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Abstract. The identity by Chaundy and Bullard expresses 1 as a sum of

two truncated binomial series in one variable where the truncations depend on
two different non-negative integers. We present basic and elliptic extensions

of the Chaundy–Bullard identity. The most general result, the elliptic exten-

sion, involves, in addition to the nome p and the base q, four independent
complex variables. Our proof uses a suitable weighted lattice path model. We

also show how three of the basic extensions can be viewed as Bézout identi-

ties. Inspired by the lattice path model, we give a new elliptic extension of
the binomial theorem, taking the form of an identity for elliptic commuting

variables. We further present variants of the homogeneous form of the identity

for q-commuting and for elliptic commuting variables.

1. Introduction

In earlier papers by two of the present authors [9, 10] the following identity
was analyzed in great detail,

(1.1) 1 = (1− x)n+1
m∑

k=0

(
n+ k

k

)
xk + xm+1

n∑
k=0

(
m+ k

k

)
(1− x)k,

where m,n ∈ N0 := {0, 1, 2, . . . } and x is a variable. The authors [9] originally
attributed this formula to Chaundy and Bullard [3]. As the present paper consti-
tutes a continuation of the papers [9, 10], we shall keep referring to (1.1) as the
Chaundy–Bullard identity. (In the follow-up paper [10] to [9] the authors pointed
out that an identity equivalent to (1.1) was already published by Pierre Raymond
de Montmort in 1713 [12], in one of the very first treatises on probability theory.)
This fundamental formula, expressing 1 as a sum of two truncated binomial series,
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was rediscovered many times over more than three hundred years. A lot of his-
tory and occurrences of this identity in various areas of mathematics were surveyed
in [9, 10], where several different proofs were compiled and connections to spe-
cial functions including Gauß hypergeometric series, incomplete beta integrals and
Krawtchouk polynomials were made explicit 1. One of the topics discussed in [9]
concerns a multivariate extension of the Chaundy–Bullard identity related to Lau-
ricella hypergeometric functions, with an explicit description of the corresponding
system of partial differential equations they satisfy.

One of the main purposes of the present paper is to present an elliptic extension
of the Chaundy–Bullard identity. Its proof (using a suitable lattice path model)
leads us even to discover a new elliptic extension of the binomial theorem.

In order to formulate our theorems, we introduce some notations. First we fix
q ∈ C, which we call a base, and for x ∈ C and k ∈ N0 define the q-shifted factorials
(x; q)k (also known as q-Pochhammer symbols) by

(1.2) (x; q)0 := 1 and (x; q)k :=

k−1∏
ℓ=0

(1− xqℓ), k = 1, 2, . . . .

For |q| < 1 we may also take k = ∞ in (1.2); the q-shifted factorial is then a
convergent infinite product. For x1, . . . , xs ∈ C products of q-shifted factorials
are abbreviated as (x1, . . . , xs; q)k :=

∏s
i=1(xi; q)k, where x1, . . . , xs ∈ C and k ∈

N0 ∪ {∞}. Next we fix another parameter p ∈ C with 0 < |p| < 1. The modified
Jacobi theta function with argument x ∈ C× := C \ {0} and nome p is defined by

(1.3) θ(x; p) := (x, p/x; p)∞.

We will frequently abbreviate products of modified Jacobi theta functions using
the notation θ(x1, . . . , xs; p) =

∏s
i=1 θ(xi; p) for x1, . . . , xs ∈ C×. For x ∈ C× and

k ∈ N0, the theta-shifted factorial (x; q, p)k (also called the q, p-shifted factorial) is
defined by

(x; q, p)0 := 1 and (x; q, p)k :=

k−1∏
ℓ=0

θ(xqℓ; p), k = 1, 2, . . . .

A product of theta-shifted factorials is compactly written as (x1, . . . , xs; q, p)k :=∏s
i=1(xi; q, p)k, where x1, . . . , xs ∈ C×, k ∈ N0.
Three simple identities satisfied by the modified Jacobi theta function are the

symmetry

θ(x; p) = θ(p/x; p),

the inversion formula

θ(1/x; p) = − 1

x
θ(x; p),

and the quasi-periodicity

θ(px; p) = − 1

x
θ(x; p),

1After seeing [9, 10], Slobodan Damjanovic kindly brought to the authors’ attention that

almost at the same time as Chaundy and Bullard published their paper [3], Kesava Menon gave
the identity (1.1) in [6, Equation (1.2)] as well. His proof uses partial fraction decomposition of

x−m(1− x)−n.
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which all easily follow from the definition in (1.3). In this paper we will make crucial
use of the following identity, the Weierstraß–Riemann addition formula [19, p. 451,
Example 5]

(1.4) θ(xy, x/y, uv, u/v; p)− θ(xv, x/v, uy, u/y; p) =
u

y
θ(yv, y/v, xu, x/u; p),

where x, y, u, v ∈ C×. For a discussion of (1.4) and a comparison with similar
relations, see [8].

Whereas we refer to the extensions of the Chaundy–Bullard identity that in-
volve q-shifted factorials as q-extensions or basic extensions (with q being the base)
of the Chaundy–Bullard identity, our elliptic extension of the Chaundy–Bullard
identity connects series containing ratios of products of modified Jacobi theta func-
tions (these ratios are in fact elliptic functions, justifying the terminology). These
basic and elliptic extensions actually involve truncated basic and elliptic hyperge-
ometric series (the text book [5] contains a comprehensive treatise of the theory of
these series; the elliptic cases is treated in Chapter 11). In Section 2 all our exten-
sions of the Chaundy–Bullard identity are obtained from scratch, without requiring
results from the theories of basic or elliptic hypergeometric series.

By definition, a function g(u) is elliptic, if it is a doubly-periodic meromorphic
function of the complex variable u.

As a consequence of the theory of theta functions (cf. [13, Theorem 1.3.3]) one
may assume without loss of generality that

g(u) =
θ(a1q

u, a2q
u, . . . , asq

u; p)

θ(b1qu, b2qu, . . . , bsqu; p)
z

for a positive integer s, a constant z and some a1, a2, . . . , as, b1, . . . , bs, and p, q
with |p| < 1, where the elliptic balancing condition (cf. [17]), namely

a1a2 · · · as = b1b2 · · · bs,

holds. (So, a linear combintation of two such expressions is again an expression of

the same form.) If one writes q = e2π
√
−1σ, p = e2π

√
−1τ , with complex σ and τ

and ℑτ > 0, then g(u) is indeed periodic in u with periods σ−1 and τσ−1. Keeping
this notation for p and q, denote the field of elliptic functions over C of the complex
variable u, meromorphic in u with the two periods σ−1 and τσ−1 by Equ;q,p.

More generally, denote the field of totally elliptic multivariate functions over
C of the complex variables u1, . . . , un, meromorphic in each variable2 with equal
periods, σ−1 and τσ−1, of double periodicity, by Equ1 ,...,qun ;q,p. The notion of
totally elliptic multivariate functions was first introduced by Spiridonov, see [17,
p. 317, Definition 11] (where the related notion of totally elliptic hypergeometric
series was defined) and [18, Definition 6].

We are ready to state our elliptic extension of the Chaundy–Bullard identity.

2Here we would like to mention Hartogs’ theorem and its analogue for meromorphic functions.

