Heun equation)

Il 2=2—4iR hpn = hpn FiR lp = ln —iR, R — +00

Thirdly degenerated Ruijsenaars-van Diejen operator
(N = 1: a variant of g-Heun equation)

l 2= 2+iR hy = hp + iR, 1, = I, iR, R — 400

Fourthly degenerated Ruijsenaars-van Diejen operator
(N = 1: g-Heun equation )



Painlev é-Heun correspondence

We obtain a correspondence between g-Painlev’'e equations and degen-
erate Ruijsenaars-van Diejen operators , which is g-deformation of Painlevé-
Heun correspondence.

We explain Painlev é-Heun correspondence in the setting of differential
equations.



Painlev é VI system (canonical formalism in analytical mechanics)

d\ _0H du  OH
dt  Op’ dt O\

A= DA - Hp® = {B(A = 1)(A = 1) + O1A(X — ¢)

+ (0 — DAXA =D+ k1(ko + 1)(A —1)].
By eliminating (¢, we obtain Painlevé VI equation for the variable A

Painlev é property
Painlevé VI is a non-linear ordinary differential equation whose solutions do
not have movable singularities other than poles.

Isomonodromic deformation
Painlevé VI is obtained by monodromy preserving deformation of the Fuch-
sian system with four singularities {0, 1, ¢, oo }.



2 X 2 Fuchsian system with sing.  {0,1,t, 00}

d—Y:A(z)Y, A(z)zﬂJr As + As Y:(wEED.

dz 2 2—1 z—-t

By eliminating y>(2), we have
d2y1 1—90 1—91 1—975 1 dy1
dz2+< z +z—1+z—t_z—>\ dz

1 AA—1 t(t—1)H
_1_(/{1(/624— ) 4 ( ) ( ) )>y1207

z(z — 1) 2(z—1)(z=X)  z(z—1)(z—t
1
£t — 1)
+ A AN—1t)+ (0: — DAXA =D} p+ ri(ka + 1) (A —1)].

A =D = t)u” = {(A = 1)(A — 1)

The condition for isomonodromic deformation (Painlevé VI) is written as
d\ OH du  OH
dt  op’ dt O\

(8)



Fuchsian system and Heun equation
Recall that the function ¥ (z) satisfies

d2y1+<1—90+1—91+1—9t 1 )dyl

dz? z z—1 s—t z—\/) dz
(/ﬁ)l(lﬁ'@—l—l) N AN =1 t(t—1)H )yl 0.

2(z — 1) 2(z—1)(z=X)  z(z—1)(z—1)

z = A: apparent (non-log.) singularity with exponents 0 and 2.

By the suitable limits A — 0, 1, ¢, 0o, we may obtain Heun equation.
For example we have

d2y1 <1 — (90 1 — (91 —(9,5 > dyl

— + + +

dz? 2 z—1  z—t) dz
Ki(ke +1)(z — 1)+ 0it(t — 1)p 0
22— 1)z —1) s

as \ — t.



Painlev é VI equation for variable ¢
1 isomonodromic deformation w.r.t. ¢

Fuchsian system with 4 singularities
dY Ag Ay Ay
= + + Y

%_ z z—1 z-—1t

1 specialisation
Heun equation



Difference Painlev é equations
Difference analogue of Painlevé equations which have nice properties

Singularity confinement,

Algebraic entropy = 0: (polynomial growth of degrees of solutions)
Symmetry of affine Weyl group,

Geometric construction from algebraic surfaces (Sakai’s table)

Elliptic difference B

q-difference Eél), Eél), Eél), Dél), AS), (Ay + AW
additive-difference B\, B\, B DY AW L

Our results are related with g-difference equations with the type Eél), Eél)

and D!" = ¢-pvI.



g-Painlev & VI (Jimbo, Sakai (1996))

pt)plgt) _ (A(t) — tay)(A(2) — tas)
b3b4 (A(t) — as)(A(t) — aa)

A(t)A(gt) _ (plgt) — thy)(pu(qt) — tby)
(304 (1(qt) — b3)(u(qt) — ba)

under the condition b1bsasas = qajasb3by.
It arises from the condition of preserving the connection matrix of linear g-
difference equations;

Y(gz) = (Ao + Az + A?)Y (z), Y(z) = ( Q%) |

By the limit ¢ — 1, we have the usual Painlevé VI and Fuchsian differential
equation with the singularities {0, 1,¢, 0o }.



Linear system of g-differential equations
Y(qr,t) = A(x, )Y (x,1). 9)

Connection matrix P(z,t) = Yy(z,t) 'Y (z,1)
Yo(x,t) (resp. Yoo (1, t) ): local solution about z = 0 (resp. x = 00)
Then we have P(qx,t) = P(x,t).

Connection preserving deformation
We deform A(x,t) int to preserve P(x, qt) = P(x,1)

Connection preserving deformation is described by compatibility condition
of Eq.(9) with a deformation equation

Y(z,qt) = B(x,t)Y (x,t) (10)
for some B(x,t),ie. A(x,qt)B(x,t) = B(qx,t)A(x,1).

