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ABSTRACT. In this paper we derive multivariable generalizations
of Bailey’s classical terminating balanced very-well-poised 19¢g
transformation. We work in the setting of multiple basic hyper-
geometric series very-well-poised on the root systems A,,, C,, and
D,,. Following the distillation of Bailey’s ideas by Gasper and Rah-
man [11], we use a suitable interchange of multisums. We obtain
C, and D,, 19¢9 transformations combined with A,,, C,,, and D,,
extensions of Jackson’s g¢7 summation. Milne and Newcomb have
previously obtained an analogous formula for A,, series. Special
cases of our 19¢g transformations include several new multivari-
able generalizations of Watson’s transformation of an g¢7 into a
multiple of a 4¢3 series. We also deduce multidimensional exten-
sions of Sears’ 4¢3 transformation formula, the second iterate of
Heine’s transformation, the ¢g-Gauss summation theorem, and of
the g-binomial theorem.

1. INTRODUCTION

The Rogers-Ramanujan identities are perhaps the most celebrated
identities involving basic hypergeometric series. G. N. Watson [35]
proved these identities by first finding a g-analogue of Whipple’s [36]
transformation formula, taking suitable limiting cases, and then in-
voking Jacobi’s triple product identity [1, 18]. Watson’s proof of his
transformation formula was analogous to Whipple’s [37] second proof
of his identity. He used a polynomial argument and Jackson’s [16] g-
Pfaff-Saalschiitz theorem, a summation theorem for a terminating and
balanced 3¢, series. Bailey [4] observed that Whipple’s ideas could be
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extended further, by using Jackson’s [17] ¢g-Dougall summation theo-
rem, which is a summation theorem for a terminating and balanced g¢7
sum, and which contains the ¢-Pfaff-Saalschiitz summation as a spe-
cial case. The result was Bailey’s 19¢9 transformation formula, which
converts a terminating, balanced, and very-well-poised 19¢g series into
a multiple of a series of the same kind.

In this paper, we generalize Bailey’s 19¢9 transformation formula
to multiple series. The type of series appearing in our extensions of
Bailey’s formula are referred to as multiple basic hypergeometric series,
very-well-poised over the root systems A,,, C,, or D,,. As special cases
of our results, we find several new multivariable extensions of Watson’s
transformation formula.

In an important paper, Andrews [2] indicated that it may be desir-
able to know all the multivariable generalizations of Watson’s formula.
In particular, he asked for the g-analogue of the multivariable gener-
alization of Whipple’s transformation found by Gustafson [12] for the
type of series considered by Holman, Biedenharn and Louck [15]. This
was done by Milne [21, 24], who adopted the terminology in [15] and
called his series U(n + 1) series. That there was some relation of these
series with root systems of type A, was also shown by Milne [20], and
later Gustafson [13] defined multiple basic hypergeometric series over
the other root systems. However, it turns out that the difference be-
tween, for instance, A, and C, series, is largely one of name. Indeed,
Milne’s elementary approach to A, series appears to work as well on
C, and D, series: these techniques led to C,, and D,, generalizations
of Watson’s formula found by Milne and Lilly [25], and Bhatnagar [7],
respectively.

Previously, Milne and Newcomb [26] have generalized Bailey’s for-
mula to U(n + 1) multiple series, or equivalently to A, series. As
special cases, they also recover many A, generalizations of Watson’s
transformation found earlier by Milne [22, 24]. We use similar tech-
niques and find C,, and D,, generalizations of the 19¢9 transformation
formula. Several different generalizations of Watson’s transformation
follow from any one multivariable extension of Bailey’s formula. Thus
we are able to unify all the previously known A,, C,, and D,, gener-
alizations of Watson’s transformations [7, 21, 22, 24, 25]. In addition,
we find 14 new A, and D,, generalizations of Watson’s transformation.

The proofs of our results are generalizations of Bailey’s [3, 5] second
proof of his transformation formula. Following the distillation of Bai-
ley’s ideas by Gasper and Rahman [11], we use a suitable multivariable
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extension of the elementary interchange of summation argument:

A(m) C(k,m) = A(m + k) C(k,m + k).
m=0 k=0 k=0 m=0 (1.1)

When A and C are chosen so that the inner sums are both summable
using Jackson’s g-Dougall sum, we obtain the 19¢9 transformation for-
mula. Essentially, Milne and Newcomb [26] use the same model in their
derivation, except that they follow the organization of Bailey’s ideas in
Slater’s [33] book, rather than the simpler exposition by Gasper and
Rahman [11].

Milne and Newcomb [26] used Milne’s [21] A,, generalization of Jack-
son’s g¢7 sum to sum up the inner sum on both sides of a suitable
multivariable generalization of (1.1). However, this is not the only
multivariable generalization of Jackson’s sum. A C),, extension was
found independently by Denis and Gustafson [10] and by Milne and
Lilly [25], and more recently, Bhatnagar [7] and Schlosser [29] have
found D,, extensions of Jackson’s sum. To derive our C, and D,, 19¢g
transformations, we have used all possible combinations of these A,,,
C,, and D,, summations. (The C,, extension of Jackson’s sum given by
Schlosser [30, 31] is for a different type of series, and cannot be used
to derive a multiple 19¢9 transformation.) As one strange consequence
of combining C,, and D,, theorems, we find a generalization of Bai-
ley’s transformation, which converts a C,, 19¢9 series into a multiple
of an A, 1009 series. In this paper, while we follow the convention set
by previous authors [7, 13, 25] of labeling our formulas as A, C,, or
D,, theorems, we do not hesitate to mix the different types of series if
necessary.

The rest of this paper is organized as follows. In §2, we find a multi-
variable 1p¢g transformation formula, which transforms a C), 19¢9 into
a multiple of an A, 10¢9. In §3, we derive several D,, 19¢9 transfor-
mation formulas. In §4, we present several Watson’s transformations
which follow from our results in §2 and §3.

In §5, we present some A, and D,, extensions of Sears’ [32] 4¢3 trans-
formation formula which follow immediately from our 1p¢g transforma-
tions. In addition, we present a set of transformation and summation
theorems which seem related to Milne’s earlier work, but have not been
noticed previously. These include an A, generalization of the second
iterate of Heine’s transformation [14], an A,, extension of the ¢-Gauss
summation [14], and an A,, extension of Cauchy’s [8] g-binomial theo-
rem.
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Finally, in Appendix A, we collect a useful lemma from Milne [23],
and A,, C,, and D, generalizations of Jackson’s sum from [7, 21, 25,
29].

Many of the calculations we use in our work are summarized in Ap-
pendix I of Gasper and Rahman’s [11] text on basic hypergeometric
series. We will always refer to standard summation and transforma-
tion theorems from classical (one-variable) basic hypergeometric series
from [11]. In addition, important multivariable techniques have been
given by Milne [23], and summarized in [6, Chapter II].

This paper is part of the second author’s Ph.D. thesis [30], written
under the direction of Professor C. Krattenthaler. We thank him for
his helpful comments. We also thank Professor S. C. Milne for showing
us his notes for [24].

In the rest of this section, we introduce some notation, and outline
the main ideas we use from the theory of (classical) basic hypergeomet-
ric series [11]. We also indicate the conventions used in naming series
appearing in this paper as A,,, C,, or D,, series [7].

We recall the standard definition of the g-rising factorial. Let g be a
complex number such that |g| < 1. Define

(@)oo == [ [(1 — ag’),

and, 7
o (@59)w
(D= (agh ) (12)
| (1—ag’), (1.3)

where the equality (1.3) holds when k is a non-negative integer. Clas-
sical basic hypergeometric series (g-hypergeometric series) with r nu-
merator parameters a, ..., a, and s denominator parameters by, ..., b,
are defined as

Definition 1.4 (¢, basic hypergeometric series).

ai, ..., qp, = al; 5@k (@ e [,k &1k
rPs {bl,...,bs’q’z} kzg b1 Dk -+ (bs; D [( Ve ] (1.5)

with ('2“) = k(k —1)/2, where ¢ # 0 when r > s + 1. The parameters
bi,...,bs are such that the denominator factors in the terms of the
series (1.5) are never zero.
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Since (¢7";q)r = 0,if k =n+1,n+2,..., an ,¢, series terminates if
one of its numerator parameters is of the form ¢~™ withn =0,1,2,...,
and ¢ # 0. See [11] for the convergence criteria of these series when
they do not terminate.

The theory of the (classical) basic hypergeometric series consists of
several summation and transformation formulas involving ,.¢ series.
Most of the fundamental summation and transformation formulas in-
volve series where r = s + 1. The classical summation theorems for
terminating 3¢9, ¢¢5, and g¢; series require that the parameters sat-
isfy the additional condition of being either balanced and/or very-
well-poised. An ,.1¢, basic hypergeometric series is called balanced
ifby---b, = a;---a,41q and z = q. An .10, series is well-poised if
a1q = agby = -+ = a,41b.. It is called very-well-poised if it is well-
poised and if a3 = ¢,/a; and a3 = —q,/a;. Note that the factor

1 —aq%*

appears in a very-well-poised series. The parameter a; is usually re-
ferred to as the special parameter of such a series.

With this notation, we now state Bailey’s [4] 19¢9 transformation
formula, which transforms a terminating 19¢g series, which is both bal-
anced and very-well-poised, into a multiple of a series of the same type
[11, equation (2.9.1)].

Theorem 1.7 (Bailey’s classical 19¢g transformation). Let a, b, ¢, d,
e, and f be indeterminate, let n be a nonnegative integer, and suppose
that none of the denominators in (1.8) vanish. Then

a, ¢v/a,—qv/a,b,c,d, e, f, Mag"*" [ef,q " :
1069 [x/ﬁ, —+/a,aq/b,aq/c,aq/d,aq/e,aq/ f,efg" /X, ag™ D q}
_ (ag;9)n (ag/ef; @)n (Ag/€; Q) (A/ 7 Q)n
(Ag/ef;@)n (Mg O)n (ag/ f;q)n (ag/€;q)n
A, q\/X, —q\/X, Ab/a, \c/a, \d/a,e, f, \ag"t! Jef,q ™ _
VA, VA aq/b,aq/c,aq/d, Agfe, \a/ f,efq " Ja, Mg q]

Y

X 10¢9[
1.8)

where A\ = qa?/bcd.

Proof. Following Gasper and Rahman [11], we indicate the main ideas
in the proof of Theorem 1.7.
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To derive (1.8), we start by writing the sum on the left hand side of
(1.1) in the form

> "A(m) B(m), (1.9)
where ) -
B(m) = C(k,m).

We delay the choice of A(m) for now. Choose B(m) as
(0; @) (¢ Dm (4 Drm (MG @)m
(aq/b; Q) (aq/¢; Q) (aq/d; @) (a/X;

The choice of B(m) is motivated by the product side of Jackson’s [17]
terminating balanced very-well-poised g¢7 summation:

B(m) =

Theorem 1.10 (Jackson’s classical g¢p, summation). Let a, b, ¢, and d
be indeterminate, let n be a nonnegative integer and suppose that none
of the denominators in (1.11) vanish. Then

¢ a, Q\/a, _Q\/aa ba ¢, da a2qn+1/bcd, q—n .
e \/a’ _\/a’ GQ/b, a’q/c’ GQ/d, deq_n/aa aqn+1’ 7.4

_ (24;9)n (aq/bc; ) (ag/bd; ) (ag/cd; @)
(agq/bed; q)n (agq/d; q)n (aq/c; @)n (aq/b; @)n

Theorem 1.10 is equation (2.6.2) of [11], where we have chosen to
replace e by a?q™ ! /bed explicitly.