Hartogs’ theorem says informally that a multivariate function that is separably analytic (i.e.,
analytic in each independent variable) is analytic. Next, a separably meromorphic function is

meromorphic, see [16, Corollary 2].
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Theorem 1.1. Let a, b, c, x, q ∈ C×, p ∈ C with 0 < |p| < 1 and n,m ∈ N0.
Then, as an identity in Ex,a,b,c;q,p,

1 =
(ac, c/a, bx, b/x; q, p)n+1

(ab, b/a, cx, c/x; q, p)n+1
(1.5)

×
m∑

k=0

θ(acqn+2k; p)(acqn, bcqn, c/b, qn+1, ax, a/x; q, p)k
θ(acqn; p)(q, aq/b, abq1+n, ac, cqn+1/x, cxqn+1; q, p)k

qk

+
(bc, c/b, ax, a/x; q, p)m+1

(ab, a/b, cx, c/x; q, p)m+1

×
n∑

k=0

θ(bcqm+2k; p)(bcqm, acqm, c/a, qm+1, bx, b/x; q, p)k
θ(bcqm; p)(q, bq/a, abq1+m, bc, cqm+1/x, cxqm+1; q, p)k

qk.

In order to demonstrate that the identity (1.5) is an extension of the original
Chaundy–Bullard identity (1.1), we show how (1.5) can be reduced to (1.1) by
taking suitable limits. Since our formula (1.5) involves three parameters a, b, c ∈
C× in addition to the variable x, the base q and the nome p, we have several
intermediate identities between (1.1) and (1.5). Let

pm,n(x; a, b, c; q, p) :=
(ac, c/a, bx, b/x; q, p)n+1

(ab, b/a, cx, c/x; q, p)n+1
(1.6)

×
m∑

k=0

θ(acqn+2k; p)(acqn, bcqn, c/b, qn+1, ax, a/x; q, p)k
θ(acqn; p)(q, aq/b, abq1+n, ac, cqn+1/x, cxqn+1; q, p)k

qk.

Then (1.5) can be written as

(1.7) 1 = pm,n(x; a, b, c; q, p) + pn,m(x; b, a, c; q, p).

By the definition of the modified Jacobi theta function (1.3) with (1.2), one has
limp→0 θ(x; p) = 1 − x, and hence limp→0(x; q, p)k = (x; q)k, k ∈ N0; that is the
theta-shifted factorial is reduced to the q-shifted factorial in the limit p → 0. Then
the identity (1.7) with p = 0 holds with

pm,n(x; a, b, c; q, 0) :=
(ac, c/a, bx, b/x; q)n+1

(ab, b/a, cx, c/x; q)n+1
(1.8)

×
m∑

k=0

(1− acqn+2k)(acqn, bcqn, c/b, qn+1, ax, a/x; q)k
(1− acqn)(q, aq/b, abq1+n, ac, cqn+1/x, cxqn+1; q)k

qk.

Next, if in addition to p → 0 we take the further limit c → 0, then we have the
equality (1.7) with p = c = 0, in which

(1.9) pm,n(x; a, b, 0; q, 0) :=
(bx, b/x; q)n+1

(ab, b/a; q)n+1

m∑
k=0

(qn+1, ax, a/x; q)k
(q, aq/b, abq1+n; q)k

qk.

An equivalent form of this q-extension of the Chaundy–Bullard identity was ob-
tained by Ma in [11, Corollary 4.2] as a consequence of his six-variable generaliza-
tion of Ramanujan’s reciprocity theorem.

We can obtain another variant of a three-parametric Chaundy–Bullard identity
for x ∈ C with parameters a, b, q. In (1.7) with p = c = 0 and (1.9), we make the
substitution a 7→ δa, b 7→ bδ, x 7→ x/δ and then take the limit δ → 0. The obtained
equality is

(1.10) 1 = p̃m,n(x; a, b; q) + p̃n,m(x; b, a; q)
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with

(1.11) p̃m,n(x; a, b; q) :=
(bx; q)n+1

(b/a; q)n+1

m∑
k=0

(qn+1, ax; q)k
(q, aq/b; q)k

qk.

In the above identity (1.10) with (1.11) the variable b is actually redundant (the
substitutions a 7→ ab and x 7→ x/b applied to (1.11) eliminate the variable b) but it
is useful to keep the variable b for the a ↔ b symmetry.

Furthermore, if we substitute x 7→ x/b in (1.10) with (1.11) and then take the
limit b → 0, the equality is reduced to the identity

(1.12) 1 = (x; q)n+1

m∑
k=0

[
n+ k
k

]
q

xk + xm+1
n∑

k=0

[
m+ k

k

]
q

qk(x; q)k,

where the q-binomial coefficient is defined by

(1.13)

[
n
k

]
q

:=
(q; q)n

(q; q)k(q; q)n−k
, k ∈ {0, 1, . . . , n}.

Finally, if we take the limit q → 1, then (1.12) is reduced to the original Chaundy–
Bullard identity (1.1). We note that the q → 1 limit of the equality (1.10) with
(1.11) is equivalent to the original Chaundy–Bullard identity (1.1) where x is re-
placed by (1−ax)/(1−a/b), in light of the easily checked relation 1− (1−ax)/(1−
a/b) = (1− bx)/(1− b/a). To better distinguish the identities, we say that (1.12) is
the q-extension, (1.10) with (1.11) the (a, b; q)-extension of the first kind, (1.7) in
the case p = c = 0 with (1.9) the (a, b; q)-extension of the second kind, (1.7) in the
case p = 0 with (1.8) the (a, b, c; q)-extension, and (1.5) the (a, b; q, p)-extension, or
simply elliptic extension of the Chaundy–Bullard identity, respectively. Summariz-
ing the above linear scheme, we have the chain of objects

(1.6) → (1.8) → (1.9) → (1.11) → (1.12) → (1.1)
which respectively contain the following free variables:

(x, a, b, c; q, p) → (x, a, b, c; q) → (x, a, b; q) → (x, a; q) → (x; q) → (x).
At this point we would also like to remark that the various q-extensions of

the Chaundy–Bullard identity give rise to parameter dependent Chaundy–Bullard
identities after replacing the parameters a, b, and c, by qa, qb, and qc, respectively,
and taking the limit q → 1. (We leave the details to the reader.)

From the many different proofs that are known for the original Chaundy–
Bullard identity (1.1) [9, 10], in order to prove our elliptic extension in Theo-
rem 1.1, we develop the fifth proof given in [9]; a proof by enumerating weighted
lattice paths. Our construction of a suitable lattice path model with the proof of
Theorem 1.1 is given in Section 2. In Section 3, we show how the q-extension of
the Chaundy–Bullard identity (1.12) and its two kinds of (a, b; q)-extensions can
be alternatively derived by making use of Bézout’s identity. In Section 4 we look
at variants of the q-extended Chaundy–Bullard identity and relate them to corre-
sponding identities for q-commuting variables. Finally, in Section 5, inspired by
the lattice path model, we present a new elliptic binomial theorem, taking the form
of an identity for elliptic commuting variables. The elliptic binomial theorem in
Theorem 5.7 is similar to a result discovered earlier by one of the authors [15, The-
orem 2] and can be regarded as a companion result to that other one. In the same
section we also present variants of the homogeneous form of the Chaundy–Bullard
identity for elliptic commuting variables.
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2. Proof of Theorem 1.1 by enumerating weighted lattice paths

2.1. General Arguments. Let m,n ∈ N0 and consider a rectangular region
of the square lattice,

Λm+1,n+1 := {(i, j) : i ∈ {0, 1, . . . ,m+ 1}, j ∈ {0, 1, . . . , n+ 1}}.

Let Πm+1,n+1 be the set of all lattice paths from (0, 0) to (m+1, n+1) in Λm+1,n+1

using only unit east steps (i, j) → (i + 1, j) and unit north steps (i, j) → (i, j +
1). Such a path π consists of m + n + 2 successive unit steps, π = {st(π), t ∈
{1, 2, . . . ,m+n+2}}. Each step s in π ∈ Πm+1,n+1 is assigned a weight w(s). The
weight w(π) of a path π ∈ Πm+1,n+1 is defined to be a product of the weights of
the respective steps of the path:

w(π) :=
∏
s∈π

w(s) =

m+n+2∏
t=1

w(st(π)).

