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ABSTRACT. We invert a specific infinite r-dimensional matrix, thus giving an
extension of our previous matrix inversion result. As applications, we derive
new summation formulas for series in A,.

1. Introduction

A very powerful tool in combinatorics and special functions theory is the ap-
plication of matrix inversions. In particular, with the help of so-called “inverse
relations” (see Section 3), which are immediate consequences of matrix inversions,
one can derive and prove identities. This method is especially useful in connec-
tion with (basic) hypergeometric series. Though in order to be able to apply this
method, explicit matrix inversions must be at hand.

Over the last decades, several people discovered and rediscovered useful matrix
inversions. A very general matrix inversion was found by Gould and Hsu [13] which
contained a lot of inverse relations as special cases. The problem, posed by Gould
and Hsu, of finding a ¢g-analogue of their formula, was solved immediately thereafter
by Carlitz [6]. However, he did not give any applications. The significance of
Carlitz’s matrix inversion showed up first when Andrews [1] discovered that the
Bailey transform [2], one of the corner stones in the development of the theory of
(basic) hypergeometric series, is just equivalent to a very special case of Carlitz’s
matrix inversion. Further important contributions to this subject were achieved by
Gessel and Stanton [11], [12], Bressoud [5], and Gasper and Rahman [8], [9]. As
all of these authors’ matrix inversions have certain termwise similarity, it seemingly
was true that there existed some even more general matrix inversion, one which
would unify these previous results but still be very explicit.

The desired unification was achieved by Krattenthaler [19]. He proved that
the matrices (fnr)n,kez and (gri)r, ez (Z denotes the set of integers) are inverses
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of each other, where

H;:;i(aj +bjck)
H?:k-ﬂ (cj—cx)’

(1.1) Jnk =

and

(a1 + bicr) 11— ipa(aj + bick)
b [ o)

(1.2) gkl = (

In fact, Krattenthaler’s matrix inversion contains all the inversions just mentioned
as special cases.

Starting in the late 1970s, Milne and co-authors, in a long series of papers
(cf. [23], [24], [25], [21], [26], [27], and the references cited therein), developed
a theory of multiple (basic) hypergeometric series associated to root systems. In
order to have an equivalent of the (one-dimensional) Bailey transform at hand, to
conveniently extend the development of the theory of (one-dimensional) basic hy-
pergeometric series to an analogous theory for multiple series, matrix inversions in
this multidimensional setting needed to be found. “Multidimensional” matrix in-
versions (according to our terminology these are matrix inversions that arise in the
theory of multiple series) associated to root systems were found by Milne, Lilly and
Milne, and by Bhatnagar and Milne. The A, (or equivalently U(r + 1)) and C, in-
versions (corresponding to the root systems A, and C,, respectively) of Milne [25,
Theorem 3.3], and Lilly and Milne [21], which are higher-dimensional general-
izations of Andrews’ Bailey transform matrices, were used to derive A, and C,
extensions [25], [26] of many of the classical hypergeometric summation and trans-
formation formulas. Bhatnagar and Milne [3, Theorem 3.48] were even able to
find an A, extension of Gasper’s bibasic hypergeometric matrix inversion. How-
ever, none of these multidimensional matrix inversions contained Krattenthaler’s
inversion as a special case.

A multidimensional extension of Krattenthaler’s matrix inversion (1.1)/(1.2),
associated to root systems, was found by the author in [29]. Theorems 3.1 and
4.1 of [29] cover all the previously discovered multidimensional matrix inversions
associated to root systems [3], [21], [26] as special cases. Just recently, another mul-
tidimensional extension of Krattenthaler’s matrix inverse (1.1)/(1.2) was found [20,
Theorem 3.1] which covers the inversion of [7]. The matrix inverse of [20] has ap-
plications similar to those in this article although the series considered in [20] are
of simpler type.

Special cases of [29, Theorem 3.1] were used in [29] to derive several summation
theorems for multidimensional basic hypergeometric series. In particular, a D, g¢7
summation theorem, A, and D, quadratic, and D, cubic basic hypergeometric sum-
mation theorems were derived. Moreover, the D, g¢7 summation theorem of [29]
lead to new C, and D, extensions of Bailey’s very-well-poised 19¢g transformation
in [4]. In a very recent article [30] the author utilized special (non-hypergeometric)
cases of the multidimensional matrix inversions in [29, Theorems 3.1 and 4.1] to
derive some A, terminating and nonterminating ¢g-Abel and g-Rothe summations,
and also some identities of another type which appear to be new already in the
one-dimensional case.

One of the main results of this article is a new multidimensional extension
of Krattenthaler’s matrix inverse (see Theorem 2.1) which even generalizes [29,
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Theorem 3.1]. Thus, with our new pair of inverse matrices, we are able to derive
even more general summation theorems as applications (see Section 3), than it
would have been possible by just using [29, Theorem 3.1].

