SUPERCONGRUENCES INVOLVING DOMB
NUMBERS AND BINARY QUADRATIC FORMS

GUO-SHUAI MAO AND MICHAEL J. SCHLOSSER

ABSTRACT. In this paper, we prove two recently conjectured su-
percongruences (modulo p3, where p is any prime greater than 3)
of Zhi-Hong Sun on truncated sums involving the Domb numbers.
Our proofs involve a number of ingredients such as congruences in-
volving specialized Bernoulli polynomials, harmonic numbers, bi-
nomial coefficients, and hypergeometric summations and transfor-
mations.

1. INTRODUCTION

The Domb numbers {D,,}, defined by

N (" 212k [2n — 2k
=2 ) (D0
for non-negative integers n, first appeared in an extensive study by
C. Domb [4] on interacting particles on crystal lattices. In particular,
Domb showed that D,, counts the number of 2n-step polygons on the
diamond lattice.

The Domb numbes also appear in a variety of other settings, such as

in the coefficients in several known series for 1/7. For example, from
[1, Equation (1.3)] we know that

= 5n+1 8
D, = .
64" NEYS

n=0
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In [10, Theorem 3.1], M.D. Rogers showed the following generating
function for the Domb numbers by applying a rather intricate method:

gDn“" =1 - Tu > (2:)(3:> <<1—u—4u>3)k

k=0

where |u| is sufficiently small. Y.-P. Mu and Z.-W. Sun [9, Equa-
tion (1.11)] proved a congruence involving the Domb numbers by ap-
plying the telescoping method: For any prime p > 3, we have the
supercongruence

— 3k + k

1—6ka = —4p4qp(2) (mod ps),

where g,(a) denotes the Fermat quotient (a?~' —1)/p.

In [5], J.-C. Liu proved a couple of conjectures of Z.-W. Sun and
Z.-H. Sun. In particular he confirmed [5, Theorem 1.3] that for any
positive integer n the two sums

[y

n—1

1
0(2l<; +1)D8" 7% and - %(2/@ + 1) Dy (—8)"1F

3|
= 3

are also positive integers.
Z.-H. Sun [17, Conjecture 4.1] conjectured the following congruence
for the Domb numbers: Let p > 3 be a prime. Then

3
D, =641 — % L3 (mod p*),

where {B,} are the Bernoulli numbers given by

By =1, S(Z)Bkzo (n>2).

k=0

This conjecture was confirmed by the first author and J. Wang [7].
For more research on Domb numbers, we kindly refer the readers to
5, 8, 15, 18, 20] (and the references therein).

The main result of this paper is Theorem 1.1 which contains two
supercongruences that were originally conjectured by Z.-H. Sun in [19,
Conjecture 3.5, Conjecture 3.6]. What makes them interesting is that
their formulations involve the binary quadratic form x%+ 3y? for primes
p that are congruent to 1 modulo 3. (It is well-known that any prime
p =1 (mod 3) can be expressed as p = 12+ 3y? for some integers x and
y, an assertion first made by Fermat and subsequently proved by Euler,
see [3]. In his paper [19], Sun stated further conjectures of similar type,
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involving different moduli, and other binary quadratic forms.) First,
Sun defined

4 1 3 1 p_; i
R =(1+2p+=-(2"""—-1)—=(3"" =1 .
The two supercongruences which we will confirm are as follows.

Theorem 1.1. Let p > 3 be a prime. Then

p—1 kg%

k=0

_ {—j—gﬁ +32p 4 B0 (mod p*)  if p=22+ 32 =1 (mod 3),
| 2Rs(p) (mod p?) if p=2 (mod 3) and p # 5,
p—1 3&

—~ 16%

| —5Rs(p) (mod p?) if p=2 (mod 3).

Our preparations for the proof of this theorem consist of seven lem-
mas that we give in Section 2. These are used in Section 3, devoted to
the actual proof of Theorem 1.1. As tools for establishing the results
in Sections 2 and 3 we utilize some congruences from [6, 8] and several
combinatorial identities that can be found and proved by the package
Sigma [12] via the software Mathematica.