We continue our derivation of Theorem 1.7. B(m) is the a — A,
b+ Ab/a, c — Ac/a, d — Ad/a, and n — m case of the product side
of (1.11), provided A = ga?/bcd. Replace B(m) in (1.9), by this case
of the g¢7 sum in (1.11), and obtain a double sum in the same form as
the left hand side of (1.1). Here, C(k,m) represents the summand in
the above specialization of the g¢-.

Next, we interchange the summation as in (1.1). Now it is not diffi-
cult to choose A(m) so that the inner sum is also summable by using
Jackson’s sum. The choice of A(m) which works is given by

(1.11)

(1 —ag®™) (a;@)m (& O)m (f; O)m (@A™ /ef;O)m (/X Om (@ Dm
(1= a) (& D (90/€; Q) @0/ F5 D (€74 /X D O Dot (@45 @)+
With the above choice of A(m) and B(m), (1.9) becomes the 19¢9 on
the left hand side of Theorem 1.7. Finally, we use the a — ag®, b+ eq”,

c— fq*, d— a/\ and n — n — k case of (1.11) to sum the inner sum
on the right hand side of (1.1). Some elementary simplification using

A(m) =
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the identities in [11, Appendix I| completes the proof of Theorem 1.7.
For more details, see [11]. O

Next, we note the conventions for naming our series as A,,, C,, or D,
basic hypergeometric series. We consider multiple series of the form

Y S(K), (1.12)
k;>0
i=1,...,n
where k = (ky, ..., k,), which reduce to classical basic hypergeometric
series when n = 1. We call such a multiple basic hypergeometric series
balanced if it reduces to a balanced series when n = 1. Well-poised and
very-well-poised series are defined similarly.
Further, such a multiple series is called a C), basic hypergeometric

series if the summand S(k) contains the factor

1—z;/z; 1—zz; ' 3)

1—x7
1<i<j<n 1<i<j<n i=1 i(1

Note that when n = 1, the first two factors disappear, and (1.13)

reduces to

1-— x%q%l

1.14
1— 22 (1.14)

The ratio (1.14) is reminiscent of (1.6). Indeed, in C,, series, 23 acts like
the special parameter of a very-well poised series. In our statements
of C,, theorems, we set z; — +/ax; for i = 1,...,n, and make similar
changes to other parameters in S(k). This is done in order to follow
the classical notation in [11] as closely as possible. See our remarks
after Theorem 2.1 and Theorem 3.1. A typical example of a C,, basic
hypergeometric series is the left hand side of (A.7).

D,, multiple basic series are closely related to C,, series. Instead of
(1.13), S(k) only has the following factors:

ki—k; kitk;
0[50 I
1<i<j<n 1 — i/ 1<i<j<n 1=z

A typical example is the left hand side of (A.13).
Finally, A, basic hypergeometric series only have

1—qF kg, /z,;
I1 { 1q zi/ xﬂ} (1.16)
1<i<j<n — i/,

as a factor of S(k). A typical example is the left hand side of (A.4). The
other differences between A,, C,, and D,, series are best understood

} O (115)
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by comparing the different types of series appearing in this paper. A
reason for naming these series as A4, C,, or D,, series is that (1.16),
(1.13), and (1.15) are closely associated with the product side of the
Weyl denominator formulas for the respective root systems, see [7, 34].

We terminate our multiple series in two ways: If the summand con-
tains the factor

n

H (¢ Mizi/zj;q)x,

ij=1
in the numerator, then it vanishes if k; > N; for : = 1,2,...,n. In this
case we have the natural bounds 0 < k; < N;, for 2 = 1,2,...,n, and

we say that the series is summed over an n-rectangle. On the other
hand, if the summand contains the factor

O [

in the numerator, then it vanishes if £y +---+ k&, > N. In this case we
have the natural bound 0 < ky +---+ k, < N for all k; > 0, and we
say that the series is summed over an n-tetrahedron. Many identities
involving series summed over an n-rectangle are equivalent to a corre-
sponding identity, where the the series involved are summed over an
n-tetrahedron, see e.g. Theorem 3.1 and Theorem 3.7, or Theorem 3.9
and Theorem 3.11.

Finally, we mention some notation used to simplify our displays. We
employ the notation |k| for (ki +---+ k), where k = (ki,...,k,).
This notation is also applied to the vectors N and m. We also find it
useful to denote by m + k the vector (my + ky,... ,m, + k,) formed
by component-wise addition of the two vectors.

2. A C, 109 TRANSFORMATION

In this section, we present a C,, generalization of Theorem 1.7. We
use a straightforward multiple series extension of (1.1), and two multi-
ple series generalizations of Theorem 1.10. These are: A D,, extension
of Jackson’s sum found by Schlosser [29, 30]; and a C, summation
theorem found independently by Denis and Gustafson [10] and Milne
and Lilly [25]. These results are presented in the appendix, see Theo-
rem A.12 and Theorem A.6.

Consider the substitutions a + ga®/bed, b — ag/cd, ¢ — aq/bd,
d — aq/bc in Theorem 1.7. With these substitutions, A becomes a,
and the 1909 on the right hand side of (1.8) gets transformed into the
one on the left, and vice-versa. Once again, we obtain Bailey’s formula
(1.8). This is quite a striking symmetry of Bailey’s transformation.
This symmetry holds for all the multiple series extensions of (1.8) in
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[26] and in §3. Remarkably enough, it does not hold in the following
generalization of Theorem 1.7:
Theorem 2.1 (A C,, 10¢9 transformation). Let a, b, c, d, e, f,
and x1,...,%, be indeterminate, let N; be monnegative integers for
1 =1,2,...,n with n > 1, and suppose that none of the denomina-
tors in (2.2) vanish. Then
5 (H (1 — azlq® ) T (1 — gt R /a; 1— q)

o<ion: \int 1— az? \<isi<n 1—x;/z; 1 — az;x;

i=1,2,.m

(g Nizi/zj;q)r, (azizj; @)k,
2, (gzi/ 255 @)k, (aziz;q' 55 )i,

n

XH (bzi; Q)r, (cxs; @)k, (dzis q)i,

i (amiq/by @)k, (axzq/c 9)x; (aziq/d; ),

(6:17,'; Q)ki (fmz, Q)ki (a)‘xiq1+|N|/ef; Q)ki qz?zliki
L1 (aziq/e; Q)x; (aziq/ f3@)r; (efzig™™NI/X; ),

)

X

n

= H (axiqu;q)jvbrNj H(axiqu;Q)Nz‘

1<i<j<n i,j=1

(A/e; iny (M) £ @) (ag/ef; @)
T [(Azig; @), (azig/e; @) n, (aziq/ f; @)y AgHHNI=N: e fa;; q) ]

=1

S (1= Azghitikd 1—qri*ig;/z;
<> () I

X

0<ki<N; \i=1 1<i<j<n
i=1,2,....n
n n
> H (q ]xz/mja H )\l‘“ |k|
1+N;.
ij=1 (gzi/2j; 9) i=1 (Azig' 5 q)

X ﬁ (61‘2; ) (fsz ) (a)\x q1+|N|/6f'q)
(az;q/b; q)x, (az;q/c; q)x, (az;q/d; q)x,

y (Ab/a; @) (Ac/a; ) (Ad/a; @) sn (2.2)
(A/e; D (Ma/ f5 Do (ef g™ N/ a5 ) g T

where A\ = qa®/bed.

Remark 2.3. Theorem 2.1 is equivalent to its special case where a = 1.
However, we have stated it with one extra parameter in order to closely
follow Gasper and Rahman [11]. When a = 1 in (2.2), it is easy to find
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(1.13) on the left hand side of the resulting transformation. Thus we
call it a C,, sum. The sum on the right hand side of (2.2) is an A,, sum.
Remark 2.4. We call Theorem 2.1 a C,, theorem, since a limiting case
yields Milne and Lilly’s [25] C,, generalization of Watson’s transforma-
tion. However, note that (2.2) transforms a terminating, balanced, and
very-well-poised C, 190¢9 sum into a multiple of a terminating A, se-
ries, which is also balanced and very-well-poised. In view of our earlier
remarks, it may also be written so that it transforms an A, series into
a C,, series.

Proof. The left side of (2.2) can be written in the form

Y A(m) B(m), (2.5)

0<m;<N;
i=1,2,..m
where
ﬁ <1 — az?q 2"”) H (1 — g™ Mgz 1 — azizig™it™
Pl 1 — az? \<isi<n 1—x;/z; 1 — az;z;
y (€23 Q)ms (235 @)ms (@Azig" TN /e f; @), (a2i/X; @)im,
i=1 (axiq/e; q)mi (axiQ/f; q)fm (efxiq_|N|/)‘; Q)mi ()‘xiQQ q)mz
% H (q_NJ‘.’L'i/ij Q)m; (aZiT5;Q)m, qzz."zlimi
5o (92i/ 255 Om, (02325455 @),
and

- (0233 @)ms (€245 Q)i (T3 Q)mi (ATiG5 @),
B m — ? 7 7 ')
() Hl (aziq/b; @)m, (aziq/c; Q)m, (aziq/d; @)m, (azi/X; Q)m,

By Theorem A.12 we may substitute
> (ﬁ (B2 1 ()
0<ki<m; \ i=1 1= Az; 1<i<j<n 1—x;/x;
i=1,2,...,m

n

X H (axixj;q),;ikj H(axiqumj;Q)ki

1<i<j<n i,j=1

% H ]$1/$Ja @k ﬁ( ()\xi;Q)lkl ()‘q/axz’QQ)|k|fki

(qzi/zj; e 7 (Azig" ™5 @) (Ag ™™ /azi; )
_ (Ab/a; @) (Ac/a; @) (Ad/a; @) S k) (2.6)
[1 [(aziq/b; @)x; (aziq/c; Q)x; (aziq/d; q)x,]

=1

7,7=1

)
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for B(m) in (2.5). Write C'(k, m) for the summand in (2.6). Thus, the
left side of (2.2) equals

E E A(m) C(k,m).
0<m;<N; 0<k;<m;
i=1,...,n 1=1,...,n

Now we interchange the summations

> ) A(m)C(k,m),

0<k;<N; k;i<m;<N;
i=1,...,n i=1l,..,n

and after shifting each m; to m; + k; in the inner sum while changing
the range of summation we obtain

> > A(m+Xk) C(k,m+k). (2.7)

0<k;<N; 0<m;<N;—k;
i=1,...,n i=1,....,n

Explicitly, after rearranging terms, (2.7) is
Z (ﬁ (1 _ )\.I’iqki+|k|> H (1 _ qkiiji/mj>
0<ki<N; \ i=1 1= Az, 1<i<j<n 1= ai/z;
i=1,2,0..,n

n

o -1 kj.
X H (aximj,q)kﬁkj H(al'il'jq 5 Dk,
1<i<j<n 1,j=1

n

< I (g xi/x;; ), ﬁ( (Azi; Q)i (Ag/azs; @) i

(g7i/75; D -3 (ATig ™45 @) (Mg /azi; q)q
(Ab/a; @) (Ac/a; @) (Ad/a; ) ik
I1 [(aziq/b; @), (aziq/c; q), (aziq/d; q)r,]

=1
y ﬁ 1— ax2q2’“’ H 1— qki_iji/xj 1— axiqukri-k:j
] 1 — az? 11 1—x;/z; 1 — az;z;
=1 ? 1<i<j<n
(exi; Ok, (f2i; Qs (adzig" TN e f5 @)x, (azi/X; @),
T (azig/e; q)k.; (aziq/ f5 @r, (efzig N /X @), (Aiqs @),

X H sz/xja )kz (axixj;Q)k,; S Liks
(qzi/zj; @)k, (azizigt ™55 q)g,

,j=1

1=

7,7=1

X E H (1_qmi_mj+ki_kj$i/xj 1—axiquk¢+kj+m¢+mj>

— iz . SRS

0<m; <Nj;—k; 1<i<j<n 1—gh iz /x; 1 —azjz;q~Tri
i=1,2,....n
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y ﬁ (1 - ax?qzk"“m") ﬁ (exiq"; Q)m, (f2:9"; D,

1—azig® ) 3 (aziq™% /€5 q)m, (aziq" ™%/ f; @)m,
2 (adzig RN e f ), (amig® M /X @)m,
E (efzigh NI/X; @)m, (Azig! it g,
kitk;.