Next we specify the weights for each of the possible steps of paths in Πm+1,n+1.
Let h : Λm,n → C be a function which we will specialize later. For each i ∈
{0, 1, . . . ,m} we define the weight of a unit east step by

(2.1a) w((i, j) → (i+ 1, j)) :=

{
h(i, j), if j ∈ {0, 1, . . . , n},
1, if j = n+ 1,

and for each j ∈ {0, 1, . . . , n} the weight of a unit north step by

(2.1b) w((i, j) → (i, j + 1)) :=

{
1− h(i, j), if i ∈ {0, 1, . . . ,m},
1, if i = m+ 1.

We assume that

h(i, 0) ̸= 0, for i ∈ {0, 1, . . . ,m− 1}, and(2.2)

h(0, j) ̸= 1, for j ∈ {0, 1, . . . , n− 1}.

For π ∈ Πm+1,n+1 and τ ∈ {0, 1, 2, . . . ,m + n + 2}, define the truncated path πτ

by the path π terminated after τ steps. In particular, π0 = ∅ and πm+n+2 = π. By
the specific choices of weights in (2.1), for each πτ−1, τ ∈ {1, 2, . . . ,m+ n+ 2}, we
have ∑

πτ :πτ\sτ (πτ )=πτ−1

w(sτ (πτ )) = 1.

Hence by induction we can conclude that for each κ < τ , τ ∈ {1, 2, . . . ,m+n+2},
we have ∑

πτ :πτ\{sκ+1(πτ ),...,sτ (πτ )}=πκ

τ∏
i=κ+1

w(si(πi)) = 1.

and by setting κ = 0 obtain∑
πτ :π∈Πm+1,n+1

w(πτ ) = 1 for all τ ∈ {1, 2, . . . ,m+ n+ 2}.

In the case τ = m+ n+ 2, the above gives

(2.3)
∑

π∈Πm+1,n+1

w(π) = 1.
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For any (k, ℓ) ∈ Λm,n, the generating function A(k, ℓ) for all weighted lattice
paths from (0, 0) to (k, ℓ) is defined by A(0, 0) := 1 and

A(k, ℓ) :=
∑

π:(0,0)→(k,ℓ)

w(π), for (k, ℓ) ∈ Λm,n \ {(0, 0)},

where the sum is taken over {π : (0, 0) → (k, ℓ)}, the set of all lattice paths from
(0, 0) to (k, ℓ). By the specific assignment of weights in (2.1), A(k, ℓ) satisfies the
recurrence relation

h(k − 1, ℓ)A(k − 1, ℓ) + (1− h(k, ℓ− 1))A(k, ℓ− 1) = A(k, ℓ),(2.4a)

for k ∈ {1, 2, . . . ,m} and ℓ ∈ {1, 2, . . . , n},

with the boundary conditions

A(k, 0) =

k−1∏
i=0

h(i, 0), for k ∈ {1, 2, . . . ,m},(2.4b)

A(0, ℓ) =

ℓ−1∏
j=0

(1− h(0, j)), for ℓ ∈ {1, 2, . . . , n}.

Moreover, since the last step of a path in Πm+1,n+1 which is not a step along the
north or east boundary is either a step (k, n) → (k, n + 1) (k = 0, 1, . . . ,m) or a
step (m, ℓ) → (m+1, ℓ) (ℓ = 0, . . . , n), the above assignment of weights implies the
equality ∑

π∈Πm+1,n+1

w(π) =

m∑
k=0

(1− h(k, n))A(k, n) +

n∑
ℓ=0

h(m, ℓ)A(m, ℓ).

Hence by (2.3) we have the equality

(2.5) 1 =

m∑
k=0

(1− h(k, n))A(k, n) +

n∑
ℓ=0

h(m, ℓ)A(m, ℓ).

Under assumption (2.2), we put

B(k, ℓ) :=
A(k, ℓ)

A(k, 0)A(0, ℓ)
, for (k, ℓ) ∈ Λm,n.

Then we have from (2.4) the following system of difference equations

h(k − 1, ℓ)

h(k − 1, 0)
B(k − 1, ℓ) +

1− h(k, ℓ− 1)

1− h(0, ℓ− 1)
B(k, ℓ− 1) = B(k, ℓ),(2.6)

for k ∈ {1, 2, . . . ,m} and ℓ ∈ {1, 2, . . . , n},
B(k, 0) = 1, for k ∈ {0, 1, . . . ,m},
B(0, ℓ) = 1, for ℓ ∈ {0, 1, . . . , n},

which conversely uniquely determines the sequence
(
B(k, ℓ)

)
(k,ℓ)∈Λm,n

.

The above argument is summarized as follows.

Proposition 2.1. Assume that
(
h(i, j)

)
(i,j)∈Λm,n

is given so that (2.2) is sat-

isfied. Let
(
B(k, ℓ)

)
(k,ℓ)∈Λm,n

be uniquely given by (2.6). Define
(
A(k, ℓ)

)
(k,ℓ)∈Λm,n
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by A(0, 0) := 1, (2.4b) and

A(k, ℓ) := A(k, 0)A(0, ℓ)B(k, ℓ),(2.7)

for k ∈ {1, 2, . . . ,m} and ℓ ∈ {1, 2, . . . , n}.

Then the equality (2.5) holds.

2.2. Proof of (1.5). We choose the weight function h(i, j) as

(2.8) h(i, j) = hx;a,b,c;q,p(i, j) :=
θ(bcqi+2j , (c/b)qi, axqi, (a/x)qi; p)

θ(abqi+j , (a/b)qi−j , cxqi+j , (c/x)qi+j ; p)
,

where a, b, c, x, q, p ∈ C× and |p| < 1. This choice is motivated by the following
symmetry relation.

Lemma 2.2. The following equality holds,

(2.9) 1− hx;a,b,c;q,p(i, j) = hx;b,a,c;q,p(j, i).

Proof. By (2.8),

1− hx;a,b,c;q,p(i, j) = 1− θ(bcqi+2j , (c/b)qi, axqi, (a/x)qi; p)

θ(abqi+j , (a/b)qi−j , cxqi+j , (c/x)qi+j ; p)

=
(
θ(abqi+j , (b/a)qj−i, cxqi+j , (c/x)qi+j ; p)

+ (b/a)qj−iθ(bcqi+2j , (c/b)qi, axqi, (a/x)qi; p)
)

× θ(abqi+j , (b/a)qj−i, cxqi+j , (c/x)qi+j ; p)−1.

Now, with the substitution of variables (x, y, u, v) 7→ (cqi+j , aqi, bqj , x) in the
Weierstraß–Riemann addition formula (1.4), specifically

θ(abqi+j , (b/a)qj−i, cxqi+j , (c/x)qi+j ; p) +
b

a
qj−iθ(bcqi+2j , (c/b)qi, axqi, (a/x)qi; p)

= θ(acq2i+j , (c/a)qj , bxqj , (b/x)qj ; p),

the relation

1− hx;a,b,c;q,p(i, j) =
θ(acq2i+j , (c/a)qj , bxqj , (b/x)qj ; p)

θ(abqi+j , (b/a)qj−i, cxqi+j , (c/x)qi+j ; p)

is established as desired and the proof is complete. □

We would like to explain the motivation for our specific choice of the weight
function (2.8). Our weighted lattice model has a natural companion obtained by
reflection with respect to the diagonal going northeast form the origin. Then ac-
cording to (2.1) the corresponding weights w̃ of this companion are in terms of,

say, h̃(i, j) := 1 − h(j, i). So it would be pleasant to have a nice expression for h

such that h̃ also has a nice expression. Now observe that (1.4) can be rewritten
as 1 − hx;a,b,c;q,p(0, 0) = hx;b,a,c;q,p(0, 0) with hx;a,b,c;q,p(0, 0) given by (2.8) (which
does not yet dependent on q). This gives a motivation for defining hx;a,b,c;q,p(i, j) :=

hx;aqi,bqj ,cqi+j ;q,p(0, 0) so that we have h̃x;a,b,c;q,p(i, j) = 1− hx;b,a,c;q,p(i, j).
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With h(i, j) as given as in (2.8) the system (2.6) can be explicitly written as