2. PRELIMINARY LEMMAS

Recall that the Bernoulli polynomials { B, (z)} are given by

Bo(z) = Xn: (Z) Ba"* (n=0,1,2,...),

k=0
where, as before, { B} are the Bernoulli numbers. We will also use the

classical Legendre symbol (%) (for integer a and odd prime ¢). The

following lemma involving the (generalized) harmonic numbers can be
easily deduced from [13, Theorem 5.2 (c)|, [14, Theorem 3.9 (ii), (iii),
(iv)], [14, third equation on p. 302], and the simple identity

1 —1)! 1
I

1<k<? 1<k<? 1<k<®
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Lemma 2.1. Let p > 5 be a prime. Then
Hos = ~20,(2) (mod p),
3

Hip) = —24,(2) = 545(3) (mod p),
=3 () m() ()
Hiy = =503 + 740 ¢ (5) Bra(5) mmoa )
=300+ 250+ 22 ()

Lemma 2.2. Letp > 2 be a prime. If0 < j < (p—1)/2, then we have

SI\(r+J p 3

= 1 —pHy; + pH,; d p°).

() (6530) = gt -t ) (o )

Proof. f0<j < (p—1)/2and j # (p /3, then we have

(3j)<p+j):(p+j) (§+)))( 1)---(p—2j)
)(=1)
e

3j+1 1(25)!(35 + 1)
_ 2! (1 +pH;)(=1)¥(25)!(1 — pH>;)
B 35+ 1)
=3 .i T (1= pHs; +pH;) (mod p’).

If j = (p—1)/3, then by Lemma 2.1, we have

2
= (1-pHo + S (L —HD) ) (14 pHes + 5 (Hp - H?)
3 2 3 3 2 3

2 17(2) P (p 1 3
=1— H_lz1——<—)3,(—> d

P e 5 \3) Br2(3) (modp)
and

P’ (p 1 3

1 —pH% +pH% =1-— E (g) Bp,2<§) (HlOdp )

This completes the proof of Lemma 2.2. O

Lemma 2.3. Let p > 3 be a prime. For any p-adic integer t, we have

2p—2
p—1
2

<2p 2) (1 +pt(Hz—z — Hy- 1)) (mod p?).

p
2
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Proof. Set m = (2p — 2)/3. It is easy to check that
<m—|—pt _(mA+pt)---(m+pt—(p—1)/24+1)
( =

p—1)/2 ((p—1)/2)!
=1 (n(l(p_ _(]91)_/21))!/2 D (1 + pt(Hpm — Hpp-1)/2)
= ((p —ml)/Q) (1 + pt(Hm — Hp—(p-1y/2) (mod p?).
which completes the proof of Lemma 2.3. U

Lemma 2.4. Letp > 3 be a prime. If p= 2>+ 3y*> =1 (mod 3), then

2k’) B 4

2
= (42 —op— 2 d p%).
(3% + 4)1 25(“@ 4:52) (mod )

Proof. By using Sigma, we establish the following identity:

M

k=0

2”: (D 1 ﬁ 3k — 1

~  3k+4 Bn-1)En+1)Bn+4) L3k -2

(In terms of classical identities for hypergeometric series, this evalu-
ation is equivalent to the (a,b,c) — (n + 1,4/3,1) case of the Pfaff—
Saalschiitz summation [11, Appendix III, Equation (III.2)].) So modulo
p?, we have

2k)

(3k +4) (3k + 4)16F

M

o (5= k 2 — _ _
=Z L e e A
- 3k + 4 = p—4 P4

=0
4 4

2 _ _ _
L S A Ve
T (O ) Tl e )

where we used the standard notation for the shifted factorial (a), =
i “o(a+j) (cf. [11, Section 1.1.1]). It is easy to check that

<_— _%<_—) (21)
) oot
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These identities, together with [6, pp. 14], yield

4 (3)e 4(p—1)2( %)2
2597 (e (B4 e (2p—5)2\B
A1) ><—+—>
5(p+5) \ B Bt

5
3p 15p% , 5p? (p) (1)
X <]‘ 2 p(3)+ 8 qp(3>+ 24 3 Bp_2 3
4 6p 6p? p_lN /o5
(%) (B) (L) e
3 3

Again, by [6, pp. 14-15], we have

- 2k 2
k=0
5 () (- )
(1 Fa- e+ 5 (5)5(3))
(- 2o i+ L () 5(3)
(2% (ow )
(- o+ i L () ()
x (1 - %%(2) + 37])%(3) o 0(2) ~ 2°0,(2g,(3)
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3p* , P’ (D 1
TeE+ % (5) Ba(3)
+ 560 T3 (3) B3
4 6p 6p° 2 p°
S (T N (VP Ve
25( 5 25)(95 P a2

4p 14p? 9 23p? /p 1 3
< (1= T+ @+ 5 (5) Bra(y) ) mod )