Our article is organized as follows. In Section 2 we present our new multidimen-
sional matrix inversion, see Theorem 2.1, its proof using techniques developed in
[18] and [29]. Then, in the following Propositions, we specialize our general matrix
inversion result appropriately for the applications in the subsequent Section. In
Section 3, we briefly explain the notion and use of inverse relations, together with
some standard g-series notation. Then, to illustrate the usefulness of our new mul-
tidimensional matrix inversion, we derive a number of multiple series identities. In
particular, we derive an A, g-Abel-type expansion formula, three A, g-Abel summa-
tions, two A, g-Rothe-type expansion formulas, and three A, g-Rothe summations.
Our theorems generalize some corresponding results of [30].

In Appendix A, we provide a determinant evaluation, Lemma A.1l, which gen-
eralizes [29, Lemma A.1]. It turns out to be crucial for our computations in the
proof of Theorem 2.1. Recently, Zagier [31] has kindly communicated to us his
short and elegant proof of [29, Lemma A.1]. Thus, our proof of Lemma A.1 is an
extension of Zagier’s proof of [29, Lemma A.1]. Finally, in Appendix B, we list some
background information needed in the proofs of our multiple summation theorems
such as some A, basic hypergeometric summation theorems from Milne [25].

2. A new multidimensional matrix inversion

Let F = (fuk)nxez~ (as before, Z denotes the set of integers) be an infinite
lower-triangular r-dimensional matrix; i.e. fax = 0 unless n > k, by which we
mean n; > k; for all « = 1,...,7. The matrix G = (gu1)x,1ez- is said to be the
inverse matriz of F if and only if

Z fokgxl = 01

n>k>1

for all n,1 € Z", where 0y, is the usual Kronecker delta.

In [29] very general multidimensional matrix inversions were derived. In the
following Theorem we are able to give a matrix inversion result which extends
[29, Theorem 3.1] by an additional parameter m, thus leading to more general
summation theorems in the applications, see Section 3.

For convenience, we introduce the notation |n| = ny +ng + - - - +n,. Moreover,
we denote by e, (c(k)) the elementary symmetric function (see [22, p. 19]) of order
m in the variables ¢; (k1),c2(k2), ..., cr(kr).

THEOREM 2.1. Let (at)iez, (¢i(ti)), ez, 1 = 1,...,1 be arbitrary sequences, d
arbitrary, such that none of the denominators in (2.1) or (2.2) vanish. Moreover,
let m be a fized integer such that 0 <m < r. Then (fok)n,kezr and (gu1)k1ez- are
inverses of each other, where

|n|—1 r |n|—1

_ d—emsi(c(k) — el
ﬂkl (“t em{o(10) ) 1131 tl_\[k\(at ci(ki))
21)  fae= 5, 5

0 (et) - Semen@)) T[T (el — (k)

i=1t;=k;+1 i,7=1t;=k;+1
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8 ) — apjem(c( 1 H (ap —ci(ly))
(d = emy1(c(k)) — apjem(c(k ey (aj —ci(k:))

|k|

d— et (c(k)) d
ap — LT Emiici)) a; — ¢;(k;
L (o) I I - ak)
r ki—1 e (c(k)) r ki1 :
IT II (Ci(ti) - W) H H (ci(ti) — ¢;(k;))
i=1t;=l; 4,7=1ti=l;

REMARK 2.2. The special case m = r reduces to our previous matrix inversion
result, Theorem 3.1 of [29].

PROOF OF THEOREM 2.1. The proof is very similar to our proof of [29, Theo-
rem 3.1]. We use Krattenthaler’s [18] operator method and its suitable modification
in [29, Section 2].

From (2.1) we deduce for n > k the recursion

(2.3) <ci(ni) — M) H(Ci(ni) - Cs(ks))fnk

em(c(k)) o
d—ent1(ck)\ T
= - 1 —¢s(ks)) fa—e; k,
(an 1 em(c(k)) sl;[l(a|11| 1 CS( S))f ik
for i = 1,...,r, where e; denotes the vector of Z" where all components are zero
except the i-th, which is 1. We write
[n|—1 e c r In|-1
1 (o) I I (- k)
t=|k| i=1 t=|k]| n
fk(Z) = Z T U T U z.

a1 I (eitt) - Ee2gf0D) T T1 (eilts) — o5(ky))
1=1%t;=k;+1 1,J=1t;=k;+1
Moreover, we define linear operators A,C; by Az™ = aj,z" and C;z" = ¢;(n;)z"
for all i =1,...,r. Then we may write (2.3) in the form

_d=emn(ek) ) 1o _ . .
(2.4) (cz ET) )SZHI(CZ s(ks)) fie(2)

(4 e 0D T
= (4= ) M-t sice)

valid for all k € Z". We want to write our system of equations in a way such that
[29, Corollary 2.14] is applicable. In order to achieve this, we expand the products
on both sides of (2.4) in terms of the elementary symmetric functions

d— em+1(0(k)))

eJ'(Cl(kl)aC?(k?)v""CT(kT)’ em(c(k))
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of order j, for which we write e;(€(k)) for short. Our recurrence system then reads,
using em41(c(k)) = d,

25) Y e@E@)(-C)T = z(—A) T ] fic(2)
1<j<r+1
J#EmM+1
= D ejpnom) (€K)[(—C) UM — 2y (—A)HXUSM T £ ()
1<j<r