θ(bcqk+2ℓ−1, abqk−1, (a/b)qk−1, cxqk−1, (c/x)qk−1; p)

θ(abqk+ℓ−1, (a/b)qk−ℓ−1, cxqk+ℓ−1, (c/x)qk+ℓ−1, bcqk−1; p)
B(k − 1, ℓ)(2.10)

+
θ(acq2k+ℓ−1, abqℓ−1, (b/a)qℓ−1, cxqℓ−1, (c/x)qℓ−1; p)

θ(abqk+ℓ−1, (b/a)qℓ−k−1, cxqk+ℓ−1, (c/x)qk+ℓ−1, acqℓ−1; p)
B(k, ℓ− 1)

= B(k, ℓ),

for k ∈ {1, 2, . . . ,m} and ℓ ∈ {1, 2, . . . , n},
B(k, 0) = 1, for k ∈ {0, 1, . . . ,m},
B(0, ℓ) = 1, for ℓ ∈ {0, 1, . . . , n}.

Lemma 2.3. The unique solution of (2.10) is given by

(2.11) B(k, ℓ) =
θ((a/b)qk−ℓ, b/a; p)(bcqℓ; q, p)k(acq

k, ab, cx, c/x, qk+1; q, p)ℓ
θ((a/b)qk, (b/a)qℓ; p)(bc; q, p)k(ac, abqk, cxqk, (c/x)qk, q; q, p)ℓ

qℓ,

for all (k, ℓ) ∈ Λm,n.

Proof. The proof proceeds by induction on k + ℓ. Since B(0, 0) = 1 by the
system (2.10), the k + ℓ = 0 case is trivial. Further, if k = 0 or ℓ = 0, the values
B(k, 0) = B(0, ℓ) = 1 specified in (2.10) agree with those in (2.11). Finally, let
k, ℓ > 0 and assume that the solution for B(i, j) is given in (2.11) for all (i, j) ∈ Λm,n

with i+j < k+ℓ. Then the left-hand side of (2.10) is, with (2.11) applied to rewrite
B(k − 1, ℓ) and B(k, ℓ− 1) by induction,

θ(b/a; p)(bcqℓ; q, p)k(acq
k, ab, cx, c/x, qk+1; q, p)ℓq

ℓ

θ((a/b)qk, (b/a)qℓ; p)(bc; q, p)k(ac, abqk, cxqk, (c/x)qk, q; q, p)ℓ

×
(
θ(bcqk+2ℓ−1, acqk−1, qk, (a/b)qk; p)

θ(acqk+ℓ−1, bcqk+ℓ−1, qk+ℓ; p)

− a

b
qk−ℓ θ(acq

2k+ℓ−1, bcqℓ−1, qℓ, (b/a)qℓ; p)

θ(acqk+ℓ−1, bcqk+ℓ−1, qk+ℓ; p)

)
=

C(k, ℓ)

θ((a/b)qk−ℓ, acqk+ℓ−1, bcqk+ℓ−1, qk+ℓ; p)

× θ((a/b)qk−ℓ, b/a; p)(bcqℓ; q, p)k(acq
k, ab, cx, c/x, qk+1; q, p)ℓ

θ((a/b)qk, (b/a)qℓ; p)(bc; q, p)k(ac, abqk, cxqk, (c/x)qk, q; q, p)ℓ
qℓ,

with

C(k, ℓ) = θ(bcqk+2ℓ−1, acqk−1, qk, (a/b)qk; p)

− a

b
qk−ℓθ(acq2k+ℓ−1, bcqℓ−1, qℓ, (b/a)qℓ; p).

Here we again use the Weierstraß–Riemann addition formula (1.4), now with the

substitution (x, y, u, v) 7→ (a
1
2 c

1
2 qk+ℓ− 1

2 , a−
1
2 bc

1
2 qℓ−

1
2 , a

1
2 c

1
2 qk−

1
2 , a

1
2 c

1
2 q−

1
2 ). This

yields the equality

C(k, ℓ) = θ((a/b)qk−ℓ, acqk+ℓ−1, bcqk+ℓ−1, qk+ℓ; p)

and the proof is complete. □
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Proof of (1.5). With the specific choice of h(i, j) in (2.8) we obtain from
(2.4b) and (2.7) the following explicit formulas for A(k, l):

A(k, 0) =

k−1∏
i=0

θ(bcqi, (c/b)qi, axqi, (a/x)qi; p)

θ(abqi, (a/b)qi, cxqi, (c/x)qi; p)
=

(bc, c/b, ax, a/x; q, p)k
(ab, a/b, cx, c/x; q, p)k

,

for k ∈ {0, 1, . . . ,m},

A(0, ℓ) =

ℓ−1∏
j=0

θ(acqj , (c/a)qj , bxqj , (b/x)qj ; p)

θ(abqj , (b/a)qj , cxqj , (c/x)qj ; p)
=

(ac, c/a, bx, b/x; q, p)ℓ
(ab, b/a, cx, c/x; q, p)ℓ

,

for ℓ ∈ {0, 1, . . . , n},

A(k, ℓ) = B(k, ℓ)
(bc, c/b, ax, a/x; q, p)k
(ab, a/b, cx, c/x; q, p)k

(ac, c/a, bx, b/x; q, p)ℓ
(ab, b/a, cx, c/x; q, p)ℓ

,

for k ∈ {1, 2, . . . ,m} and ℓ ∈ {1, 2, . . . , n}.
Combining the last equation with Lemma 2.3, we have

A(k, ℓ) = θ
(a
b
qk−ℓ; p

) (bcqℓ, c/b, ax, a/x; q, p)k(qk+1, acqk, c/a, bx, b/x; q, p)ℓ
(a/b; q, p)k+1(q, q(b/a); q, p)ℓ(ab, cx, c/x; q, p)k+ℓ

qℓ,

= θ
( b
a
qℓ−k; p

) (acqk, c/a, bx, b/x; q, p)ℓ(qℓ+1, bcqℓ, c/b, ax, a/x; q, p)k
(b/a; q, p)ℓ+1(q, q(a/b); q, p)k(ab, cx, c/x; q, p)ℓ+k

qk,

for (k, ℓ) ∈ Λm,n.

Inserting this explicit expression for A(k, l), and those for h(i, j) and 1 − h(i, j)
from (2.8) and (2.9), respectively, into (2.5) settles (1.5). □

3. Chaundy–Bullard type identities viewed as Bézout identities

As pointed out in [9, Remark 2.2], the Chaundy–Bullard identity (1.1) can be
regarded as a Bézout identity,

(3.1) 1 = P (1)(x)Q(1)(x) + P (2)(x)Q(2)(x).