_NJ‘.’IZZ'/$J'; Q)mz (Cll'i-’lz'jq ) Q)mi qzz'"=1 zm,) )

(g
X
A__Il (q1+k,-—ij,~/xj; q)mi (amiqu1+k,-+zvj; q)

i=1

Summing the inner sum by means of the

b—e, c— f, d s ag ™ /),
IEi'—).’Eiqki, NZHNz—kZ, fori:1,2,...,n

case of Theorem A.6 and simplifying terms by Lemma A.1 and some
elementary manipulations (cf. [11, Appendix I]), we obtain the right
side of (2.2). O

Remark 2.8. An alternative way to derive Theorem 2.1 is to use The-
orem A.6 in the inner sum, and then employ Bhatnagar’s D,, g¢7; sum-
mation, Theorem A.9, after exchanging sums. Then we would arrive
at identity (2.2) too, but with the right hand side on the left and vice-
versa.

3. SOME D,, 10¢p9 TRANSFORMATIONS

In this section, we follow the method of §2 and derive some D,, 19¢q
transformations. We use various A,, and D,, extensions of Jackson’s
sum which are collected together in Appendix A. For instance, by com-
bining the D,, summation theorems of Bhatnagar [7] and Schlosser [29],
we obtain Theorem 3.1. Instead, by combining Bhatnagar’s [7] D,
Jackson’s sum with Milne’s [21] A,, sum, we get another D, transfor-
mation, Theorem 3.9. In addition, by reversing series, and relabeling
parameters, we obtain Theorem 3.13.

The transformation formulas obtained in this manner involve series
which are summed over an n-rectangle. A standard polynomial argu-
ment, see for example [23], leads to an equivalent formulation of each
of these transformations, where the series involved are summed over an
n-tetrahedron.

We begin by combining both D,, g¢7 summations, Theorem A.9 and
Theorem A.12, to obtain the following D,, transformation.

Theorem 3.1 (A D,, 19¢ transformation). Let a, b, ¢, d, e, f
and zi,...,x, be indeterminate, let N; be nonnegative integers for
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1 =1,2,...,n with n > 1, and suppose that none of the denomina-
tors in (3.2) vanish. Then

> (ﬁ () ()
ockn, it \ LT A% \<idjen N LT i/
i=1,2,..m

% H ( (aCBi.’BjQ/d; Q)kﬁ-kj f[ (ef/)\x“ Q)|k|7k;

1<i<j<n Aaz;ziq/ef; q)krr; 1 (d/i; )1

y H Nig; )z @k (Aazizigt ™ fef; @),

ij=1 qxz/x], )7% (amzx]q/d, q)ki

Xﬁ (azi; Q) (d/i59)
it (azig"t N5 q)ug (efq ™ /Azi; )

- b.’L',L, cx'nq)k
X
g (aziq/e; Q) (axzq/f )

o (& (i) qzy_liki>
)ik

(aq/b; @) (ag/c; q

n

H (aziq; @), (azig/ef; @), (Azig/e; q)n, (Azig/ f; ) n,
L1 (Azig/ef;a)m (Azig; @), (azig/ [ @), (azig/e; @),

Xy H 1 — Azigtit™ 11 1 — g g, /oy
0<k;<N; =1 1<i<j<n
i=1,2,...n

y H ((al’iij/d;Q)ki—l—kj ﬁ(ef/amﬁ(l)lkl—ki

i Aaziziq/ef; Qrirr; 1 (Ad/azi; @)1

y H Nig; |z q)r Naziziq" i Jef; q)r,
qxz/%, )k1 (al‘szQ/da Q) ki

Xﬁ (Azi;9) |k| (\d/azs; )
- (Azig" s q) g (efgNe fazis q)

y o (Abzi/a; @)k, (Aexi/a; @),
H (Azig/e; Ok, (Aziq/ £ @),

(&; Dt (s Ding g i=t “ﬂ) , (3.2)

(aq/b; Q)|k| (aq/c; Q)|k|
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where A = qa?/bcd.

Remark 3.3. Theorem 3.1 is equivalent to its special case obtained by
setting d — aq/d, and then d = 1. However, we have stated it with one
extra parameter in order to closely follow Gasper and Rahman [11]. In
the above special case of (3.2), it is easy to find (1.15) in both sums of
the resulting transformation. Thus we call it a transformation formula
for D,, series. A similar remark applies to all the multivariable identities
in this paper.

Proof. The left side of (3.2) can be written in the form (2.5) where

B ﬁ 1— amiqmi+|m| H 1— qmi—mjxi/q;j
B 1—ax; LA 1—z;/z;
1<i<j<n

=1

n

X H ()\amiqu/ef;q);imj H()\axiqulJrNj/efSQ)mi

1<i<j<n ij=1

<
% ﬁ (q ]x’t/wja m; ﬁ axz: |m| (ef/)\x,, )|m| —m;

s (qzi/zj;q) L (a:g77 % @) (£ 4 M35 Q) jm)
« (6; q)|m| (f, Q)|m| (a/)‘; q)|m| qzyzl img
l:[1 [(aziq/€; @)m; (aziq/ f; Qm; (ATiq; Q)]
and
Bm)= [] (amiz;q/d;Q)mesm, |] (azizja/d;q);)
1<i<j<n ij=1

n

H [(bxza Q)mi (cxi; Q)mi (dq|m|_mi/xi; Q)mi ()‘xiQ; q)ml]

i=1
(aq/b; q)jm) (a4/¢; @) jm| (@/X; @) jm)
By Theorem A.9 we may substitute

> <ﬁ (1 — Amq’“"*'“) I (1 — q’“"’“mi/wa)
0<ki<m; \ i=1 1= Az; 1<i<j<n 1—xi/x;
i=1,2,...m

X

n

x [I (ewiwja/d; @rrn, [] (azizia/d;q)}

1<i<j<n ij=1

m]xz/xja q)k; = )‘xla |k| ()\d/aa:,, )|k|
x H H o,

=1 qx /373; e q1+m’ q k| ()‘d/axn )|k|_ki
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[(Abzi/a; q)r, (Aczi/a; q)r, (aziq™); q)x,]

i=1 s ik
T (ag/b O (/6 g O s g ) (3.4)

s

for B(m) in (2.5). Write C(k, m) for the summand in (3.4). As in the
proof of Theorem 2.1, the left side of (3.2) equals

> > A(m+k) C(k,m+k). (3.5)

0<k;<N; 0<m;<N,—k;
i=1,...,n i=1,...,n

Explicitly, after rearranging terms, (3.5) is

> (T ()

i=1 1<i<j<n

n

X H (aziz;q/d; @ rivr, H(axiqu/d;q)l;l
1<i<j<n ij=1
% ﬁ (¢ Mai/zj;q), ﬁ (Azi; )i (Ad/azi; q)
(qzi/zj5 Dr 3 (Azag™ 55 @) (Ad/ a5 @) -1

zljl [()‘bxz/a Q)kl ()\cx,/a q) (a,r q|k| Q)kz] _—

(aq/ b @) (aq/c; @) (Mg /a; )

X H 1—az;ghtd H 1— g5 iz /a;
1- ax; 1-— wi/xj

1<i<j<n

n

x [ Qawizsa/ef;aite, [] Qazizia ™ /ef;a)

1<i<j<n ij=1

Niz; Tk T (azi; @) (ef /AZi; Q)1
* H (qzi/2j; O, 1:[1 (azig"t™; @) (ef g/ Az @)
y (&; D (F; D (@/A; @) Sk

I1 [(aziq/e; a)r, (aziq/ f; @n: (Azid; @)k,]
1— axiqki+|k|+m¢+|m| 1— qmi—mj-f—ki—iji/xj
< Iaes) I (™)
< ) 1<i<j<n
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n

x I Qazed* % /ef;0)00 0, ] Qazizd ™ /ef; q)m,

1<i<j<n i,j=1
x H 5 Nigs 25 @)m, H (aziq" 1 @) jmy (efq™ ™ /A2i; @) jmj—m;
1,j= 1 1+k —kig; /xb ) i=1 (axiq1+|k|+N17q)|m| (efq|k| NZ/)‘xu )|m|
y (eq™); @)jm| (F¢™; Q)i (@/X; @)jum) T m)
I1 [(azig* ™ /e; q)m, (azig* ¥/ f; @), (Azig*TEitIl; g) 0, ]

=1

Summing the inner sum by means of the

a— ag®, b eg! c— fg™,  d—a/),

.Til—)l'iqki, Nz'—)Nz—k,, fOI‘Z:1,2,...,TL

case of Theorem A.12 and simplifying terms by Lemma A.1 and some
elementary manipulations, we obtain the right side of (3.2). O

Remark 3.6. Some special limiting cases of Theorem 3.1, and the other
transformation formulas in this section, yield many generalizations of
Watson’s transformation, see §4.

