Some curious extensions of the classical beta
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ABSTRACT: We deduce curious g-series identities by applying an inverse
relation to a certain identity for basic hypergeometric series. After rewriting some
of these identities in terms of q-integrals, we obtain, in the limit ¢ — 1, curious
integral identities which generalize the classical beta integral evaluation.

1 Introduction

Euler’s beta integral evaluation (cf. [1, Eq. (1.1.13)])
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/0 (1 —t)P dt—m, R(a), R(B) > 0, (1)

is one of the most important and prominent identities in special functions. In
Andrews, Askey and Roy’s modern treatise [1], the beta integral (and its various
extensions) runs like a thread through their whole exposition.

An unusual extension of (1) was recently found by George Gasper and the
present author in [4, Th. 5.1] and reads as follows.
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provided R(a), R(B) > 0. It is clear that (2) reduces to (1) when either ¢ — 0o or
a — 0o. Two special cases of (2) where the 2 F} in the integrand can be simplified
are = 4+ 1 and a = . Specifically, we have
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where in each case R(3) > 0.

In an early version of [4] we claimed that the integral evaluations (3) and (4),
proved by the same procedure as the integral identities in this paper, “seem to



be difficult to prove by standard methods”. However, after seeing our preprint [4],
Mizan Rahman [7] communicated to us a remarkable proof of (3) which involves
a sequence of manipulations of hypergeometric series [2].

Another beta-type integral evaluation which has some similarity to (2), is [4,
Th. 5.2]. It reads as follows. Let m be a nonnegative integer. Then
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provided R(8) > max(0, m — 1). Some special cases are considered in [4, Sec. 5].

In this paper, we generalize both identities (2) and (5), see Corollary 5.3 and
Theorem 5.1, respectively. While (5) does not extend the classical beta integral
evaluation (1), its extension in Theorem 5.1 now does. In order to deduce our
results, we apply essentially the same machinery which was utilized in [4] with the
difference that our derivation now makes use of a more general basic hypergeo-
metric identity (namely, (6)).

We start with some preliminaries on hypergeometric and basic hypergeomet-
ric series, see Section 2. In the same section we also exhibit an explicit matrix
inverse which will be crucial in our further analysis. This matrix inverse is ap-
plied in Section 3 to derive a new g-series identity which we list together with
some corollaries. In Section 4 we rewrite two of the obtained identities in terms of
g-integrals. From these we deduce in Section 5, by letting ¢ — 1, new beta-type
integral identities by which we generalize the results from [4].

2 Preliminaries

2.1 Hypergeometric and basic hypergeometric series
For a complex number a, define the shifted factorial
(a)o :=1, (@)k =ala+1)...(a+k-1),

where k is a positive integer. Let r be a positive integer. The hypergeometric . F, 1
series with numerator parameters aq, . . . , a,, denominator parameters by, ..., b,_1,
and argument z is defined by
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The . F_; series terminates if one of the numerator parameters is of the form —n
for a nonnegative integer n. If the series does not terminate, it converges when
|z| < 1, and also when |z| =1 and R[by + b2+ -+ br—1 — (a1 +a2+---+a,)] > 0.
See [2, 10] for a classic texts on (ordinary) hypergeometric series.

Let g (the “base”) be a complex number such that 0 < |g| < 1. Define the
q-shifted factorial by

wow=TI0 o) amd o) = o



for integer k. The basic hypergeometric »¢,._1 series with numerator parameters
at,---,ar, denominator parameters by, ..., b,_1, base ¢, and argument z is defined

by
Ay, ...,0ar o
r¢r71 |:b1, . 7brl’q7z:| S

The ,¢,_1 series terminates if one of the numerator parameters is of the form ¢="
for a nonnegative integer n. If the series does not terminate, it converges when
|z2|] < 1. For a thorough exposition on basic hypergeometric series (or, synony-
mously, g-hypergeometric series), including a list of several selected summation
and transformation formulas, we refer the reader to [3].