Here P (1)(x) and P (2)(x) are polynomials in C[x] of degrees n + 1 and m + 1,
respectively, with no common zeros. The polynomials Q(1)(x) and Q(2)(x) in (3.1)
have degree m and n, respectively, and are moreover unique. If we set P (1)(x) =
(1 − x)n+1 and P (2)(x) = xm+1, they are polynomials without common zeros of
degree n+ 1 and m+ 1, respectively. Hence we have the equality

(3.2) 1 = (1− x)n+1Q(1)
m,n(x) + xm+1Q(2)

m,n(x),

where Q
(1)
m,n(x) and Q

(2)
m,n(x) are polynomials of degree m and n, respectively. They

are uniquely determined by using the symmetry Q
(2)
m,n(x) = Q

(1)
n,m(1−x) and finding

Q
(1)
m,n(x) by dividing both sides of the identity in (3.2) by (1− x)n+1 and carrying

out Taylor expansion in x, with the result being given by (1.1).
It is natural to ask whether this interpretation extends and can be used to also

prove the various extensions of the Chaundy–Bullard identity. This can indeed be
done for three of the basic extensions (namely, the q-extension and the two (a, b; q)-
extensions), as these implicitly involve polynomial bases. We did not succeed in in-
terpreting the (a, b, c; q)-extension or the elliptic extension of the Chaundy–Bullard
identity as Bézout identities (as the underlying bases there are not polynomial bases
but special rational function bases, respectively, elliptic function bases).
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The analysis in this section strongly connects to results in basic hypergeometric
series (cf. [5]). The basic hypergeometric series r+1ϕr is defined by

r+1ϕr

[
a0, a1, . . . , ar
b1, . . . , br

; q, z

]
:=

∞∑
k=0

(a0, a1, · · · , ar; q)k
(q, b1, · · · , br; q)k

zk,

where |z| < 1 and |q| < 1, if the series does not terminate, for convergence [5].

3.1. q-Extension of the Chaundy–Bullard identity. While the first and
second term on the right-hand side of original Chaundy–Bullard identity (1.1) are
evidently symmetric with respect to the simple involution (x, n,m) 7→ (1−x,m, n),
the corresponding symmetry for (1.12), i.e.

(3.3) 1 = (x; q)n+1

m∑
k=0

[
n+ k
k

]
q

xk + xm+1
n∑

k=0

[
m+ k

k

]
q

qk(x; q)k,

is less evident. In order to clarify the “hidden” symmetry, we shall look at the
transition matrix of the two respective polynomial bases [xn]n∈N0

and [(x; q)n]n∈N0
.

This will enable us to interpret (3.3) as a Bézout identity (3.1).
By the q-binomial theorem, we have (cf. [5, Ex. 1.2 (vi)])

(x; q)n =

n∑
k=0

[
n
k

]
q

(−1)kq(
k
2)xk.

Now, defining the lower-triangular matrix F = (fnk)n,k∈N0
by its entries

fnk =

[
n
k

]
q

(−1)kq(
k
2),

the inverse of F is known to be the lower-triangular matrix G = (gnk)n,k∈N0 with
entries

gnk =

[
n
k

]
q

(−1)kq(
k
2)+k(1−n).

(This matrix inversion is equivalent to the case a → 0 in the matrix inversion for
B in [2].) A simple computation reveals that

gnk(q) = fnk(q
−1).

Therefore, the relation

(3.4a) (x; q)n =

n∑
k=0

fnk(q)x
k

is equivalent to

(3.4b) xn =

n∑
k=0

fnk(q
−1)(x; q)k.

Let C(q)[x] be the vector space of polynomials in x with coefficients that are
rational functions in q over the field C. We define the linear operator T on C(q)[x]
by

T
∑
k≥0

ck(q)x
k =

∑
k≥0

ck(q
−1)(x; q)k.

Note that T is an involution (this follows immediately from (3.4)) but not a ho-
momorphism (unless q = 1). To derive (1.12) using Bézout’s identity, observe
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that for each m,n there exist unique polynomials Q
(1)
m,n and Q

(2)
m,n of degree m,n,

respectively, such that

1 = (x; q)n+1Q
(1)
m,n(x; q) + xm+1Q(2)

m,n(x; q).

This implies
1

(x; q)n+1
= Q(1)

m,n(x; q) +O(xm+1) as x → 0.

The next step is to compute Q
(1)
m,n(x; q) by using

(3.5)
1

(x; q)n+1
=

m∑
k=0

[
n+ k
k

]
q

xk +O(xm+1) as x → 0,

a result which is easily deduced from the non-terminating q-binomial theorem [5,
Equation (II.3)].

If we can show that

T

(
(x; q)n+1

m∑
k=0

[
n+ k
k

]
q

xk

)
= xn+1Q(2)

n,m(x; q),

for

Q(2)
m,n(x; q) =

n∑
k=0

[
m+ k

k

]
q

qk(x; q)k,

then we are done, as Q
(2)
n,m(x; q) must have degree m and be unique. The compu-

tations are as follows:

T

(
(x; q)n+1

m∑
k=0

[
n+ k
k

]
q

xk

)

= T

n+1∑
ℓ=0

m∑
k=0

[
n+ 1
ℓ

]
q

(−1)ℓq(
ℓ
2)
[
n+ k
k

]
q

xk+ℓ

=

n+1∑
ℓ=0

m∑
k=0

[
n+ 1
ℓ

]
q−1

(−1)ℓq−(
ℓ
2)
[
n+ k
k

]
q−1

(x; q)k+ℓ

=

m∑
k=0

[
n+ k
k

]
q−1

(x; q)k

n+1∑
ℓ=0

[
n+ 1
ℓ

]
q−1

(−1)ℓq−(
ℓ
2)(xqk; q)ℓ

=

m∑
k=0

[
n+ k
k

]
q−1

(x; q)k x
n+1qk(n+1)

= xn+1
m∑

k=0

[
n+ k
k

]
q

qk(x; q)k,

which settles (3.3).

3.2. (a, b; q)-extension of the first kind of the Chaundy–Bullard iden-
tity. Next we consider the (a, b; q)-extensions of the fist kind;

(3.6) 1 =
(bx; q)n+1

(b/a; q)n+1

m∑
k=0

(qn+1, ax; q)k
(q, aq/b; q)k

qk +
(ax; q)m+1

(a/b; q)m+1

n∑
k=0

(qm+1, bx; q)k
(q, bq/a; q)k

qk.

The transition matrix F = (fnk)n,k∈N0 between the polynomial bases [(ax; q)n]n∈N0

and [(bx; q)n]n∈N0
is clearly symmetric in a and b. We actually do not need its
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explicit form here but nevertheless note that the connection coefficients are given
by

fnk(a, b; q) =
(b/a; q)n(q

−n; q)k
(q, aq1−n/b; q)k

qk

(the coefficients of the inverse sequence are gnk(a, b; q) = fnk(b, a; q)); the connect-
ing relation

n∑
k=0

fnk(a, b; q)(ax; q)k = (bx; q)n

is equivalent to the q-Chu–Vandermonde summation [5, Equation (II.6)] (which
conversely uniquely determines the connection coefficients fnk(a, b; q)).

To prove (3.6) using Bézout’s identity, observe that for each m,n there exist

unique polynomials Q
(1)
m,n and Q

(2)
m,n of degree m,n, respectively, such that

(3.7) 1 = (bx; q)n+1Q
(1)
m,n(a, b, x; q) + (ax; q)m+1Q

(2)
m,n(a, b, x; q).

This implies

1

(bx; q)n+1
= Q(1)

m,n(a, b, x; q) mod (ax; q)m+1.

The next step is to compute Q
(1)
m,n(a, b, x; q) by using the (a, b, c) 7→ (qn+1, ax, aq/b)

special case of [5, Appendix (II.23)], which is

(b/a; q)n+1

(bx; q)n+1
= 2ϕ1

[
qn+1, ax
aq/b

; q, q

]
+

(b/a, qn+1, ax; q)∞
(a/b, bqn+1/a, bx; q)∞

2ϕ1

[
bqn+1/a, bx

bq/a
; q, q

]
.

This implies

1

(bx; q)n+1
=

1

(b/a; q)n+1

m∑
k=0

(qn+1, ax; q)k
(q, aq/b; q)k

qk mod (ax; q)m+1,

for (ax; q)m+1 divides (ax; q)k for each k > m. Hence we deduce

Q(1)
m,n(a, b, x; q) =

1

(b/a; q)n+1

m∑
k=0

(qn+1, ax; q)k
(q, aq/b; q)k

qk.