It is easy to check that the right-side of the above congruence is con-
gruent to % (412 —2p — %

get the desired result stated in Lemma 2.4. O

> modulo p3. Therefore we immediately

Lemma 2.5. Let p > 3 be a prime with p = 2>+ 3y?> = 1 (mod 3) and
let k= (p—4)/3. Then

(k(k+1)(k+3)+ (2—k*)(Bk+1)p — (k+2)(3k + 1)(3k + 2)p°)
(2) ((3:) (Z35) 1 pHy +pﬂk)
)

(k+1)(3k+2 3k +4 3k+1
184p% 22
= — 1]295 (mod p3)

and

(k(1+2k) +2p(k +1)(3k + 1) — 2p°(3k + 1)(3k + 2))

2
LG <(3k’“) (es) +1+pH2k—ka)

3k + 2 3k +4 3k +1
184p2x?
=——7or (mod p*).

Proof. We only prove the first congruence; the proof of the second
congruence is similar. It is easy to see that

(3:) (fktz) 1 —pHy + pHy
3k +4 3k +1
C(BE+3\[(p+Ek+1 2(2p —5)(p — 1)
_(k+1)( 3k +4 >(4p—1)(p—3)(p+2)(29+5)
1 —pHopio +pHi1 + 555 + 5 — 5
N 3k + 1 '

By Lemma 2.2 we have

3k+3\ (p+k+1
(k—i—l)( 3k 44 )El—pH2k+2+ka+1 (mod p?).
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Thus,

(k)(?f:fl) 1 —pHy+pHi _ _207p2
3k +4 3k +1 o

Together with (2.1) and (Ezj%?‘) = 2z (mod p) (cf. [21]), this yields

(k(k+1)(k+3)+ (2= k*)(Bk+1)p — (k+ 2)(3k + 1)(3k + 2)p°)

1.2
(715) (3:) (spkiﬁ) B 1 — pHyy, + pH,y,
(k+1)(3k +2) 3k +4 3k+1
184p%x?

3
125 (mOdp )7

which completes the proof of Lemma 2.5. 0

Lemma 2.6. Letp > 2 be a prime. If0 < j < (p—1)/2, then we have

39\ (p+25\ _ p(—1)
(j ) (Sj + 1> T 3j+1 (14 pHs; — pH;) (mod p°).

2
_ p° (P 1
1 _pHQp;2 +pHp;1 = 1 — 5 (g) Bp_2 (g) (mod p3)
If(p+1)/2<j<p-—1, then

39\ (p+27\ _ 2p(—1) >

()6 8) =55 o

(p—1)/2 and j # (p — 1)/3, then we have

( )<p+2j) (p+25)---(p+1Lplp—1)---(p—j)
3j+1 (37 + 1)g1(29)!

p(2)!(1 + pHy;)(—=1) ()1 — pHj)
B (37 + 1)5'(25)!

and

Proof. It 0 <7 <

~p(—1
3( +)1 (1+pHy; —pH;) (mod p3).

Ifj=(0p-1)/3, thenbyLemmanandH e k:—H()(modp) we
have

() (p?fi )

p—1

3

( s+ B2, —HS?’>> (1 b oM+ U (HY, —Hé?ﬁ)
3
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_ _ p(=1) 3
=1t p(Hage = Hega) = 5o p (L4 pHyy —pHy) - (mod 7).

If (p+1)/2<j<p-—1,then
37\ (p+27
()6
_(p+2)) -+ 1)2p)2p—1)---(p+ Dplp—1) -~ (p— J)

1)
(35 + 1)5!(24)!
_2%(2j) (e D) = D=1 () _ 2p(=1)

= d p?),
(3j +1)j1(2))! 31 (med?)
which completes the proof of Lemma 2.6. U
Lemma 2.7. Let p > 3 be a prime with p = 22 + 3y?> = 1 (mod 3).
Then
°7 H H; 18
Z s — 1)) = ———(42* — 2p) (mod p?).
s 3] +4)167 125

Proof. By using Sigma, we establish the following identity:

253(2)077)0—1V(fﬁj“fﬁ)<_ 9(2n + 1)

3j+4 ©10(3n —1)(3n + 4)

J=0

(%)n
+(3n—1)(3n+1)(3n—|—4 l <1O+Z % )