By using a polynomial argument we easily obtain
Theorem 3.7 (A D, 10¢g transformation). Let a, b, ¢, d, e, fi, ...,
fn and zy, ..., x, be indeterminate, let N be a nonnegative integer,

let n > 1, and suppose that none of the denominators in (3.8) vanish.
Then

Z (ﬁ(l_ax qk+|k|> H (1_qk¢—iji/xj>
ki k2peenkn >0 \ i=1 1—az; 1<i<j<n 1= zi/z;
0<|k|<N

(azsz;q/d; Qrirr; 1 (€47 /AZi; @) k)
X H . H

1§i<j< (Aaxiqu1+N/e; q)ki+kj i=1 (d/xl; q)|k|_ki

y ﬁ (fimi/zj; D (MNaziz;a N Jefi5 ),
2 (gmi/zi w (amiziq/d; )k,

ﬁ (az;; )|k| (d/$i;Q)|k|

i1 (aziq/ fi; )|k| (efiq*N/)\xi;Q)|k|

ﬁ (bxl; )k (Cwi;Q)k

(azig/e; @)k, (azig"™; @),
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(6; Q)|k| (q_N; Q)|k| qE?:l ik
(aq/b; @) (ag/c; @)

ﬁ az;q; q)n (aziq/ef;; @) v Mziq/e; v (Aziq/ fi;q) N

(Aziq/efi; ) v (Axig; @) n (aziq/ fi; @) n (aziq/e; @)

1 — Az;ghitikl 1—qri*ig;/z;
oy (TR Io(RE
k1 k2peskn >0 \ i=1 ¢ 1<i<j<n v
0<[k|<N

< Tl (aziz;q/d; Q)i+ H( /a5 q) ek
(Aaz;z;q' N /e; @)tk (Ad/azi; @) -1

ki (

q)

1<i<j<n i=1

n
> H f]xz/mja
1,j=

Aaz;z; g N Jefis @k,
qxz/xj; q)k

. (az;ziq/d; Q)

- (Azi; Qe (Md/azi; q)
" E Aziq/ fi; D (efig™ [azi; @)

n

(Abzx;/a; Acx;/a;
XH /@ Qs (Aczi/a; ),

(Azig/e; @)k, (Azi@"*N; ),

(€ (VD s i,
(aa/b; ) (aa/& g ) 39

=

where A\ = qa®/bcd.

Proof. First we write the product in front of the sum of the right side
of (3.8) as quotient of infinite products using (1.2). Then by the f =
g~V case of Theorem 3.1 it follows that the identity (3.8) holds for
fi =q%,j=1,...,n. By clearing out denominators in (3.8), we
get a polynomial equation in f;, which is true for g™, N; =0,1,....
Thus we obtain an identity in f;. By carrying out this process for
f2, f3,-- ., fn also, we obtain Theorem 3.7. O

Next we use Theorem A.3 and Theorem A.9 to obtain

Theorem 3.9 (A D,, 10¢g transformation). Let a, b, ¢, d, e, f
and zi,...,x, be indeterminate, let N; be monnegative integers for

1= 1,2,...,n with n > 1, and suppose that none of the denomina-
tors in (3.10) vanish. Then

Z ﬁ 1 — az;qgkitik H 1—gri~kig;/z;
, 1 — az; LA 1—z;/z;
0<k;<N; =1 1<i<j<n

i=1,2,...,n
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X H (aziz;jq/d; q)kitk, H(WﬂjQ/d;Q)l;l
1<i<j<n ij=1
% H sz/ﬂJ], )k ﬁ (azi; ) |k| (d/zs; )|k|

qﬂ?z/%, i1 (aziq**i; q) k| (d/zs; )|k|fki

7,7=1

n

I1 [(bl’i; Qr; (€53 Q) (€Ti5 @, ()\aa’ﬂ'qulN'/ef; Q)ki]

=

(aq/b; @) (aq/c; @) (agq/e; @) (ef N/ X5 @)

y (fs @)k by zk)
(aziq/ f; Ok,

[y

X

s

1

_ (GQ/ef;Q)INI (Ag/e; )iy H (azigi q Nz (Azig/ f; @),
()\(]/ef; q)|N| (aq/e q |N| )\xzq, q)N; axzq/fa )

" (1 = Azyghit Ik 1—grikig;/x;
% Z <i_1< 1—)\1'1 H 1_1'1'/1']' >

0<k; <N; 1<i<j<n
i=1,2,...,n
n
. /)1
X H (az:z;q/d; @)k;+k; H(axiij/d;Q)k,-
1<i<j<n i,j=1

g Nz /259K 1T ATi; @) (Ad/azi; q)
XH / )H( (Azi; @) (Ad/azi; )

o (@mi/zi ke oy Qg™ @)y (Ad/azi; @)

li[1 [(Abzs/a; @), (Aexi/a; @)k, (ezi; @)k (Mazig ™ /e f; q),]
(aq/b; Q) (ag/c; Qg (Ag/e; Qg (efg N /a5 )
N (f; D by zk) . (3.10)

n

1T (Aziq/ f; @)

=1

where A\ = qa®/bcd.
Proof. The left side of (3.10) can be written in the form (2.5) where

_1r (11— azigmiti™ 1— g™ ™ig;[z;
A(m) _H ( 1— az; H 1—z/x;

1<i<j<n

< 1 ("2 /255 Q) m, 11 (a3 @) jm|

o (@wi/zQm 3 (020" TV Q)
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r (exi; Qmy Mazig" TN /e f; @),
% H (aziq/ f; Q) m; (AZiq; @) m,
(f; Q)|m| (a//\; Q)|m| D imi
(ag/€; @)jm| (€fq™NI/X; @)jm|

Bm) =[] (aziz;jq/d;Q)mesm, |] (azizjq/d;q);}
1<i<j<n i,j=1

n

[T [(025; @)m, (c2i; Q)m, (dg™ 7™ /245 @)y (ATiG5 @) i, |

i=1
(aq/b; ) jm) (aq/C; @)im| (/X; @) jumi

By Theorem A.9 we may substitute (3.4) for B(m) in (2.5). Write

C(k,m) for the summand in (3.4). As in the proofs of Theorems 2.1

and 3.1, the left side of (3.10) equals

> > A(m+k) C(k,m+k).
0<k;<N; 0<m;<N;—k;
i=1,...,n i=1,...,n

X

Explicitly, after rearranging terms, this is

Z (ﬁ(l—)\xqﬁ”'k') H (1—qk"_kj$i/xj>
0<k;<N; \ i= 1= Az; 1<i<j<n 1 -/
1=1,2,...,n

n

x | (ewizja/d; @rw, [] (azizia/dsq)y)

1<i<j<n ij=1

y < (g% zi/zj;Q)k, - (Azi; @)p (Ad/azi; @)
11 (qzi/zj; Qx, 11 (Aziq" ¥ q)pq (Ad/ azi; @)1
[T [(Aba:/as q)r, (Acwi/as q)x, (azig™; g),]

= Sy ik
(aq/b; @) (ag/c; @) (Mg /a; )

X ﬁ 1 — az;igb ™ H 1— g5 iz /x;
1—az; 1 —x;/z;

i=1 1<i<j<n

Ni i yq = ax;,
% H ﬂ?/% 9, H ( 1+]3)|kl

o (ami/ei Qe oy (azig N5 g)pg

T (e Ok, Mazig™t N /e f q)s,
- Ul (aziq/ f; Dr, (ATiq; @),
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(f; D (a/A; @) Sk
(aq/e; Q) (efa ™/ X; @)
1 — ax: qk i+ |k|+m;+|m]| 1— qm, m;+k; k].’ll' /ZL’
< MI(BEen) IO(BESE
0<m; <N;—k; i=1 ¢ 1<i<j<n v
i=1,2,...,n

% ﬁ (@5 Nz /25;Q)m, ﬁ (az;g*¥l; @) jm|

(@R hzi /255 @), iy (a2ig NS @)

ﬁ (eiq"; @)m; Nazig ™ N e f: q)m,
-1 (azig" R/ £ @), (Azigt TR g)

(fq|k|; Q)|m| (a/)‘; Q)|m| Z?:l im;
(aq™*™ /e; q)m| (efq =N /X; )| ! '

Summing the inner sum by means of the

Il

a—ad® b fq c—al/X, d e,

a:u—)xzqk’, NZI—)NZ—k“ fOI‘Z:1,2,,’I’L

case of Theorem A.3 and simplifying terms by Lemma A.1 and some
elementary manipulations, we obtain the right side of (3.10). O

By using a polynomial argument we obtain

Theorem 3.11 (A D,, 109y transformation). Leta, b, ¢, d, e, fi1, ...,
fn and x1, ..., x, be indeterminate, let N be a monnegative integer,
let n > 1, and suppose that none of the denominators in (3.12) vanish.

Then
Z ﬁ 1— amiqki+|k| H 1— qu;—k:jxi/xj
, 1 — azx; LA 1—z;/z;
k1,k2,ekn >0 \ i=1 1<i<j<n
0<|k|<N

n

X H (a’xiij/d;Q)ki-i-kj H(amiqu/d;q),;l

1<i<j<n i,j=1

" H (fizi/zj;9) ﬁ (azs; @) (d/7559) k)

el CLE ), -1 (aziq/ i3 Qi (d/ 255 Qg -1

ﬁ (b5 @), (czi; @)k, (x5 Ok, (Nazig™ N [efy -+ fui @),

=1

(aq/b; @) (aq/c; Qe (agq/e; Q) (efi -+ fa@™N /A @)k
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> (q_N; q)|k| qZ?:liki>
)k

[1(azig"™; @),

=1
_ (ag/efi--- fa; @) (Ma/€;@)n ﬁ azig; ¢)v (Azia/ fi;@)w
(Ag/efi-- fn;@)n (ag/€;q)n (Azig; 9)~ (aziq/ fi; @)n

1

y Z <1j ki+K|

—)\a:q H 1—gri~kig;/x;
k1,k2,...,kn>0 1<i<j<n

0<|k|<N
x | (awizja/d; Qrn, [] (azizia/dsq)i)!
1<i<j<n i,j=1

% H fﬂ:z/x]: Dk T (Azi; @) (Ad/azi; q)iq
(qzi/zj; Qe -7 (ATig/ fis @) (Ad/azi; @),

=

N———

7,j=1

1 [(Abzi/a; ), (Aczi/a; @)k, (exi; @)k, (Nazig" TN Jefr -+ fu; q),]
(aq/b; @) (aq/c; Qpe (Ma/e; Qe (efr- - fogd N /a; @)k

—N.
. (Y @i qz;lm), (3.12)
I[T(Az:ig" ™5 q)

=1

s

1

where A\ = qa?/bcd.

Proof. First we write the product in front of the sum of the right side
of (3.12) as quotient of infinite products using (1.2). Then by the
f=q case of Theorem 3.9 it follows that the identity (3.12) holds
for f; = ¢ i, j =1,...,n. By clearing out denominators in (3.12), we
get a polynomlal equatlon in fi, which is true for ¢~ ', Ny = 0,1,....
Thus we obtain an identity in f;. By carrying out this process for
fa, f3,- -, fn also, we obtain Theorem 3.11. O

By reversing sums in Theorem 3.9 we get

Theorem 3.13 (A D, 190¢g transformation). Let a, b, c, d, e, f
and z4,...,x, be indeterminate, let N; be nonnegative integers for i =

1,2,...,n with n > 1, and suppose that none of the denominators in
(3.14) vanish. Then

Z ﬁ 1 — az;qgkitik H 1—gri~kig;/z;
, 1 — az; LA 1—z;/z;
0<k;<N; =1 1<i<j<n

i=1,2,...,n
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X H ()\axiqu/ef;q),;arkj H()\axiqu1+Nj/ef;Q)ki

1<z'<j<n i,j=1

Nigi [z Qe T azi; Q)i (€f /ATi; @) ey
XH / )H(( Q)i (ef /Azi; )i

(gzi/zj; Qrs 7 (azig ™55 q)pg (efq™Ni Az ) e
(& et (d5 et (€5 D (F5 @)1
l:[1 [(aziq/c; Qx; (awiq/d; @)k, (aziq/e; q)x, (aziq/ f; Q)]

(bmz, Q)k;

7,j=1

X

||;:]:

(aq/b Qx|

(aziq; )N, (azig/ef; @), (Azig/e; q)n, (Azig/ f; ) n,
L1 (Azig/ef;a)w: (Azig; @), (azig/ [ @) (azig/e; @),

X Z H 1 — Az;ghitIM H 1 — gk iz
0<ki<N; \ i=1 1<i<j<n
i=1,2,...m

n

n

< I Qazwsasefsala, T Oaviia ™ ef;n

1<i<j<n ij=1

’ﬂﬁz Z55q)k; “ AT q) 1 (ef /axi; q)k)—k;
XH / )H(( Q)i (ef /azi; @)

(qzi/zj; Qe 7 (Azigd"™N5q) g (efq i/ azi; q)
(Ac/a; @) (Ad/a; @)pe (€50) ) (f; @i
[(aziq/c; Ok, (axiq/d; Ok, (ATiq/€; Dks (ATiq/ [ D]

1,j=1

X

s

1

)

ﬁ(xbxz/a Ok,

i1 Siiik
X q , (3.14
(aq/b; q) ) (3.14)

where A\ = qa®/bcd.