Since, in addition to (3.7), we also have

1 = (bx; q)n+1Q
(2)
n,m(b, a, x; q) + (ax; q)m+1Q

(1)
n,m(b, a, x; q),

it follows by uniqueness (Q
(1)
m,n(a, b, x; q) and Q

(2)
n,m(b, a, x; q) have the same degree

m) that we must have

Q(1)
m,n(a, b, x; q) = Q(2)

n,m(b, a, x; q),

which settles (3.6).

3.3. (a, b; q)-extension of the second kind of the Chaundy–Bullard
identity. The following identity of polynomials in C(q, a, b)[x+x−1] is the (a, b; q)-
extension of the second kind,

1 =
(bx, b/x; q)n+1

(ab, b/a; q)n+1

m∑
k=0

(qn+1, ax, a/x; q)k
(q, aq/b, abq1+n; q)k

qk(3.8)

+
(ax, a/x; q)m+1

(ab, a/b; q)m+1

n∑
k=0

(qm+1, bx, b/x; q)k
(q, bq/a, abq1+m; q)k

qk.
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The transition matrix between the two polynomial sequences [(ax, a/x; q)n]n∈N0

and [(bx, b/x; q)n]n∈N0 is clearly symmetric in a and b. We actually do not need its
explicit form here but nevertheless note that the connection coefficients are given
by

f̃nk(a, b; q) =
(ab, b/a; q)n(q

−n; q)k
(q, ab, aq1−n/b; q)k

qk

(the coefficients of the inverse sequence are g̃nk(a, b; q) = fnk(b, a; q)); the connect-
ing relation

n∑
k=0

f̃nk(a, b; q)(ax, a/x; q)k = (bx, b/x; q)n

is equivalent to the q-Pfaff–Saalschütz summation [5, Equation (II.12)] (which con-

versely uniquely determines the connection coefficients f̃nk(a, b; q)).
To prove (3.8) using Bézout’s identity, observe that for each m,n there exist

unique polynomials Q
(1)
m,n and Q

(2)
m,n of degree m,n, respectively, such that

(3.9)

1 = (bx, b/x; q)n+1Q
(1)
m,n(a, b, x+ x−1; q) + (ax, a/x; q)m+1Q

(2)
m,n(a, b, x+ x−1; q).

This implies

1

(bx, b/x; q)n+1
= Q(1)

m,n(a, b, x+ x−1; q) mod (ax, a/x; q)m+1.

The next step is to compute Q
(1)
m,n(a, b, x + x−1; q) by using the (a, b, c, e, f) 7→

(qn+1, ax, a/x, aq/b, abqn+1) special case of [5, Appendix (II.24)], which is

(ab, b/a; q)n+1

(bx, b/x; q)n+1
= 3ϕ2

[
qn+1, ax, a/x
aq/b, abqn+1 ; q, q

]
+

(b/a, qn+1, ax, a/x, b2qn+1; q)∞
(a/b, bqn+1/a, bx, b/x, abqn+1; q)∞

3ϕ2

[
bqn+1/a, bx, b/x
bq/a, b2qn+1 ; q, q

]
.

The last equation implies

1

(bx, b/x; q)n+1

=
1

(ab, b/a; q)n+1

m∑
k=0

(qn+1, ax, a/x; q)k
(q, aq/b, abqn+1; q)k

qk mod (ax, a/x; q)m+1,

for (ax, a/x; q)m+1 divides (ax, a/x; q)k for each k > m. Hence we deduce

Q(1)
m,n(a, b, x+ x−1; q) =

1

(ab, b/a; q)n+1

m∑
k=0

(qn+1, ax, a/x; q)k
(q, aq/b, abqn+1; q)k

qk.

Since, in addition to (3.9), we also have

1 = (bx, b/x; q)n+1Q
(2)
n,m(b, a, x+ x−1; q) + (ax, a/x; q)m+1Q

(1)
n,m(b, a, x+ x−1; q),

it follows by uniqueness (Q
(1)
m,n(a, b, x+ x−1; q) and Q

(2)
n,m(b, a, x+ x−1; q) have the

same degree m) that we must have

Q(1)
m,n(a, b, x+ x−1; q) = Q(2)

n,m(b, a, x+ x−1; q),

which settles (3.8).
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4. Variants of the q-extended Chaundy–Bullard identities and
q-commuting variables

In the original (1.1), if we replace x by x/(x− 1) and multiply the identity by
(1− x)m+n+1, a variant is obtained, namely

(1− x)m+n+1 =

m∑
k=0

(
n+ k

k

)
(−1)kxk(1− x)m−k(4.1)

+ (−1)m+1xm+1
n∑

k=0

(
m+ k

k

)
(1− x)n−k.

As discussed in [9], (1.1) is equivalent to the identity in the form involving two
variables x and y,

(x+ y)m+n+1 = yn+1
m∑

k=0

(
n+ k

k

)
xk(x+ y)m−k(4.2)

+ xm+1
n∑

k=0

(
m+ k

k

)
yk(x+ y)n−k,

which is in homogeneous form.
In order to give a q-extension of the homogeneous Chaundy–Bullard identity

(4.2), we consider the unital algebra Cq[X,Y ] defined over C generated by X,Y ,
satisfying the relation

Y X = qXY.

Cq[X,Y ] can be regarded as a q-deformation of the commutative algebra C[x, y]. We
call X,Y forming Cq[X,Y ] q-commuting variables. The following binomial theorem
for q-commuting variables is well known (see [7, 15] and references therein),

(X + Y )n =

n∑
k=0

[
n
k

]
q

XkY n−k,

for X,Y ∈ Cq[X,Y ], where the q-binomial coefficient is defined by (1.13).
Then, from Theorem 5.4 we obtain that a q-extension of (4.2) is given by

(X + Y )m+n+1 = Y n+1
m∑

k=0

[
n+ k
k

]
q

q−(n+1)k Xk(X + Y )m−k

+Xm+1
n∑

k=0

[
m+ k

k

]
q−1

q(m+1)k Y k(X + Y )n−k,

for X,Y ∈ Cq[X,Y ]. This is the homogeneous form of the q-extension of the
Chaundy–Bullard identity (1.12). The left-hand and right-hand sides of this iden-
tity are both invariant under the transformation (X,Y, q,m, n) 7→ (Y,X, q−1, n,m).

5. Elliptic Extensions of the Binomial Theorem

Recall (from Section 1) that we denote by Ea1,a2,...,as;q,p the field of totally
elliptic functions over C, in the complex variables logq a1, . . . , logq as, with equal

periods σ−1, τσ−1 (where q = e2π
√
−1σ, p = e2π

√
−1τ , σ, τ ∈ C, ℑτ > 0), of double

periodicity.
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5.1. An elliptic extension of the binomial theorem. In [15, Theorem 2]
one of the authors proved an elliptic extension of the binomial theorem which
we recall for convenience and for comparison with our new analogous result in
Theorem 5.7 below.

For indeterminates a, b, complex numbers q, p (with |p| < 1), and nonnegative
integers n, k, define a variant of elliptic binomial coefficients, which here, for better
distinction from (5.9), we may refer to as W -binomial coefficients as follows (this
is exactly the expression for w(P((0, 0) → (k, n− k))) in [14, Theorem 2.1]):

(5.1)

[
n
k

]
a,b;q,p

:=
(q1+k, aq1+k, bq1+k, aq1−k/b; q, p)n−k

(q, aq, bq1+2k, aq/b; q, p)n−k
.

TheW -binomial coefficient is indeed elliptic. In particular, [ nk ]a,b;q,p ∈ Ea,b,qn,qk;q,p.