We list two specific identities which we utilize in this paper.

First, we have the following three-term transformation (cf. [3, Eq. (II1.34)]),
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where |de/abc| < 1. Further, we need (cf. [3, Eq. (II1.9)])
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where |de/abc|,|e/al < 1.

2.2 Inverse relations

Let Z denote the set of integers and F' = (fnr)n,kez be an infinite lower-triangular
matrix; i.e. for = 0 unless n > k. The matrix G = (gr)r,icz is said to be the
inwverse matriz of F' if and only if

> fakgr = O

I<k<n

for all n,l € Z, where §,,; is the usual Kronecker delta.

The method of applying inverse relations [8] is a well-known technique for
proving identities, or for producing new ones from given ones.

If (fok)n,kez and (gri)k,1cz are lower-triangular matrices that are inverses of
each other, then

> frkan = by (8a)
n>k

if and only if
nglbk =, (8b)
k>l

subject to suitable convergence conditions. For some applications of (8) see e.g.
6, 8, 9.



Note that in the literature it is actually more common to consider the fol-
lowing inverse relations involving finite sums,

n k
ankak =b, if and only if ngbz = a. 9)
k=0 =0

It is clear that in order to apply (8) (or (9)) effectively, one should have
some explicit matrix inversion at hand. The following result, which is a special
case of Krattenthaler’s matrix inverse [6], will be crucial in our derivation of new
identities. It can be regarded as a bridge between g¢-hypergeometric and certain
non-g-hypergeometric identities. (For some other such matrix inverses, see [9].)

Lemma 2.1 (MS [9, Eqgs. (7.18)/(7.19)]) Let
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Then the infinite matrices (fnk)n,kez and (gri)k,icz are inverses of each other.

3 Some curious g-series expansions

Proposition 3.1 Let a, b, ¢, d and e be indeterminate. Then
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provided |beg/d| < 1.



Proof of Proposition 3.1. Let the inverse matrices (fnr)n,kez and (gri)k ez
be defined as in Corollary 2.1. Then (8a) holds for
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by (6). This implies the inverse relation (8b), with the above values of a,, and by.
After performing the shift k — &k 4 I, and the substitutions a — ag', ¢ — c¢?,
e — eq !, we get rid of | and eventually obtain (11).

Corollary 3.2 Let a, b, ¢, d and e be indeterminate. Then
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= (c—(a+1)(a+bg") (c—(a+b)(a+dg")) (ga)k(e;)n

X3¢2 & (a+bqk)bqk:+1 ‘D d ( (a+bg¥)bq . ) d
€q, c—a(a+bg*) c—a(a+bg*) %) 0o

a+bg*)q* a+bg
1/b7qu7%. bzeq (%’q)m beq k
provided |beq/d| < 1 and |b?eq/d| < 1.

Proof. Apply (6) to the right-hand side of (11), with respect to the simulta-
neous substitutions a — dg*, b+ 1/b, ¢ = (a + bg*)¢* /(c — a(a + bg*)), d — eq,
e (a+ bg*)bg"*+t /(c — ala + bg)). O

Corollary 3.3 Let a, b, ¢, d and e be indeterminate. Then
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provided |beg/d| < 1 and |be| < 1.



Proof. Apply (7) to the s¢o on the right-hand side of (12), with respect to
the simultaneous substitutions a — 1/b, b — dg*, ¢ — (a+bq*)¢* /(c—a(a+bg")),
d+ (a+bg")bg"1 /(c—ala+bg")), e = eq”, and divide both sides of the resulting
identity by (be; q)oo(beq/d; q)oo/(€; 9) oo (V*eq/d; @) o - a

We will make use of Proposition 3.1 and of Corollary 3.3 in our derivation of
new beta integral identities.

4 q-Integrals

In the following we restrict ourselves to real ¢ with 0 < ¢ < 1.
Thomae [11] introduced the g-integral defined by

/0 fdt=(1-9)Y f(d)". (14)

k=0

Later Jackson [5] gave a more general g-integral which however we do not need
here.