3

Substituting n = (p — 1)/2 into the above identity, then modulo p? we
have

pz H2J HJ) _ p(g)’%l g-ﬁ- (%)k
G - (107 20,
In view of [8, pp. 9] and [6, pp. 14-15], we have
(%)% =42 —2p (mod p?)
(5)ez2(§+ 1) e 7
(e I (1)
?T 32k =0 (mod p)
Do 22 (2
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Hence,
p—1 -\ 2
pi (V) —H) _ 9 P(%)p;
LG 0
9 4 18
= ——— (42 — 2p) = ——(4a® — 2 d p?).
52542 = 2p) = == (42 = 2p)  (mod p?)
The proof of Lemma 2.7 is complete. U

3. PROOF OF THEOREM 1.1

Our proof of Theorem 1.1 heavily relies on the following two transfor-
mation formulas due to H.-H. Chan and W. Zudilin [2] and Z.-H. Sun
[15] respectively,

2 (1) G2 - B () () (e

= (3.1)

n 2 [n/2] 2
2 2n — 2 2
Z n k n—2k\ _ Z n+k E\"(3k 2% (39)
k k n—k 3k k k
k=0 k=0
Proof of Theorem 1.1. We first consider the first congruence in Theorem
1.1 in the case p = 2 + 3y?> = 1 (mod 3). By (3.2), we have

—1 3 Lk/2]
Sel SRS () (H) ()
k=0 7=0 J
( 71)/2 235\ p—1 .
_ pz (j]) ('j]) pz:kS(k—i_]).
3=0 16/ k=2j 3]
By using Sigma, we establish the following identity:

Z K (k ﬂ) (j+ 1)(3j2+12)(39' +4) (?ZTJ

k=2j

where

S1=40G+ DG +3)+n2-5)35+1) —n’(j +2)(35 + 1)(3j + 2)
+0°(j +1)(35 +1)(35 +2).
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Thus,
D3 ()G 5,
LA 16+ (G+1)(3j+2)(35+4)

’U

<.

0

i

Let
Yo =k(k+1)(k+3)+p2—Ek)Bk+1)
In view of Lemma 2.2, we have for p = 1 (mod 3) the supercongruence

—p*(k+2)(3k + 1)(3k + 2).

k / \3k+1

Zk3 =2 165 (k+ D)3k +2)(3k +4)

k=0

&Y EHEh 5,

2
p(1 — pHop + pHy) Yo 3
- d
Z 16"? k;+1 3k+1)(3k+2)(3k+4)+51 (mod 7).

where S; is defined by the following expression with k& = (p — 4)/3,
Si= (k(k+1)(k+3)+ (2—k)Bk+1)p — (k+2)(3k + 1)(3k + 2)p®)
—1\? 3k k
« () (%) () 1 —pHy, + pHy,
(k+1)(B3k+2)\ 3k+4 3k+1 ’

In view of [16, Equation (3.5)] and [§8], we have

p—1

p—1
() & (29 (Hay, — Hy)
k) 1 o — Hi) _ ;
P (k+1)16F 0 (mod p?) z; 3k—|— 1168 0 (mod p),
(3.3)
2 e (Qkk)2(H2k ~Hy) b p(zkk)z 2
z = _ Pk =P a8, y
3 g (3k +2)16* ZO (3k + 2)16~ 2 (mod p”).  (3.4)
we have

Hence by Lemma 2.5 and [6, Theorem 1.2],

§k3&+184p2x2:£2(2:)2 S S
#7125 T 274168 \Bk 1 3kt2 3kt4

P (3) [ -3 7 1
EEPIET: (k+1+3k+2+3k+4

IR
168 \k+1 3k+4



12 GUO-SHUAI MAO AND MICHAEL J. SCHLOSSER

._.

p—

2 2

D HQk_Hk) -8 N 21 10
3k+1 3k+2 3k+4

=0
p_i() (Ho, — Hy) [ =3 N 7 N 1
3 16 k+1 3k+2 3k+4
. 8 10 4 9 p? 21p> p 4
:<_27_2725> (4 ~2 _4x2>_27x2+325(4x —2)
1622 10p 18 213p* p? 18
2
TR AT re RS T
642>  32p  43p*  184p?x? 3
=5 T o 1 medr)

Thus we immediately obtain the desired result

64x 32p  43p?
Z k:3 = + e + 9022 (mod p?). (3.5)

Now we are ready to prove the case p = 2 (mod 3) with p > 5. Similar
to before,

p—1

- sDi _ O (2:)2(3:) (3pk++k1) k(k+1)(k+3) +p(2 — k*)(3k + 1)
Zk TZ; 16+ (k+1)(3k 4 2)(3k + 4)