Proof. First, replace k; by N; — k;, for : = 1,2,...,n, on both sides of
Theorem 3.9 and simplify terms by Lemma A.1 and some elementary
manipulations (cf. [11, Appendix I]). Finally, relabel

arqg ™N/a, b c/a, ¢+ d/a, d— Mg Nl/ef,
e e/a, fr=bg ™N/a oz g Nijz;, fori=1,2,...,n

in the resulting identity to obtain (3.14). O
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Remark 3.15. An alternative way to derive this is to combine Milne’s
A, s¢7 summation, Theorem A.3, and Schlosser’s g¢7 summation, The-
orem A.12, with the interchange of summation argument.

By using a polynomial argument we obtain

Theorem 3.16 (A D, 10¢ transformation). Leta, b, ¢, d, e, fi, ...,
fn and x1, ..., x, be indeterminate, let N be a monnegative integer,
let n > 1, and suppose that none of the denominators in (3.17) vanish.

Then
Z ﬁ 1 — az;gh ™ H 1 —gh iy /a;
1-—- ax; 1-—- wi/xj

it k2 ykin >0 \ =1 1<i<j<n
0<[k|<N
X H (Aaz;z;q" N /e; q),;_frkj H (Aaziz;q" N Jefi; )x,
1<i<j<n ij=1
« H f].’L'Z/.’L'], ﬁ axzaq k| eq /)\.’I]’z, )|k| k;
=1 qwz/x], i1 axZQ/fz; )Ikl (efzq //\xz: )Ikl

(c; Q)|k| (d; @)t (& Dt (@N50)
11 [(azia/c; @)x, (aziq/d; @)k, (aziq/€; Q)r, (azig™ ;5 q)x,]

=1
(bmz, Q)
- - = qz::b:lik”'
(GQ/ b; @) )

ﬁ az;q; q)n (aziq/efs; q)v (Aziq/e; ) (Aziq/ fi; q)
11 (Azig/efi; )w (Azig; @)n (amig/ fis ) (azig/e; @)

1 — Az;ghitikl 1—qriFiz;/z;
% Z <g< 1—)\1'1 H 1_1'1'/1']'

X

3

||::]:

E1,k2,eekin >0 1<i<j<n
0<IKI<N
n
1+N /. \—1 1+N .
X (Nazizig N Je; )iy, ][ Razizsa™™ /e o
1<i<j<n ij=1

o ﬁ (fizi/zj; Dk v Az Q) (eq Y /azs; @)k
o @@z Qe oy Mg/ fis ) (efig™ [azi; g

(Ac/a; @) (Md/a; @) (€ @) (0750 i
[(aziq/c; Q)x, (aziq/d; @)k, (ATiq/€; @)k, (ATig ;5 q)i,]

X
s

1

A
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3

[1(Abzi/a; q)x, .
x =L qzi"=1’k"), (3.17)

(aq/b; @)
where A\ = qa?/bed.

Proof. First we write the product in front of the sum of the right side
of (3.17) as quotient of infinite products using (1.2). Then by the
f =q " case of Theorem 3.13 it follows that the identity (3.17) holds
for f; =q i, j =1,...,n. By clearing out denominators in (3.17), we
get a polynomial equation in f;, which is true for ¢, N; =0,1,....
Thus we obtain an identity in f;. By carrying out this process for
f2, fs,- .., fn also, we obtain Theorem 3.16. O

4. SOME WATSON’S TRANSFORMATIONS

In this section, we find the multivariable generalizations of Watson’s
transformation which follow from our results in §2 and §3. As special
cases of our generalizations of Bailey’s 1909 transformation, we obtain
A,, C,, and D, generalizations of Watson’s transformation found by
Milne [21, 22, 24], Milne and Lilly [25], and Bhatnagar [7], respec-
tively. See also [19, 26, 28, 30| for some of Milne’s A,, generalizations
of Watson’s theorem. In addition to recovering all such transforma-
tions known previously, we also obtain two new A,, and several D,
generalizations of Watson’s theorem.

Watson’s formula follows from Bailey’s 199 transformation in one of
many ways. For instance, if we take the limit as d — oo in Theorem 1.7,
and replace f by d in the resulting identity, we obtain [11, equation
(2.5.1)]:

Theorem 4.1 (Watson’s classical ¢-Whipple transformation). Let a,
b, ¢, d, and e be indeterminate, let n be a nonnegative integer, and
suppose that none of the denominators in (4.2) vanish. Then

¢ a, q\/aa _Q\/a, b7 ¢, d7 €, qin . a2q2+n
8 \/_7 _\/aa CLQ/b, (IQ/C, CLQ/d, GQ/G, aan’ e deG

_ (08:9)n (ag/de; @) ag/be,d,e,qg™
a (GQ/d, Q)n (GQ/E; Q)n 4¢3 (I,Q/b, GQ/C, deq—"/a> q, Q:| . (42)

This is not the only the only way to obtain Theorem 4.1 from (1.8).
We may also take the limit b — oo, or ¢ — oco. Further, we may first
restate Theorem 1.7 by replacing e or f by Aag"™!/ef in (1.8), and then
take the limits as b, ¢, or d — o0, to obtain Watson’s transformation.
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All the above limiting cases of Bailey’s formula lead to the same
identity, upto a trivial relabeling of parameters. However, in our mul-
tivariable generalizations of Bailey’s formula, some of its symmetry is
broken, and we obtain many different generalizations of Watson’s trans-
formation. For example, while the b, ¢, or d — oo case of Theorem 2.1
yields the same identity, letting b —+ oo and d — oo in Theorem 3.1
yield different generalizations of Theorem 4.1.

Finally, as noted in §2, we may set a — ga%/bcd, b — agq/cd,
¢ — aq/bd, d — aq/bc in Theorem 1.7. With these substitutions,
A becomes a, and the 19¢9 on the right hand side of (1.8) gets trans-
formed into the one on the left, and vice-versa. Once again, we obtain
Bailey’s 19¢9 formula. Now, we may take limits as above and obtain
Watson’s transformation. This observation does not lead to any fur-
ther generalizations of (4.2) from our results in §3, but it does apply
to Theorem 2.1.

If we perform the above substitutions and let d — oo in Theorem 2.1,
we obtain one of Milne’s [24] A, Watson’s transformations, see [26,
Theorem 5.1]. Instead, if we simply let d — oo in Theorem 2.1, we
obtain Milne and Lilly’s [25, Theorem 6.6] C,, generalization of Theo-
rem 4.1.

Next we consider the multivariable generalizations of Watson’s trans-
formations following from Theorem 3.1. First we have an A,, extension
of Theorem 4.1.

Theorem 4.3 (An A, Watson’s transformation). Let a, b, ¢, d, e
and x1,...,%, be indeterminate, let N; be nonnegative integers for i =

1,2,...,n withn > 1, and suppose that none of the denominators in
(4.4) vanish. Then

Z (ﬁ(l—aqu+|k|> H <1—q’“i_kfwi/a:j)
1—ax; \<isien 1—a;/z;

=1

n n

(q J.’Z,'Z/fl:], kz H aml, |k|

X
1+N;.
(qxz/xja i=1 ax iq N q k|

3,j=1

= b A i i
x H Lisd kz (C.T ;q)k,

Pl awzq/d Dk, (azig/e; Q)

(d; @)1 (&5 9) x| a’q' N . > ik
* (aa/b; Q) (aa/c; O < bede ) !
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ﬁ[ azig; 9)n; (azig/de; g)n, }

(az;q/d; q)N, (aziq/e;q)n,

1=

1—qF ki, )z, i Nigi /T Q).
% < q x/*’”g) H (g x/x]:Q)kz
i=1,2,...

N

ﬁ[ (de/azi; q)|-k; (aq/bcxs; q))x| }

(aq/bexi; @) —k; (deq=Ni/azi; q) k|

d. . n .

X ( ;Q)|k| (67 Q)|k| qu‘:l ik; - (44)
(aq/b; Q)i (ag/c; @)k

Proof. We first replace A by ga?/bcd in Theorem 3.1, and let d — oo.

Finally, relabel f +— d in the resulting identity to obtain (4.4). O

Remark 4.5. Theorem 4.3 concerns series summed over an n-rectangle.
By using a polynomial argument similar to the proof of Theorem 3.7,
we may find another A, extension of Theorem 4.1, where the series
involved are summed over an n-tetrahedron. This may also be accom-
plished by taking the limit as d — oo in (3.8).

Remark 4.6. Theorem 4.3 is different from any of the generalizations of
Theorem 4.1 which appears in [24]. The series on the left hand side of
(4.4) is the same as two such transformations appearing in [26, Theo-
rems A10 and 5.1]. By comparing the other two sides we obtain gener-
alizations of the Sears 4¢3 transformations [32], [11, equations (III.15)
and (II1.16)], see [26] for an example of similar calculations.

The rest of our extensions of Theorem 4.1 concern D,, series. After
taking limits, we sometimes use

(5)-et- () (3) 2

to simplify the powers of gq.