By considering the Riemann sum for a continuous function f over the closed
interval [0, 1], partitioned by the points ¢¥, k > 0, one easily sees that

1 1
tm [ f(0)d,t = /O F(t)dt.

q—1-—

It is well known that many identities for g-series can be written in terms of
g-integrals, which then may be specialized (as ¢ — 1) to ordinary integrals. For
instance, the g-binomial theorem (cf. [3, Eq. (I1.3)])

S (a;0)k x_ (a230)c0
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can be written, when a — ¢® and z — ¢%, as
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is the g-gamma function, introduced by Thomae [11], see also [1, § 10.3] and [3,
§ 1.11]. In fact, (16) is a g-extension of the beta integral evaluation (1).

We will rewrite the identities in Propostion 3.1 and in Corollary 3.3 in terms
of g-integrals. These will then be utilized in Section 5 to obtain new extensions of
the beta integral evaluation.

Starting with (11), if we replace b by ¢, d by eg®*!~®, and multiply both
sides of the identity by

(€5 9)oo
(egP =% q)oo”



we obtain the following g-beta-type integral identity:
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Similarly, starting with (13), if we replace b by ¢, d by eg®+'~%, and multiply
both sides of the identity by

3 (49 (6”5 @)oo
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we obtain the following g-beta-type integral evaluation:
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5 Curious beta-type integrals

Observe that lim,_,;- I'y(z) = I'(z) (see [3, (1.10.3)]) and

A e YT

for constant u (with |u| < 1), due to (15) and its ¢ — 1 limit, the ordinary binomial
theorem.



We thus immediately deduce, as consequences of our g-integral identities from
Section 4, new beta integral identies. We implicitly assume that the integrals are
well defined, in particular that the parameters are chosen such that no poles occur
on the path of integration ¢t € [0, 1] and the integrals converge.

We first consider the beta-type integral identity obtained from multiplying

both sides of (18) by
LB +1)
res+1) -’
and letting ¢ — 1.
Theorem 5.1 Let R(a), R(B) > 0. Then
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Note that (20) can be further rewritten using Legendre’s duplication formula
1
r2p) = —=2*"'T(B)T(B + 1
(28) = 2B+ 3),

after which the left hand side becomes

ﬁ (ﬂ) (1 _e)ﬁ+17a‘

47 T(B+3)

Clearly, (20) reduces to (5) if @ — 8 — 1 = m, a nonnegative integer.
Observe that (20) reduces to the classical beta integral evaluation (1) for
e =0 and ¢ — oo due to the Gauf summation

#[AB|] _T(O)T(C - A-B)
1 ¢ 7| T T(C-A4)T(C=-B)
where R(C' — A — B) > 0, the reflection formula
7r
NI -2) = sinmz’

where z is not an integer, and some elementary identities for trigonometric func-
tions, such as

sin(x + y) + sin(x — y) = sinz



Next, we have the beta-type integral identity obtained from (19) by letting
qg—1".

Theorem 5.2 Let R(a), R(B) > 0. Then
L) T'(8) Pe—(a+1)(att))f
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Clearly, (21) reduces to (1) when e =0 and ¢ — 0.

Corollary 5.3 Let R(a), R(8) > 0. Then

L) T(B) —(c—(a+1)?) /1 (c—a(a+1)?(c—(a+1)(a+1)P!
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Proof. We apply the transformation [2, p. 10, Eq. 2.4(1)]

_ AB — A, C-B
(1-2) AzFl[ C 7i] =2F1[ ’CC ;3]7 (23)

valid for || < 1 and R(z) < % (conditions which we implicitly assume), to the 2 Fy

on the right-hand side of (21) and divide both sides by (1 — e)#+1~2, O
Clearly, (22) reduces to (2) for e = 0.
Asin [4], we observe that by performing various substitutions one may change
the form and path of integration of the considered integrals. In particular, using
t — s/(s + 1) these integrals then run over the half line s € [0, 00).
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