T\ (32 p(1 — pHap + pHi)(k(k + 1)(k +3) + p(2 — k2)(3k +1))
— (k+1)(3k+1)(3k +2)(3k +4)

i 8 21 10
— 6k \3k+1 3k:+2 3k +4

—1

i’

Il
ﬂm

3+ 7 i 1
1’C E+1 3k+2 3k+4

_|._
w|=,
3
ol J':M“\

2%
Hy, — H -8 21 10
_ P ()" (o — Hy) + — (mod p?).
27 — 16% 3k+1 3k+2 3k+4
In view of [8], we have

Qk)

(3k+ 1)1

M
||I

0 (mod p),
k=0
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and in view of Lemma 2.4, we have

S B ey
 (3k +4)16% -
Thus,
S - @Z M S
p 4k — 9 — (3k + 2) 16k 3 p (3k + 2)16*
2 *(Hy, — H,
) % =0 3k +215 16+ - (mod p°).
In view of [8, Equation (4.2)], we have
= e — Hy) o
kz:: 16k 3j<:k+2 = 2:: 31<;)+2 (mod p), (3.6)
and
Z ) =4R3(p)  (mod p?). (3.7)
(3k 4 2)16% —
Hence
Zk?’— = Rs(p)  (mod p?). (3.8)

Now we consider the other congruences in Theorem 1.1. Similar to
above, by (3.1), we have

Sl ZwkZ /()6 ()

J J

By using Sigma we establish the following identity:
(3j +2)3j+4)\3j+1)’
where

Y3 = j(14+25)+2n(j+1)(3j+1)—2n2(35+1)(3+2)+n>(3j+1)(35+2).
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Let

Sy =J31+25)+2p(j+1)(3j + 1) —2p°(35 + 1)(35 + 2).
Thus, if p=1 (mod 3), then modulo p?, we have

pz_lksﬂ_ 1 —1/2\*(2p -2\ (p+ &2 4>
£~ 165 18p(p+1) \ 2 2 2p — 1
3 ()G ELD 2,

(—16)7 (37 4+2)(3j +4)

2 X
i: (%)) p(=1)(1 + pHa; — pH,) %y N
; (—16)7 (37 +1)(3j+2)(35 +4)
where S5 is defined by the following expression with k = (p —4)/3,
2
" (2) (k(1 + 2k) + 2p(k + 1)(3k + 1) — 2p*(3k + 1)(3k + 2))
= —
3k +2

. ((i’“) (5i2) | 14 pHy —ka> |

Sk+d o 3k+1

Hence, similar to above, by (3.3), (3.4) and Lemma 2.5, we have

8 Dy 1 (—1/2)2 (2p — 2) (p + —4”34)
];::O 168 18p(p+1) % % op—1
B (25)2
_ () ( —1 -3 10 )

27 216/ 511 312 344
BT (252 N 2j)2
r-0) 1 1 ; (7)
+= — [ —+ = 2Py
347160 \3j+2 3j+4 £ (3j +4)16
p—1
9 2
P 10
L Ho: — H.
3 ~ 161 <3j+1 3]+2+3j+4>( 25— Hj)
p? . 184p%x?
L Ho: — H.
3 fo 1 (3]—1—2 3]+4)( 2~ Hi)+ =55
1 10 4 p? 1p> p4
= — 4a% — o)+ -S4+ —(4a? -2
( 27+2725)(x 4x2)+9x2+325(x 2
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,1622  10p 18
25 27 125

422 2p  49p?
T d ).
5 15 g0z (mod )

It is easy to see that

2p =2\ (p+ 5 _
(2p )(Qp—l =-2p (mod p?).

3
In view of [8, pp. 18], we have

1 /2)2 9p? X
A =— (mod p°).
() -

13p?  p? 18 184p2x?
dg? —op) 4 —oF P70 42
W =2+ 55~ 3 t 1

These yield

L .Dy 42> 2 . 4902 p?
16F ~ 45 45 ' 180x2  4x?
422 2p p?
= = d p%). 3.9
5 a5 T amg (medp) (3.9)

If p=2 (mod 3) with p > 5 (the case p = 5 can be checked directly),
then modulo p?, we have

Z ¥ g

_ Z < () iU+ 2) + 202G + (3 + 1) + 252 + ) (Hy, — Hy)
= 167 (35 +1)(35 +2)(35 +4) '

Hence, similar to above, we have

p—1

2
Seliaps (Sl 2
16k T 2 0161 3j+1 3j+2 3j+4

p—1

2 1 1
oy ) (3j+2+3j+4)

=0
—1
25\ 2
: -1 -3 10
(j). - + — + — (sz—Hj)
167 \35+1 357+2 35+4

oo|@

'ﬁk)

»
27 4

+

OM“\

p— p—1

& () e ()
_§JZ 3J+216J+§Z (3j 4 2)167

=0

<.
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p_1 24\ 2
0 = Bj+21 Y
—1
5 27)2
_ P G _ 4 2
=794 W = —§R3(p) (mod p”).