Theorem 4.7 (A D, Watson’s transformation). Let a, b, ¢, d, e
and x1,...,%, be indeterminate, let N; be monnegative integers for
1 =1,2,...,n with n > 1, and suppose that none of the denomina-
tors in (4.8) vanish. Then

Z ﬁ 1-— aa:iqkﬁ'k' H 1-— qki_iji/.'lfj
, 1 — az; LA 1—z;/z;
0<k;<N; =1 1<i<j<n

i=1,2,..n
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" 1
X (aziz;q/c; Oran; | | —F————
1gggn ! ! g (C/l’i;Q)lkI—ki
n —N; . X
o H : (¢ NVixi/zj; O,

qxi /T35 Q) (a2i59/C5 Qs

ij=1

% ﬁ (axz’;Q)|k| (c/xs; Q)|k|

=1 (azig N5 q)

X ﬁ{ (bi; @) } (d; @) (€3 9) i

(aziq/d; q)x, (azig/e; Or, | (agq/b; @)

a’q' NI . ST ki —2es(k) T2k
X _+r =1 L Ri ,—4€2 - 4
( bede ) 1 1 Hm’

=1

=1

_ ﬁ [((awzq ;q)n, (azig/de; ), }

azx;q/d; q)N, (aziq/e;q)n,

1—grihig;/x;
x Z < ( 1 /]> H (az;29/¢; @)kitk;
. —.’Ei/l‘j
0<k;<N; \ 1<i<j<n

1<i<j<n

y ﬁ (Q_N"iﬂi/ijQ)ki
L (qzi/zj; . (aziziq/c; @),
y - {(de/ az;; )k —k; (az:q/be; q)k,}
pale (deq=: [azs; q)
(4w (D s i,
X ki) (4.8
(aq/b;q) k| 1 (48)

where ey(k) is the second elementary symmetric function of k.

z’]

Proof. We first replace A by ga?/bed in Theorem 3.1, and let ¢ — oo.
Finally, relabel d — ¢, and f +— d in the resulting identity to obtain
(4.8). O

Remark 4.9. Theorem 4.7 concerns series summed over an n-rectangle.
By using a polynomial argument similar to the proof of Theorem 3.7,
we may find another transformation formula between series summed
over an n-tetrahedron. This may also be accomplished by taking the
limit as ¢ — oo in (3.8).

Next, we consider the special cases of the equivalent formulation of
Theorem 3.1, obtained by replacing e by Aag/ef in (3.2).
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Theorem 4.10 (A D, Watson’s transformation). Let a, b, ¢, d, e
and x1,...,%, be indeterminate, let N; be nonnegative integers for i =

1,2,...,n withn > 1, and suppose that none of the denominators in
(4.11) vanish. Then

> (ﬁ (—1_%@}{') Iy
ockon, \it \ LT A% \<idjen N LT il
i=1,2,....n

y H (aa:iach/c;q)k,-+kj ﬁ(GQ/ewiQQ)lk|_ki

1<i<j<n (ezizj; Drirr; 1y (€/T5 D -k

o H J.TIZ/.’EJ, )kz (6-7:11:3(1 aQ)kz

ij=1 q‘rl/xw )kz (axlqu/a Q) ks

y H a% |1<| (C/xiQ Q)|k|
ax iq

LENG @) (gt N fei; )i
X ﬁ { (beq) } (4 ) ( qa’ >|k| g i ihi
i=1 (aziq/d; Q)kz (aq/b; @) \bede

Il ) () i

=1

ki—k; R
o Z < (1 —q in/:vj) H (CL.’L',L.’L'JQ/C, q)ki+kj
ockien: \igicjen N LT/ e Cr L e
i=1,2,...n

y ﬁ (qNizi/xj;Q)n, (exiz;q™7; ),
(ql’z/.’E], q)kz (CLJIZ:L']Q/C, Q) k;

ij=1

T [(azia/bei k] (&g s i,
ZH {(dewi/a; Q)k¢] (ag/b; g ) (1)

=1

Proof. We first replace e by Aag/ef in (3.2) to obtain an equivalent
formulation of Theorem 3.1. Next, we replace A\ by ga?/bcd, and let
¢ — 00. Finally, relabel f — d and d — c in the resulting identity to
obtain (4.11). O

Remark 4.12. Theorem 4.10 concerns series summed over an n-rectangle.
By using a polynomial argument similar to the proof of Theorem 3.7,
we may find another transformation formula between series summed



C, AND D,  VERY-WELL-POISED 10¢p9 TRANSFORMATIONS 29

over an n-tetrahedron. This may also be accomplished by first replac-
ing e by Aag/efy - - f, in (3.8), and then taking the limit as ¢ — oo in
(3.8).

Theorem 4.13 (A D,, Watson’s transformation). Let a, b, ¢, d, e
and z4,...,x, be indeterminate, let N; be nonnegative integers for i =

1,2,...,n with n > 1, and suppose that none of the denominators in
(4.14) vanish. Then

> (ﬁ () Im(REa)
0<ki<N; \ i=1 1—az; 1<i<j<n 1= ai/z;
i=1,2,..m

n

x H .‘;H(GQ/&IEQ)MPM

1<i<j<n (i3 @)rith; i=1

y H ’J?z/%, )k., (6$i$quj;Q)m

(qzi/5; )k,

7]1

% H (G-Ti; Q)|k|
; (az;qt+Ni; Q)|k| (ag*~Ni/ex;; Q)|k|

xmbx (czisg )kz}( G

axzq/d QD aq/b;q) ) (ag/c; @)k

qa’ . S0 ik 2es(k) - 2k
X =1 L i 44€2 TR
(bcde> 1 1 H i

_ ﬁ [ (az;q; q)n, (dex;/a; q)n, } (1> IN]|
-+ L(ezi/a; @)n, (azig/d; q)n, | \d
1—gki- J'a:,-/xj) 1
X (
0<;N1 <1sggz 1= i/z; 19‘1191 (exi; Qe
i=1,2,...,n

(@M @i/zj; @), (€224 5 @)
(q:L'i/ZL'jQ Q)ki

Xﬁ[( (ag/bezi; )i . }

aq/bcm,, )|k|—k,- (dexi/aa Q)ki

(d; @) s ik
(aa/b; @) (aa/c; g ) , (414)

where ey(k) is the second elementary symmetric function of k.
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Proof. We first replace e by Aag/ef in (3.2) to obtain an equivalent
formulation of Theorem 3.1. Next, we replace A by ga?/bed, and let
d — oo. Finally, relabel f — d in the resulting identity to obtain
(4.14). O

Remark 4.15. Theorem 4.13 concerns series summed over an n-rectangle.
By using a polynomial argument similar to the proof of Theorem 3.7,
we may find another transformation formula between series summed
over an n-tetrahedron. This may also be accomplished by first replac-
ing e by Aag/ef; - f, in (3.8), and then taking the limit as d — oo in
the resulting identity.

Next, we obtain the Watson’s transformations which follow from
Theorem 3.9. If we take the limit as d — oo in Theorem 3.9, we obtain
one of Milne’s transformations, see [28, Theorem 4.5]. Another limiting
case yields:

Theorem 4.16 (A D, Watson’s transformation). Let a, b, ¢, d, e
and z4,...,x, be indeterminate, let N; be nonnegative integers for i =

1,2,...,n withn > 1, and suppose that none of the denominators in
(4.17) vanish. Then

)3 (ﬁ (=) TO(RE)
ocken, \it \ LT A% i<icien N LT i/
i=1,2,..n

& 1
X | | (az:iz;q/¢; @)ritk; | | TN
1<i<j<n ! ! i1 (c/xi;Q)lklfki

n

(qiiji/ij Q)k,

X
(qzi/zj;Q)x, (aziziq/c; @),

4,j=1

% ﬁ (al“z';Q)|k| (C/xz';CZ)|k|

1 (azig ™5 q)
ljl (b5 @) (e aed g 9)ix
(aq/b; 9) i (ag/€; Q)i ﬁ (aziq/d)s,

1+N] K
aq En 1zk —ea(k) k;
X( bcde ) 21_[133
ﬁ{ azig; q)n ] (ag/de; @)y

(azig/d;q)n,] (aq/e; Q)N

=1
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1-— q Jl'i/l'j .

x 1—a;/z; (azi;q/C; @)k,
0<k;<N; \ 1<i<j<n L 1<i<j<n
i=1,2,...n

n ~Njo. [ .
% H (q ]ml/qu)ki

5o (azi/zg; @, (azizig/c; @),

n

x [ [(aziq/bc; @), (exi; @),]

=1

X (4 @ ix S
(ag/b; @) (deq ™ /a; q) e - ) . (4.17)

where ey(k) is the second elementary symmetric function of k.

Proof. We first replace A by ga®/bcd in Theorem 3.9, and let ¢ — oo.
Finally, relabel d — ¢, and f + d in the resulting identity to obtain
(4.17). O

Remark 4.18. Theorem 4.16 concerns series summed over an n-rectangle.
By using a polynomial argument similar to the proof of Theorem 3.11,
we may find another transformation formula between series summed
over an n-tetrahedron. This may also be accomplished by taking the
limit as ¢ — oo in (3.12).

Next, we consider the special cases of the equivalent formulation of
Theorem 3.9, obtained by replacing f by Aag'tIN!/ef in (3.10). If we
take the limit as ¢ — oo in the resulting identity, we obtain a D,
generalization of Theorem 4.1 found by Bhatnagar [7]. Instead, if we
take the limit as d — oo, we obtain an A, transformation theorem
found by Milne [24].

Further, if we take the limit as d — oo in Theorem 3.13, we obtain
an A, generalization of Theorem 4.1 found by Milne [24]. Leininger
and Milne [19] have found some elegant applications of this case of
Theorem 3.13. The b — oo case of Theorem 3.13 was also found by
Milne [24].

Finally, we consider the equivalent formulation of Theorem 3.13,
obtained by replacing e by Aag/ef in (3.14).

Theorem 4.19 (A D,, Watson’s transformation). Let a, b, ¢, d, e
and z4,...,x, be indeterminate, let N; be nonnegative integers for i =
1,2,...,n with n > 1, and suppose that none of the denominators in
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(4.20) vanish. Then
Z (ﬁ (1 _ axiqki+|k|> H <1 _ qk,-—iji/xj)
0<k;<N; \ i=1 1 —az; 1<i<j<n 1—z;/z;
i=1,2,..n

n

X H (%H(GQ/%%;QNH_M

1<i<j<n exzx]’q)kﬁkj i=1

y H ’Z’z/%; )k1 (61’i$quj;Q)m

o1 (g2:/25; ),

% H (az;; Q)|k|
i1 (azig'™i; @) (agNi/exs; q)x

(b @)k (& D (d59) i)

[(aziq/b; @)x; (axiq/c; ), (aziq/d; @)r,]

qa? k| ——
X | —— i=1"vRi
(bcde) 1

s

=1

ewz/a q) (awZQ/d Q) d

1—qgrihiz,/z; 1
% < H ( 1—x;/z; H (exi;; Q) kyrk:
0<k;<N; \ 1<i<j<n v 1<i<j<n \ 13 ) kitk;
y ﬁ (¢ Nizi/zs; On, (exiziq™; ),
(gzi/2j; @)k,

1,j=1

. H [ o (aziq/bc; @), }

(az;iq/c; @)k, (dexi/a; q)
X (d;q)iq qE?ﬂ““i). (4.20)

Proof. We first replace e by Aag/ef in (3.14) to obtain an equivalent
formulation of Theorem 3.13. Next, we replace A by ga®/bed, and let
b — oo. Finally, relabel d — b, f + d in the resulting identity to
obtain (4.20). O

Remark 4.21. Theorem 4.19 concerns series summed over an n-rectangle.
By using a polynomial argument similar to the proof of Theorem 3.16,
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we may find another transformation formula between series summed
over an n-tetrahedron. This may also be accomplished by first replac-
ing e by Aag/ef1--- fn in (3.17), and then taking the limit as b — oo
in the resulting identity.