It is immediate from the definition of (5.1) that (for integers n, k) there holds

(5.2a)

[
n
0

]
a,b;q,p

=

[
n
n

]
a,b;q,p

= 1,

and

(5.2b)

[
n
k

]
a,b;q,p

= 0, whenever k = −1,−2, . . . , or k > n.

Furthermore, using the Weierstraß–Riemann addition formula in (1.4) one can ver-
ify the following recursion formula for the elliptic binomial coefficients:

(5.2c)

[
n+ 1
k

]
a,b;q,p

=

[
n
k

]
a,b;q,p

+

[
n

k − 1

]
a,b;q,p

Wa,b;q,p(k, n+ 1− k),

for nonnegative integers n and k, where the elliptic weight function Wa,b;q,p is
defined on N2

0 as

(5.3) Wa,b;q,p(s, t) :=
θ(aqs+2t, bq2s, bq2s−1, aq1−s/b, aq−s/b; p)

θ(aqs, bq2s+t, bq2s+t−1, aq1+t−s/b, aqt−s/b; p)
qt.

Clearly, Wa,b;q,p(s, 0) = 1, for all s. If one lets p → 0, a → 0, then b → 0 (in
this order), the weights in (5.3) reduce to the standard q-weights

Wq(s, t) := lim
b→0

(
lim
a→0

(
lim
p→0

Wa,b;q,p(s, t)
))

= qt,

and the relations in (5.2) reduce to[
n
0

]
q

=

[
n
n

]
q

= 1,[
n+ 1
k

]
q

=

[
n
k

]
q

+

[
n

k − 1

]
q

qn+1−k,

for positive integers n and k with n ≥ k, which is a well-known recursion for the
q-binomial coefficients. (If instead, one lets p → 0, b → 0, and then a → 0 (in
this order), the weight function in (5.3) reduces to q−t and (5.2) reduces to the
recursion for the q-binomial coefficients where q has been replaced by q−1.) In [14]
lattice paths in the integer lattice N2

0 were enumerated with respect to precisely
this weight function. A similar weight function was subsequently used by Borodin,
Gorin and Rains in [1, Section 10] (see in particular the expression obtained for
w(i,j+1)
w(i,j) on p. 780 of that paper) in the context of weighted lozenge tilings.
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Definition 5.1. For two complex numbers q and p with |p| < 1, let
Cq,p[X,Y,Ea,b;q,p] denote the associative unital algebra over C, generated by X, Y ,
and the commutative subalgebra Ea,b;q,p, satisfying the following three relations:

Y X = Wa,b;q,p(1, 1)XY,(5.4a)

Xf(a, b) = f(aq, bq2)X,(5.4b)

Y f(a, b) = f(aq2, bq)Y,(5.4c)

for all f ∈ Ea,b;q,p.

We refer to the variables X,Y, a, b forming Cq,p[X,Y,Ea,b;q,p] as elliptic com-
muting variables. The algebra Cq,p[X,Y,Ea,b;q,p] reduces to Cq[X,Y ] if one formally
lets p → 0, a → 0, then b → 0 (in this order), while (having eliminated the nome p)
relaxing the condition of ellipticity. It should be noted that the monomials XkY l

form a basis for the algebra Cq,p[X,Y,Ea,b;q,p] as a left module over Ea,b;q,p, i.e., any
element can be written uniquely as a finite sum

∑
k,l≥0 fklX

kY l with fkl ∈ Ea,b;q,p

which we call the normal form of the element.
The following result from [15, Theorem 2] shows that the normal form of the

binomial (X + Y )n is nice; each (left) coefficient of XkY n−k completely factorizes
as an expession in Ea,b;q,p.

Theorem 5.2 (Binomial theorem for variables in Cq,p[X,Y,Ea,b;q,p]). Let n ∈
N0. Then, as an identity in Cq,p[X,Y,Ea,b;q,p], we have

(5.5) (X + Y )n =

n∑
k=0

[
n
k

]
a,b;q,p

XkY n−k.

In [15] convolution was applied to this result (together with comparison of
coefficients) to recover Frenkel and Turaev’s 10V9 summation [4] (see also [5, Equa-
tion (11.4.1)]), an identity which is fundamental to the theory of elliptic hypergeo-
metric series:

Proposition 5.3 (Frenkel and Turaev’s 10V9 summation). Let n ∈ N0 and
a, b, c, d, e, q, p ∈ C with |p| < 1. Then there holds the following identity:

n∑
k=0

θ(aq2k; p)

θ(a; p)

(a, b, c, d, e, q−n; q, p)k
(q, aq/b, aq/c, aq/d, aq/e, aqn+1; q, p)k

qk(5.6)

=
(aq, aq/bc, aq/bd, aq/cd; q, p)n
(aq/b, aq/c, aq/d, aq/bcd; q, p)n

,

where a2qn+1 = bcde.

It is straightforward to use the lattice path model to derive a homogeneous
Chaundy–Bullard identity for the elliptic commuting variables forming the algebra
Cq,p[X,Y,Ea,b;q,p]. (We omit the details; it is also principle possible to verify the
identity by induction.) The result is as follows:

Theorem 5.4 (Homogeneous Chaundy–Bullard identity for variables in
Cq,p[X,Y,Ea,b;q,p]). Let n,m ∈ N0. Then the following identity is valid in
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Cq,p[X,Y,Ea,b;q,p]:

(X + Y )m+n+1 =

m∑
k=0

[
n+ k
k

]
a,b;q,p

XkY n+1(X + Y )m−k

(5.7)

+

n∑
k=0

[
m+ k
m

]
a,b;q,p

Wa,b;q,p(m+ 1, k)Xm+1Y k(X + Y )n−k.

5.2. A new elliptic extension of the binomial theorem. Inspired by the
lattice path model in Section 2 of this paper, we present a new elliptic extension of
the binomial theorem which is similar to Theorem 5.2 but different, see Theorem 5.7
below.

First define hx;a,b,c;q,p(i, j) as in (2.8), and let

(5.8) Hx;a,b,c:q,p(i, j) :=
hx;a,b,c;q,p(i, j)

hx;a,b,c;q,p(i, 0)
.

With B(k, ℓ) given by (2.11) in Lemma 2.3, for n ∈ N0 we define a variant of
elliptic binomial coefficients, which (in view of Proposition 5.5) one may refer to as
H-binomial coefficients, by

(5.9)

[
n
k

]
x;a,b,c;q,p

:=

{
B(k, n− k), k ∈ {0, 1, . . . , n},
0, k ∈ −N0 or k > n.

Then using the symmetry (2.9) in Lemma 2.2, the assertion of Lemma 2.3 is rewrit-
ten as follows.

Proposition 5.5. For n ∈ N0, 0 ≤ k ≤ n,[
n+ 1
k

]
x;a,b,c;q,p

=

[
n

k − 1

]
x;a,b,c;q,p

Hx;a,b,c;q,p(k − 1, n+ 1− k)(5.10)

+

[
n
k

]
x;a,b,c;q,p

Hx;b,a,c;q,p(n− k, k).

It is obvious that the H-binomial coefficients

[
n
k

]
x;a,b,c;q,p

have a nice combi-

natorial interpretation in terms of weighted lattice paths. The generating function
wx;a,b,c;q,p with respect to the weights Hx;a,b,c;q,p of all paths from (0, 0) to (k, n−k)
is clearly

(5.11) wx;a,b,c;q,p(P((0, 0) → (k, n− k))) =

[
n
k

]
x;a,b,c;q,p

.