Jj=0

This, together with (3.5), (3.8) and (3.9), completes the proof of The-
orem 1.1. u

1]

[10]
[11]
[12]
[13]
[14]
[15]
[16]

[17]

REFERENCES

H.H. Chan, S.H. Chan and Z.-G. Liu, Domb’s numbers and Ramanujan-Sato
type series for 1/m, Adv. in Math. 186 (2004), 396-410.

H.H. Chan and W. Zudilin, New representations for Apéry-like sequences,
Mathematika 56 (2010), 107-117.

D.A. Cox, Primes of the form x2 + ny®. Fermat, class field theory and
complex multiplication, John Wiley & Sons, Inc., New York, 1989.

C. Domb, On the theory of cooperative phenomena in crystals, Adv. Phys.
9 (1960), 149-361.

J.-C. Liu, Supercongruences for sums involving Domb numbers, Bull. Sci.
math. 169 (2021), 102992.

G.-S. Mao, On some congruences of binomial coefficients mod-
ulo p® with applications, preprint, temporarily on Researchgate,
Doi:10.13140/RG.2.2.12033.17766.

G.-S. Mao and J. Wang, On some congruences involving Domb numbers
and harmonic numbers, Int. J. Number Theory, 15 (2019), 2179-2200.
G.-S. Mao and Y. Liu, Proof of some conjectural congruences involving
Domb numbers, preprint, arXiv:2112.00511v3.

Y.-P. Mu and Z.-W. Sun, Telescoping method and congruences for double
sums, Int. J. Number Theory 14 (2018), no.1, 143-165.

M. D. Rogers, New 5Fy hypergeometric transformations, three-variable
Mabhler measures, and formulas for 1/m, Ramanujan J. 18 (2009), 327-340.
L.J. Slater, Generalized hypergeometric functions, Cambridge University
Press, 1966.

C. Schneider, Symbolic summation assists combinatorics, Sém. Lothar.
Combin. 56 (2007), Article B56b.

Z.-H. Sun, Congruences concerning Bernoulli numbers and Bernoulli poly-
nomials, Discrete Appl. Math. 105 (2000), 193-223.

Z.-H. Sun, Congruences involving Bernoulli and Euler numbers, J. Number
Theory 128 (2008), no. 2, 280-312.

Z.-H. Sun, Congruences for Domb and Almkvist-Zudilin numbers, Integral
Transforms Spec. Funct. 26 (2015), no. 8, 642-659.

Z.-H. Sun, Super congruences for two Apéry-like sequences, J. Number The-
ory 11 (2015), no.8, 2393-2404.

Z.-H. Sun, Congruences involving binomial coefficients and Apéry-like num-

bers, Publ. Math. Debrecen 96 (2020), no.3-4, 315-346.



SUPERCONGRUENCES INVOLVING DOMB NUMBERS 17

[18] Z.-H. Sun, Supercongruences and binary quadratic forms, Acta Arith. 199
(2021), no. 1, 1-32.

[19] Z.-H. Sun, New conjectures invloving binomial coefficients and Apery-like
numbers, preprint, arXiv:2111.04538v1.

[20] Z.-W. Sun, Number Theory and Related Area (eds., Y. Ouyang, C. Xing,
F. Xu and P. Zhang), Adv. Lecr. Math. 27, Higher Education Press and
International Press, Beijing-Boston, 2013, pp. 149-197.

[21] K. M. Yeung, On congruences for Binomial Coefficients, J. Number Theory
33 (1989), 1-17.

DEPARTMENT OF MATHEMATICS, NANJING UNIVERSITY OF INFORMATION SCI-
ENCE AND TECHNOLOGY, NANJING 210044, PEOPLE’S REPUBLIC OF CHINA
Email address: maogsmath@163. com

FAKULTAT FUR MATHEMATIK, UNIVERSITAT WIEN, OSKAR-MORGENSTERN-
PraTz 1, A-1090 VIENNA, AUSTRIA
Email address: michael.schlosser@univie.ac.at