Theorem 4.22 (A D,, Watson’s transformation). Let a, b, ¢, d, e
and x1,...,%, be indeterminate, let N; be nonnegative integers for i =

1,2,...,n withn > 1, and suppose that none of the denominators in
(4.23) vanish. Then

)3 (ﬁ () (RS
ocken, \ict \ LT A% i<icjen N LT i/
i=1,2,..,n

x 1 _;H(GQ/%;Q)MM

1<i<j<n (€255 Q)rith; i1

> H ’.Z’Z/.’IJJ, )kz (6xiquNj;Q)kz‘

(qzi/j; )k,

7]1

% H (az;; Q)|k|
; (ax;qt*+Ni; Q)|k| (ag*Ni/ex;; Q)|k|

x ﬁl{ (b2i; @), } (¢ Qe (d; @)inq

(aziq/c; q)x, (aziq/d; q)r, ]  (agq/b;q)

k| n
qa i ki ea(k)
X — z 1 1
(bcde) ,11 T >

et ()

=1
0<han: \1<icicn 1T i/ T 1<i<<n (6Ti%i5 Dkt
i=1,2,...,n
X (@M @i/zj; Qi (€225 5 @),
f (q.’L’i/ij Q)ki

) H [<axzq/c 9 1(deacz/a 2 }

(aq/bc; Qi (& @) 5o i,
oo i),
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where ex(k) is the second elementary symmetric function of k.

Proof. We first replace e by A\ag/ef in (3.14) to obtain an equivalent
formulation of Theorem 3.13. Next, we replace A by ga®/bed, and let
d — oo. Finally, relabel f — d in the resulting identity to obtain
(4.23). O

Remark 4.24. Theorem 4.22 concerns series summed over an n-rectangle.
By using a polynomial argument similar to the proof of Theorem 3.16,

we may find another transformation formula between series summed

over an n-tetrahedron. This may also be accomplished by first replac-

ing e by Aag/ef; -+ fn in (3.17), and then taking the limit as d — oo

in the resulting identity.

Before closing this section, we indicate the effect of reversing the
sum, on the various generalizations of Theorem 4.1 presented above.
Theorem 4.3 and Theorem 4.10 are invariant if we reverse the series
on both sides of the transformation, and relabel parameters. If we do
the same for Theorem 4.7, we obtain Theorem 4.13, and vice-versa.
Similarly, Theorem 4.16 and Theorem 4.22 are transformed into each
other by reversing series. Finally, Theorem 4.19 and Bhatnagar’s [7]
D,, Watson’s transformation are similarly seen to be equivalent.

5. SOME SEARS’ TRANSFORMATIONS

Multivariable generalizations of Sears’ [32] 4¢3 transformations fol-
low directly from Bailey’s 19¢9 transformation formula. In this section,
we present a few A, and D,, Sears transformations which follow directly
from two transformations from §3. We do not make an exhaustive list of
such transformation formulas, but simply indicate some of the possibil-
ities. In addition, we specialize one of our transformation formulas and
obtain a transformation formula for non-terminating A,, 3¢5 series ([11,
equation (3.2.7)]), and a generalization of a transformation formula of
Heine [11, equation (1.4.3)]. These transformation formulas specialize
further to give a generalization of Heine’s [11, equation (1.5.1)] ¢-Gauss
sum, and the g-binomial theorem [11, equation (1.3.2)].

To obtain Sears’ 4¢3 transformation from Bailey’s 199 transforma-
tion, replace b by ag/b and e by ag/e in (1.8), and then take the limit
as a — 0. After relabeling of parameters, b +— d, d — b, and f — a,
we obtain [11, equation (3.2.1)]:

Theorem 5.1 (Sears’ classical 4¢5 transformation). Let a, b, ¢, d,
and e be indeterminate, let n be a nonnegative integer, and suppose
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that none of the denominators in (5.2) vanish. Then

by |, 4 hmbe (e/a; q)n (de/bc; @)n Ja,d/b,d/c

d,e, abcq ”/de’ 9 = (e;9)n (de/abe; q)y 493 daq "/e de/bc’ (’ L)

In the multivariable case, by varying the above calculations slightly,
we obtain distinct generalizations of (5.2). Further, Theorem 5.1 may
also be obtained from Theorem 4.1. Previously, A, extensions of Sears
transformation have been obtained from multivariable extensions of
Watson’s transformation. See Milne and Newcomb [26], Milne and
Lilly [25] and Bhatnagar [7] for examples of such calculations.

We begin with two immediate consequences of Theorem 3.1.

Theorem 5.3 (An A, Sears’ 4¢5 transformation). Let a, b, ¢, d, e
and xy, ... , x, be indeterminate, let N1, ..., N, be nonnegative integers

withn > 1, and suppose that none of the denominators in (5.4) vanish.
Then

Z H (1 - qkiiji/$j> ﬁ (abcq/dex;; q) |-k,
o<iin, \icicjen \ LT T/ 1 0/ O ki-x
i=1,2,..m

X

(q ]xl/x]) q)k; ﬁ b/.’L‘Z, q9)k|

i) (qzi/z;;q) - (abeg'—Ni /dex;; q)

T @0 s
,H(ex“ (& @ >

9k,

“ (ex;/a; q)n, (dex;/bc; q)w,
-2 (exi; )N, (demzq/abc q)n,

1—gb iz /2, \ 1 (aq/ezi; @) -

X Z H 1—z;/z; H (d/czi; q)

0<ki<N; \ 1<i<j<n v i=1 S
i:1,2,...,n

I
[JamE

= (a7 Nzi )z Dr, T d/czrs; q) K
><H(q /%4;9) H((/ ) x|

(qzi/zj;Qr 7 (ag" =N /exs; @)y

% “r (dzi/b; Q)k (@ s,
ji[Il(dexi/bC;Q)k,- (d;q)|k|q ) (5.4)

ij=1

Proof. We first replace b by aq/b and e by ag/e in (3.2), and then take
the limit a — 0. After relabeling of parameters, b — d, d — b, and
f + a, we obtain (5.4). O
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Remark 5.5. Theorem 5.3 concerns series summed over an n-rectangle.
By using a polynomial argument similar to the proof of Theorem 3.16,
we may find another transformation formula between series summed
over an n-tetrahedron. This may also be accomplished by first replacing
b by aq/b and e by aq/e in (3.8), and then taking the limit as a — 0
in the resulting identity.

The above generalization of Sears’ identity cannot, at present, be
obtained from a multivariable Watson’s transformation. It would be
interesting to obtain a generalization of Theorem 4.1 which implies
Theorem 5.3. The following is a transformation of D,, series and also
does not follow from any known generalization of Watson’s transfor-
mation.

Theorem 5.6 (A D,, Sears’ 4¢5 transformation). Let a, b, ¢, d, e
and x1, . .., T, be indeterminate, let Ny,..., N, be nonnegative integers

withn > 1, and suppose that none of the denominators in (5.7) vanish.
Then

1 — gk ki [z,
> (I (5527) 1 @esons,
0<k;<N; \ 1<i<j<n v 1<i<j<n

i=1,2,...,n

X ﬁ (abeq/dexs; q) -k - (qiiji/xj;Q)ki
(abeg!=Ni/dexi; Q) ;22 (92i/25; @)k, (dzizs; Q)

= (bxi; @, (czs; ), " ik
X H ( ) ( ) . (a; q)|k| qZ‘L:l ki

i=1 (6.’1}'1; q)k’b

" (ex; a; q)n; (dexz;/bc; q) N,
[ e/ ez )

i—1 (ezi; q)n, (dexig/abe; q),

1-— q’“i_kﬂ'xi/m)
X Z < : H (dzij; @i+,
, <1§i<j§n 1—zi/z; ’

1<i<j<n

y ﬁ (ag/exi; @) |-k, ﬁ (q_NJ'xi/xj;Q)k,-

41 (ag' N /ex; q) (qzi/j; Qr: (dzizs; @),

i,j=1

X zl;[ (dmz/(l;,eql).:c;b(zz(;)/:a q)ki . (a; Q)|k| qZ?_l‘iki> ) (57)

Proof. We first replace d by ag/d and e by ag/e in (3.2), and then take
the limit @ — 0. After relabeling, f — a, we obtain (5.7). O
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Remark 5.8. Theorem 5.6 concerns series summed over an n-rectangle.
By using a polynomial argument similar to the proof of Theorem 3.16,
we may find another transformation formula between series summed
over an n-tetrahedron. This may also be accomplished by first replacing
d by ag/d and e by aq/e in (3.8), and then taking the limit as a — 0
in the resulting identity.

Next, we list several related transformation and summation formulas
which follow from Theorem 3.16.

Theorem 5.9 (An A,, Sears 4¢4 transformation). Letay, ..., an, b, c,
d, e, and xy, ..., x, be indeterminate, let N be a nonnegative integer,
let n > 1, and suppose that none of the denominators in (5.10) vanish.
Then

Z ( H (1 - qkiiji/$j> ﬁ (ajmi/25; @k,
b 50 \ 1<icin 1—x;/z; s’ (qzi/ x5 Q)
0<|k|<N

(qulfN/del'i;Q)|k|—k;¢ . N
(aibcql_N/d%i;Q)lkl (e @) (@5 O

i (bz;; "
k! Diey ik
8 Zl_[ [ d-rz: (61,'“ )k1:| 1 )
B H (ex;/a;; q) N (dex; [be; )N

dex,/azbc q)n (exi;q)n

1—grkhig, [z, a (ajzi/zj; )k,

<2 < 11 ( 1—z/x; >XH (qzi/z5; @),

K1,k kn >0 \ 1<i<j<n i/ ij=1 i/ i) 4k
0<[k|<N

- /exz; q)|k|—k; _N
* (d/b; :
X H (a:q"N Jexs; q)xq (/b (@59

=1
dncz/c @k, Sy ik
4 i=11Fi . 1
8 H [ dxz; (dexz/bca q)kz:| ! (5 0)

Proof. Set d — aq/d, e — aq/e, and then take the limit as a — 0 in
(3.17), and then relabel the resulting identity by replacing f; by a;. O

X
i

Remark 5.11. When d = b, the series on the right hand side of (5.10)
reduces to 1, and we obtain a balanced 3¢, summation theorem found
by Milne, see [19].
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Theorem 5.12 (An A,, non-terminating g¢, transformation). Let as,

.o, Gp, b, ¢, d and x4, ..., x, be indeterminate, and let n > 1. Sup-
pose that none of the denominators in (5.13) vanish, and assume that
|z/xi| <1, and |bcz/dz;| <1 fori=1,...,n. Then,

S T1 (1—qk""“"$i/%> [] (/2o
k>0 \1<i<j<n 1 -/ ij=1 (qw:/ 755 )k,

i=1,...,n

(asbez/dzs; q) ) (dzi; @)k,

w2l i (1) ki gea (k) H x:k)

=1

% U {(bcz’/dﬂ?i; Q)|k|—ki (bxi§Q)ki:| (c: q)|k|

azz/x'wq bcz/dxhq)oo
(a;bez/dz:; @)oo (2/Zi50) 0o

(1—q "’“J‘%/%) " (a5zi/Ti5q)ns

1 —x;/z; (qzi/zj; @,

::]:

=1

1,7=1

X - (Z/:L‘“ q)|k|_ki (d.’L'i/C; Q)ki .
H [ (aiz/zi; @) (dzi; @)k, ] (d/5: 9

b |k| n : - i
y (g) gDk TTah ), (5.13)

i=1
where ey(k) is the second elementary symmetric function of k.