We call Eqgs.(9, 10) a Lax form of g-Painlevé VI.



We focus on Eq.(9). The 2 X 2 matrix A(x, t) is taken in the form

Alat) = Aplt) + Ar(t)a + Aga® = (““@“) a”(x)) |

agl(x) a929 (CIZ’)
K1 0 :
Ay = ( ) ,  Ag(t) has eigenvalues t01, ts,
0 )
det A(x,t) = kiko(x — tay)(x — tas)(x — as)(x — ay).
Note that we have the relation k1 Kkoaiaga3a4 = 6165. Define A, 11, 1o by

CL12()\) =0, p1 = all()\)//ﬁa H2 — a22(>\)//<32

so that pyte = (A — tay) (A — tag)(A — a3)(\ — ay4) and introduce u
by p = (A — tay)(\ — tas)/(qr1p1). Then the matrix elements can be
parametrized by these variables and the gauge freedom w.



Yi(x) satisfies the following equation:

Yi(qg*z) — (all(qx) + a;fz((q;)) &22(517))5/1((]:1:)

+ a;i((qgi) (a11(x)agn(x) — aja(x)as (x))Yi(xz) = 0.




In our parametrization, we have

a12(q)
a12(x)
Coqr— A
=)

(a11(x)age(x) — a12(x)axn(x))

Kiko(x — tar)(x — tag)(x — as)(x — aq),

q(qr1 + K2)T° + cox® + 1o — NE(01 + 05)
T — \ ’

a12(qzx)
a12(x)
 Prika(A —az)(A — ag)p

Cy = Y — (g + 1)(gr1 + ko)A

qt(@l -+ 92) ()\ — Cblt)()\ — agt)
+ :
A AL
c1 = —qr1ka( X — ag)(\ — aq)p + (gr1 + ko)A
()\ — Cllt)()\ — Cbgt)
” .

ago(x) =

a11(qr) +

+ (g + 1)t(01 + 6,) —



Note that there are two accessory parameters A and 1, which play the role of
dependent variables in the g-Painlevé VI equation.

We impose a restriction on the accessory parameters as A = as.

Yi(¢°r) — {q(gr1 + w2)2® + diz + (01 + 02)}Y1 ()
+ riko(qr — a3)(x — tay)(x — tas)(x — aq)Yi(x) = 0,

where

t— i — t(6, +6
dy = (a1t — az)(agt —as) as(gky + fg) — qt (01 + 2).
asp as




Let u(x) be the function which satisfies u(qr) = (xr—tay)(x—tas)u(x).
Then the function f(x) = Y7 (qx)/u(qx) satisfies

(x —tar) (@ — tag) f(qz) + (Kike/q)(x — a3)(x — qaq) f(x/q) (11)
— {((gk1 + K2)/@)x* + (d1/q)x + t(01 + 02)} f(x) = 0.

Note that there is the relation K1 koa1asa3a4 = 6105. In Eq.(1), we set

—1/2

I = aitq"?, Iy = astq"?, hy = asq ™%, hy = auq"’?,

ls = 1/k1, Iy = q/Ka, (hs/ha)"? = 01 (a1asazaqk1k2) ",
E = dl/(/‘{,llig).

Then we have (hs/hy) ™% = 0y(aiasa3a4k1k2) "2 and Eq.(11).
Hence EqQ.(11) is obtained by the fourth degeneration of the Ruijsenaars-
van Diejen operator. We may regard d; as an accessory parameter.



Jimbo and Sakai (1996) obtained g-Painleve VI (or the g-Painlevé equation
of type Dél)) by finding "Lax forms”.

Yamada and Rains discovered Lax forms for the elliptic difference Painlevé
equation independently.

Yamada also found Lax forms of ¢-difference Painlevé equations of types
DM EM BV EM explicitly.

We observe that degenerete operators of Ruijsenaars-van Diejen appear
by restricting the parameters in the linear g-differential equations related to
g-Painlevé equations of types Eél), Eél).



Yamada (2011, IMRN) derived a g-difference Painlevé equation of type

Eél) by Lax formalism, i.e. the compatibility condition for two linear g-difference
equations. One of the linear difference equations is written as

(brg — 2)(baq — 2)(b3q — 2)(baq — 2)t* gz
L /)~ )] a2
(bst — 2)(bgt — 2) (gz — 1)t?
(g2) — y(2)
o [ = )
(brg — 1)(bag — 1)(bsg — 1)(bag — D)t*  bsbs(brg — t)(bsg — t)] y(2) = 0
9(fg—1)z*(9z — q) fgz3 |

We may regard f, g as accessory parameters. The other linear equation
(deformation equation) contains the difference on the variable ¢ as well as the
variable x. By compatibility condition for two linear difference equations, we
have ¢-Painlevé equation of type Eél) for the dependent variables f and ¢

and independent variable ¥.