We now define a new elliptic extension of the non-commutative algebra Cq[X,Y ]:

Definition 5.6. For two complex numbers q and p with |p| < 1, let
Cq,p[X,Y,Ex,a,b,c;q,p] denote the associative unital algebra over C, generated by
X, Y , and the commutative subalgebra Ex,a,b,c;q,p, satisfying the following three
relations:

Y X = Hx;a,b,c:q,p(0, 1)XY(5.12a)

Xf(x, a, b, c) = f(x, aq, b, cq)X,(5.12b)

Y f(x, a, b, c) = f(x, a, bq, cq)Y,(5.12c)
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for all f ∈ Ex,a,b,c;q,p.

Just as for the variables X,Y, a, b forming Cq,p[X,Y,Ea,b;q,p] in Definition 5.1,
we refer to the variablesX,Y, x, a, b, c forming Cq,p[X,Y,Ex,a,b,c;q,p] in Definition 5.6
as elliptic-commuting variables.

We note the following useful relations that follow from (2.8) and (5.12):

X hx;a,b,c;q,p(i, j)
±1 = hx;a,b,c;q,p(i+ 1, j)±1 X,(5.13a)

X hx;b,a,c;q,p(j, i)
±1 = hx;b,a,c;q,p(j, i+ 1)±1 X,(5.13b)

Y hx;a,b,c;q,p(i, j)
±1 = hx;a,b,c;q,p(i, j + 1)±1 Y,(5.13c)

Y hx;b,a,c;q,p(j, i)
±1 = hx;b,a,c;q,p(j + 1, i)±1 Y,(5.13d)

for all (i, j) ∈ N2
0. Further, by induction on r and s, one has

(5.14) Y sXr =
( r−1∏

i=0

Hx;a,b,c;q,p(i, s)
)
XrY s,

for all r, s ∈ N0.
Similarly as in Cq,p[X,Y,Ea,b;q,p], the monomials XkY

l form a basis for the
algebra Cq,p[X,Y,Ex,a,b,c;q,p], now as a left module over Ex,a,b,c;q,p. That is, any el-
ement can be written uniquely as a finite sum

∑
k,l≥0 fklX

kY l with fkl ∈ Ex,a,b,c;q,p,
the normal form of the element.

The following non-commutative elliptic binomial theorem which readily follows
from [15, Theorem 3] (and could be independently proved by induction) shows

that the normal form of the binomial
(
X + hx;b,a,c;q,p(0, 0)Y

)n
is nice; each (left)

coefficient of XkY n−k completely factorizes in Ex,a,b,c;q,p.

Theorem 5.7 (Binomial theorem for elliptic commuting variables in
Cq,p[X,Y,Ex,a,b,c;q,p]). Let n ∈ N0. Then, as an identity in Cq,p[X,Y,Ex,a,b,c;q,p],
we have (

X + hx;b,a,c;q,p(0, 0)Y
)n

(5.15)

=

n∑
k=0

[
n
k

]
x;a,b,c;q,p

( n−k−1∏
j=0

hx;b,a,c;q,p(j, 0)

)
XkY n−k.

By convolution and comparison of coefficients we obtain the following identity:

Corollary 5.8 (An elliptic binomial convolution formula). Let n,m, k ∈ N0

and x, a, b, c, q, p ∈ C with |p| < 1. Then there holds the following convolution
formula:

[
n+m

k

]
x;a,b,c;q,p

( n+m−k−1∏
j=0

hx;b,a,c;q,p(j, 0)

)(5.16)

=

k∑
j=0

([
n
j

]
x;a,b,c;q,p

[
m

k − j

]
x;aqj ,bqn−j ,cqn;q,p

( n−j−1∏
ℓ=0

hx;b,a,c;q,p(ℓ, 0)

)

×
(m+j−k−1∏

s=0

hx;b,a,c;q,p(s+ n− j, j)

)( k−j−1∏
i=0

Hx;a,b,c;q,p(i+ j, n− j)

))
.
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Proof. Working in Cq,p[X,Y,Ex,a,b,c;q,p], one expands the binomial (X +
hx;b,a,c;q,p(0, 0)Y )n+m in two different ways and suitably extracts coefficients. On
the one hand,(

X + hx;b,a,c;q,p(0, 0)Y
)n+m

(5.17)

=

n+m∑
k=0

[
n+m

k

]
x;a,b,c;q,p

( n+m−1∏
j=0

hx;b,a,c;q,p(j, 0)

)
XkY n+m−k.

On the other hand,(
X + hx;b,a,c;q,p(0, 0)Y

)n+m
(5.18)

=
(
X + hx;b,a,c;q,p(0, 0)Y

)n (
X + hx;b,a,c;q,p(0, 0)Y

)m
=

n∑
j=0

m∑
r=0

([
n
j

]
x;a,b,c;q,p

( n−j−1∏
ℓ=0

hx;b,a,c;q,p(ℓ, 0)

)
XjY n−j

×
[
m
r

]
x;a,b,c;q,p

(m−r−1∏
s=0

hx;b,a,c;q,p(s, 0)

)
XrY m−r

)

=

n∑
j=0

m∑
r=0

([
n
j

]
x;a,b,c;q,p

[
m
r

]
x;aqj ,bqn−j ,cqn;q,p

( n−j−1∏
ℓ=0

hx;b,a,c;q,p(ℓ, 0)

)

×
(m−r−1∏

s=0

hx;b,a,c;q,p(s+ n− j, j)

)
XjY n−jXrY m−r

)
.

Now use (5.14) to apply

XjY n−jXrY m−r =

( r−1∏
i=0

Hx;a,b,c;q,p(i+ j, n− j)

)
xj+ryn+m−j−r for n ≥ j,

and extract and equate (left) coefficients of XkY n+m−k in (5.17) and (5.18). This
gives the convolution formula (5.16). □

Remark 5.9. Corollary 5.8 is not a new result, but actually a special case
of the Frenkel–Turaev sum in (5.6). Writing out all the expressions in (5.16) in
explicit terms using (2.8), (2.11), (5.8), and (5.9), and applying some elementary
manipulations (such as those appearing in [5, p. 310]) of the theta-shifted factorials,
it becomes clear that, up to a multiplicative factor that can be pulled out the sum,
the sum on the right-hand side of (5.16) is indeed the Frenkel–Turaev sum in (5.6)
with respect to the substitutions

(a, b, c, d, e, n) 7→ (aq−n/b, acqn+m, q1−n/bc, aqk−n−m/b, q−n, k).

(In particular, the factors depending on x can all be pulled out of the sum and
can be canceled with those appearing on the left-hand side. Also, the variable b
in the sum is redundant.) By analytic continuation, the integers n and m can be
replaced by continuous variables (say logq ν and logq µ) and one recovers the full
Frenkel–Tureav sum, without the restriction of having parameters that are integer
powers of q.

Finally, it is again straightforward to use the lattice path model to derive a
homogeneous Chaundy–Bullard identity for the the elliptic commuting variables
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forming the algebra Cq,p[X,Y,Ex,a,b,c;q,p]. (We omit the details; it is also principle
possible to verify the identity by induction.) The result is as follows:

Theorem 5.10 (Homogeneous Chaundy–Bullard identity for elliptic commut-
ing variables in Cq,p[X,Y,Ex,a,b,c;q,p]). Let n,m ∈ N0. Then the following identity
is valid in Cq,p[X,Y,Ex,a,b,c;q,p]:(

X + hx;b,a,c;q,p(0, 0)Y
)n+m+1

(5.19)

=

m∑
k=0

([
n+ k
k

]
x;a,b,c;q,p

( n−1∏
j=0

hx;b,a,c;q,p(j, 0)

)

× hx;b,a,c;q,p(n, k)X
kY n+1

(
X + hx;b,a,c;q,p(0, 0)Y

)m−k

)

+

n∑
k=0

([
m+ k
m

]
x;a,b,c;q,p

( k−1∏
j=0

hx;b,a,c;q,p(j, 0)

)

×Xm+1Y k
(
X + hx;b,a,c;q,p(0, 0)Y

)n−k

)
.
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