Proof. Replace e by eq~", and then take the limit as N — oo in
(5.10). In the resulting identity, replace e by ¢/z. It is not difficult
to see that the term by term limit is given by (5.13). However, to
justify the limiting process, we have to use the dominated convergence
theorem. Further, to find the convergence conditions of the dominating
series, and the series in (5.13), we have to invoke the multiple power
series ratio test. The details of this justification are very similar to a
calculation in [26], and are not repeated here. O

Remark 5.14. When n = 1, Theorem 5.12 reduces to an equivalent case
of [11, equation (3.2.7)]. If we just take the limit as N — oo in (5.10),
we obtain another A, extension of the same identity.

Setting a; = 0, for « = 1,... ,n, and relabeling ¢ — a, and d — ¢
n (5.13), gives an extension of Heine’s transformation [11, equation
(1.4.3)], which is a g-analogue of a transformation formula of Euler.
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Theorem 5.15 (An A,, Heine’s 2¢p; transformation). Let a, b, ¢ and

xy, ..., T, be indeterminate, and let n > 1. Suppose that none of
the denominators in (5.16) vanish, and assume that |z/z;| < 1, and
labz/cx;| < 1, fori=1,...,n. Then,

ARG ) .
k>0 \1<i<j<n 1 —i/x, ij=1 (gzi/z5; O,
i=1,...,n

ﬁ [ abz/c:nz, Q)| —k; (075 @)k

(czi; Q)

} (a;9)

=1
ﬁ (abz/czs; @)oo
=1 Z/xl) )

o3 (I (SETEE T

u (z/$z7Q)|kl k; (sz/a Q)
- H[ (czi; @),

} (e/b; 0

n

k|
abz n (s

il i (i—1) ki ea(k) —k; 5.16
X < c ) q q I |$z )a ( )

=1

where ey(k) is the second elementary symmetric function of k.

Finally, we note two summation theorems which follow immediately
from the above two transformation formulas. While these are closely
related to Milne’s summation theorems presented in [19], and may be
obtained from Milne’s results, they appear to have been missed by
earlier authors.

Next, let d = b in (5.13), and set ¢ — b, z +— c/a; - - - a,b, to obtain
an extension of Heine’s ¢-Gauss summation [11, equation (1.5.1)].

Theorem 5.17 (An A,, ¢-Gauss summation). Let aq, ..., a,, b, c and
x1, ..., Tn be indeterminate, and let n > 1. Suppose that none of the
denominators in (5.18) vanish, and assume that |c/a; - - azbz;| < 1,
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fori=1,...,n. Then,
Ei—k; n )
Z ( H (1 —q ’%/%’) H (ajzi/zj;q)k,
i=1,...,n

) f[ {(C a1+ anti; q)|k|—ki] (b59)q

=1 (aic/al T Ap Ty, Q)|k|

k| n
C no (e
- 2o (i-1) ki jea(k) —ki
X <a1---anb) q q sz )

n

1] (aic/ar - anb%i; @)oo (/a1 - - anTi; @)oo (5.18)
(aic/ar- -+ anTi; @)oo (¢/a1 -+ - AnDTi @)oo’

i=1
where ey(k) is the second elementary symmetric function of k.

Finally, we set ¢ = b in (5.16) to obtain an A, extension of the
¢-binomial theorem [11, equation (1.3.2)].

Theorem 5.19 (An A,, g-binomial theorem). Let a, and x1,...,z, be
indeterminate, and let n > 1. Suppose that none of the denominators
in (5.20) vanish, and assume that |z/x;| < 1, fori=1,...,n. Then,

Z < H (1 — qki—iji/$j> ﬁ ; (a. Q)|k| Skl
i=1,2,...n

X H(GZ/LL'“ Q)|k|—ki qZ?:2(i_1) kiqez(k) H xl—k@)

i=1 i=1

ﬁ az/x“ . (5.20)

=1 Z/ZL',,

where ex(k) is the second elementary symmetric function of k.

Remark 5.21. If we set ¢ — a; - - - a,bz, and set b = 0 in Theorem 5.17,
we obtain a multivariable generalization of the g¢-binomial theorem
found by Milne and Lilly [25, Theorem 4.7]. These authors call it
a C, g-binomial theorem, because it is obtained from C, summation
theorems. However, in the convention followed in this paper, we re-
gard Theorem 4.7 of [25] as an A,, theorem. Further, note that if we
set ¢ — ay - - - a,bz, and set a; = 0 in (5.18), we obtain Theorem 5.19.

The above theorems are only a small sample of possibilities. For
instance, Milne and Newcomb [27] and Degenhardt and Milne [9] have
found interesting applications of Milne and Newcomb’s [26] A, 10609
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formula. It would be interesting to carry out analogous computations
starting from some of the results of this paper.

APPENDIX A

Here we state a useful simplification lemma found by Milne [23] and
the multidimensional extensions of Jackson’s classical g¢7; summation
theorem which are needed for our proofs of the transformations in §2
and §3. These summation theorems include the A, extension of Jack-
son’s theorem found by Milne [21], a C, summation found indepen-
dently by Denis and Gustafson [10] and Milne and Lilly [25], and D,
theorems found by Bhatnagar [7] and Schlosser [29]. We begin with

Lemma A.1 (Milne).

H <1 - qki—iji/xj> H (q_iji/mj;q)ki _ (_1)|k| q_(ll’;l) q—ZLliki_

1<i<j<n 1—z;/z; (qzi/z5; @),

ij=1
Remark A.2. Lemma A.1 is Lemma 6.11 of [23], where it is proved by
some elementary manipulations.

Next we state various multivariable extensions of Theorem 1.10.
Theorem A.3 ((Milne) An A, Jackson’s sum). Let a, b, ¢, d and
x1,...,T, be indeterminate, let N; be nonnegative integers for i =

1,2,...,n with n > 1, and suppose that none of the demominators
n (A.4) vanish. Then

)3 (ﬁ () (RS
0<ki<N; \ i=1 1—az; 1<i<j<n 1 -/
i=1,2,...n

sz/xj, Q)k; - (axi;Q)|k|
* H ,1;[1 (az;q**Ni; q) i

ij=1 qml/‘rjﬂ )kl

(d.’L‘z; )kl (a2x q1+IN|/de. q) '
g (aziq/b; @), (azig/c; )k,

y (6; Dyl (€5 @)1 ik
(ag/d)x (bedg=Nl/a; q)|k|

_ (G'Q/bd q)|N| aQ/Cd q IN| H axzqy axzq/bc q) (A 4)
(aq/d; q)in (ag/bed; )y - axzq/b 9)n; (azsq/c; Q)N/ '

Remark A.5. Theorem A.3 appeared as Theorem 6.14 in [21] with dif-
ferent notation, see also [26, A12].
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Theorem A.6 ((Denis—Gustafson and Milne-Lilly) A C,, Jackson’s
sum). Let a, b, ¢, d and 1, ..., x, be indeterminate, let N; be non-
negative integers fort=1,2,... n withn > 1, and suppose that none
of the denominators in (A.7) vanish. Then

Z ﬁ 1 — az?q**i H 1—q" %z /z; 1— azzqhth
1 — az?

0<k;<N; \ i=1 i 1<i<j<n 1 —zi/z; 1 — azz;
i=1,2,..n
X ﬁ (b5 @)r; (cxi5 @), (dzi; @)k (a2$iq1+lN|/b0d; Q)k;
i+ (aziq/b; @)r, (aziq/c; @)r, (aziq/d; @)k, (bedwiq N/ a; @),

X

(qiNjwi/ij Dk (azij; Q) > ik
(qzi/ 55 Ok, (aziz;ig" ™Ni5 @),

i,j=1

= 11 (ewizig; 95N, 1] (amizig;a)n,

1<i<j<n i,j=1

(aq/bc; q) x| (aq/bd; q) ) (agq/cd; q)iny _
[(azsq/b; @), (axiq/c; @), (aziq/d; q)n, (ag™NI=N: /beda;; q) (A7)

X

s

i=1

Remark A.8. Theorem A.6 appeared as Theorem 4.1 in [10] with dif-
ferent notation. In a form very similar to ours above, with relabeled
parameters and slightly rearranged product side, it appeared (indepen-
dently from [10]) as Theorem 6.13 in [25].

Theorem A.9 ((Bhatnagar) A D, Jackson’s sum). Let a, b, ¢, d
and x1,...,x, be indeterminate, let N; be nonnegative integers for i =

1,2,...,n withn > 1, and suppose that none of the denominators in
(A.10) vanish. Then

v (I(me) g (e

1—uz;/z;
0<k;<N; \ i=1 1<i<j<n ’/ J
i=1,2,...,n

n

x |1 (ewizja/d;@rrn, [] (azizia/d;q);)}

1<i<j<n i,j=1

y ﬁ (g Nizi/zj;q)r, ﬁ (azi; @) (d/ 35 q)x|

oo @iz ke (azig S @) (/255 9) e

n

[T [(bi; @)k, (czi; @)k, (a®xig NI /bed; q)i, ] )
D1tk

- (aq/b; @) (ag/c; @) (bedg=™N/a; q)
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= J[ (amizja/d;@)nin, [] (aziziq/d;q)y!

ﬁl[(awzq q); (azig/cd; q), (aziq/bd; @), (ag™™™NI"Ni fbex;; ) w, ]
g (aa/5; @)1 (aa/ s @)y (aa/bed; @) A10)

Remark A.11. Theorem A.9 appears in [7| where it has been derived
by combining a D,, balanced 3¢ summation and a D,, very-well-poised
¢¢5 summation theorem.

Theorem A.9 is also equivalent to Theorem A.12 since it follows from
reversing the sum in (A.13) and relabeling parameters.

Theorem A.12 ((Schlosser) A D,, Jackson’s sum). Let a, b, ¢, d
and z4,...,x, be indeterminate, let N; be nonnegative integers for i =

1,2,...,n with n > 1, and suppose that none of the denominators in
(A.13) vanish. Then

> (TI(Fme) g (P )

0<ki<N; \i=1 1<i<j<n
i=1,2,...m
n
2 . -1 2 1+N,; .
< [I (@zizja/ved;q)its, 11 (@wizia™™ /bed; g,
1<i<j<n ij—=1

Nig, mg, kT az;; @) (bed/azi; @) -1
XH /5 9) H(( Q)| (bed/azi; q)

(qzi/z; e 17 (azig" N5 @) (bedg™™e/azi; @)

(b @) (&5 @) (5 9) i k)
H [(aziq/b; q)x: (aziq/c; D, (aziq/d; q)r.]

=1

_ ﬁ (aziq; q)n, (amiq/be; @) w, (az:q/bd; @), (amig/cd; ),
-1 (azig/bed; q)n, (aziq/d; q) (azig/c; Q) (aziq/b; q)

7,7=1

X

(A.13)

Remark A.14. Theorem A.12 appears in [29, Theorem 5.6] and [30]
with slightly relabeled parameters. It was derived by a D, matrix
inversion combined with the C), g¢7 summation in Theorem A.6.

Theorem A.12 is also equivalent to Theorem A.9 since it follows from
reversing the sum in (A.10) and relabeling parameters.
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