We specialize the parameters to f = b; in Eq.(12). Then we obtain

(bag — 2)(b3q — 2)(bsq — 2)t° c(z)
o y(2/9) + S (b, = Z)y(Z) (13)
IS e

c(2) = —(¢"? +¢7'*)7°
4+ (blq—l/Q + b2q1/2 4+ b3q1/2 4+ b4q1/2 + b5tq1/2 4+ bth1/2)Z
q"/?tbsbe (b7 + bs)

+C1 + :
2

and the term ¢; contains the accessory parameter g.



By applying a gauge transformation, we have

(2 = b1)(2 — b2q) (2 — b3q) (2 — baq)

y(z/q) + c(2)y(z) (14)
+ (z — bst) (2 — bet)y(qz) = 0,
c(z) = —(¢"* +q71/?)7°

4+ (blq_1/2 + b2q1/2 4+ b3q1/2 4+ b4q1/2 + b5tq1/2 4+ bthl/Q)Z

1/ 2tbbe(bs + b
+01+q 562(7 8)’

By replacing ¢ to ¢!, Eq.(14) is equivalent to A® (2)g(x) = Eg(x), where
A3 (:1:) IS the third degenerated Ruijsenaars-van Diejen operator. The eigen-
value F essentially corresponds to the accessory parameter g in c;j.



Yamada (2011, IMRN) also derived a ¢-difference Painlevé equation of

type Eél) by Lax formalism, i.e. the compatibility condition for two linear g-
difference equations. Set

Bi(z)
Bs(z)

(1 —b12)(1 —boz)(1 — b3z)(1 — byz),
(1 —b52)(1 —bgz)(1 — br2)(1 — bgz).

Then one of the g-difference equations is written as

752B}g(t/z)) [ (42) — tQt(Zl_—ggZz)y(Z)] 15)
75231(Q/ 2) qt* — gz
a2 [(/) t?(q—gz)y(z>]

1 — t2 [ t*By(g/t)
fg— 1 (92 —q)  (fg—t2)(gz — t2)

] y(z) = 0.



We also obtain the g-Painlevé equation of type Eél) by a compatibility condi-

tion of Eq.(15) with the deformation equation.

By specializing to f = b; in Eq.(15) and applying a gauge transformation,
we have

(z — bst) (2 — bgt)(z — brt)(z — bst)y(qz) — c(2)y(z) (16)
+ (2 = 01)(2 — b2q) (2 — b3q) (2 — baq)y(2/q) = 0,
where
c(2) = ¢ V(14 q)2* + 32 + 2% + c12 + (bsbgbrbg + ¢*b1babsbs ) t2q},
c3 = —(by + bag + b3q + bsq + bstq + bgtq + brtq + bstq),
c1 = —q(babsbst®q” + bibabyt®q + bibsbst’q + bibabst’q
+ bbbt + bsbrbst 4 bsbgbst + bsbgbrt),

and the term co contains the accessory parameter g. There is a relation
qb1b2b3bs = b5bgb7bg in Yamada’s paper.



Eq.(16) is equivalent to A% (z)g(x) = Eg(x) by setting

hi = big "%, hy = baq'?, hy = bs3q"/?, hy = baq"?,
Iy = bsq'?t, 1o = beq'/?t, I = brq'/?t, 1y = bsq'/*t,

where A% (x) is the second degenerated Ruijsenaars-van Diejen operator.



Summary

e Heun equation: linear differential equation with 4 regular singularities

e ¢-Heun equations: linear g-difference equations, which admits 3 types

® Ruijsenaars-van Diejen system: difference version of Inozemtsev system

e Four degenerations of Ruijsenaars-van Diejen operator

® In one particle case, we obtain g-Heun equations

e Painlevé-Heun correspondence via Fuchsian system of equations

e (-Painlevé VI is obtained by connection preserving deformation of linear dif-
ference equations (Jimbo, Sakai)

® (¢-Heun equation is obtained by specialisation of the linear difference equa-
tions

e Yamada’s Lax pair for g-Painlevé equation

e Variants of g-Heun equations are obtained by specialisation of linear g-

difference equations related with g-Painlevé of types Dél), Eél) and Eél)



Problems

Extended our results to the case of  g-Painlev é equation of type Eé” and

the elliptic-difference Painlev & equation.

Yamada and his collaborators found Lax pairs of the g-Painlevée equations
of type Eél) and the elliptic-difference Painlevé equation. Rains and Ormerod
also found that. It might be necessary to find other realisation of Lax pairs.

Commuting operators for multivariable degenerate operators
Komori and Hikami proved existence of the commuting operators for the
multivariable Ruijsenaars-van Diejen operator [3].

Symmetry and Kernel functions of degenerate operators
Ruijsenaars-van Diejen operator of one variable admits Eg symmetry [7]
and a kernel function plays important roles.

Further degenerations of Ruijsenaars-van Diejen operator
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