= [zi(—A)T+1 + dzi(—.A)Tim — (—Ci)r+1 - d(—Ci)Tim]fk(Z)7 1=1,...,7,

where x(P) equals 1 if P is true and equals 0 otherwise. Now, regarding [29, Corol-
lary 2.14], (2.5) is a system of type [29, Eq. (2.18)] with V;; = [(—C;)"XU<m)=J _
zi(_A)r+x(j§m)fj]’ W, = [Zi(—.A)H'l + dZi(—A)Tim _ ( C; )r+1 _ d( Ci )r m]
and cj(k) = ejiy(j>m)(€(k)). The operators C;; = (=C; yrxGUsm)=i - A =
—zi(=A)HXGEM)—] Wi(C) = [=(=C))"™ = d(=C;)"™, Wi(a) - [zi(—A)T'H +
dz;(—A)"~™] satisfy [29, Egs. (2.6), (2.7), (2.8), (2.15), (2.16), and (2.17)], the
functions c;(k) satisfy [29, Eq. (2.2)]. Hence we may apply [29, Corollary 2.14].
The dual system [29, Eq. (2.20)] for the auxiliary formal Laurent series hw(z) in
this case reads

D e@E)(=CH T = (A 2] (2)

1<j<r+1
j#m1

= Z €J+X(J>m) ))[( C )T+X(J<m) -3 _ (—A*)T+X(j5m)*jzi]hk(z)
1<j<r

= [(—A") oz 4 (AT — (—C)T = (=C) (), i=1,...,7.

Equivalently, we have

(2.6) (C;‘ - L) 1:[ hic(z)

_ (A; _ L((k))) TLA" - calka)zihla)

oy ) U

for all 4 = 1,...,r and k € Z". As is easily seen, we have A*z~! = amz_l and
Crz7' = ¢i(l;)z7 for i = 1,...,r. Thus, with hi(z) = 3" ,cy haz™!, by comparing

coefficients of z ! in (2.6) we obtain

gy = emia(c(k)) HT e(l) —
(Ci(li) ( ( )) )821( Z(Zl) s(ks))hkl
N (all B : _efnwzzzl({():gk))> (alll B CS(kS))hk’H_ei‘

s=1
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If we set hyx = 1, we get

k| —1 e ro|k|—1
[T (a0 - St d) 11T (@ - alk)
=1 i=1 4=l
= denn(e)) 1 T ‘
o ( i) — et T (aalts) — os(ky))
Taking into account [29, Eq. (2.19)], we have to compute the action of
— —
. — oy rxG<m) =i _ (_ gy G<m)—g
1) de (V)= det [(=€) (-4) 2

when applied to

k|1 e r k=1
1) I ) | RCEE)
t=|1] i=1 ¢=|l| 7
r ki—1 emanle r ki—1 '
1< T T (et — =2 11T (et - k)
i=1t;=l; i,5=1 ti=l;
Since
(0 — =2 ) = (cate) = k)
zzhk(z) — Z m H i\l7 J\"v] hklzil7
<x (a\l\ _ d_;;::(%()k))) i (a|1| —Cj (kj))
we conclude that
2.8 det  Vi9)h det (vij)hiaz™!
(2:8) 1<£<T 3)e(2) = ~ 151'39(%) KZ
where
vy = (—c;(1;))rHxtasm)—
(7)) _ d=emyi(c(k) )
rx(G<m)—j (C’(m em (c(k)) ) — cs(ks))
_ (_a\l\) - d—em41(c(k)) H a|1| e ks)) .
(a\l\ T T em(e(k) ) s=1
(This follows in a similar way as in the proof of Theorem 3.1 of [29].) For the com-
putation of deti<; j<,(vi;) we utilize Lemma A.1 with z; = —c¢;(l;), yvi = —ci(ks),
i=1,...,7, 9 = %, and a = —ay|, obtaining

d 1™ 1 (a“‘ SO ) (ap —ci(ly))
1§i3‘69(wj) = (=1)"em(c(l)) (alll = em+1(c(k))> H (ap| — ci(k:))

em (c(k)) =
x H (cj(ly) — ci(ly))-

1<i<j<r
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Plugging this determinant evaluation into (2.8) leads to

(29)  det m*;-)hk(z):Z( I () -cw)

1<4,5<r

1<k \1<i<j<r
d— €m+1(C(1))
(alll T T em(c() ) o (ap) —ei(ly)
x (=1)™en(c H
d—em c(k —c;(k;
(a\k\ W) (g = cilki))
K e (ei0) P
I (- =2Eet ) I I (a—alk)
t=|1|+1 m i=1¢=|1]+1 Z—l)
T k)i—l T ki—l )
d—em 1{C k
I T (et = i) T T (eutt) = )

o
Note that since fykx = 1, the pairing (fk(z), det(V}})hxk(z)) is simply the coefficient
of z ¥ in (2.9). Thus, [29, Eq. (2.19)] reads

—
(210) gk(z) = (=) enle®) ™ ] (eslhy) —elh))™ | dét (Vi)hula),
L1 <Gj<r
1<i<j<r
where g (z) = 3y gz~ So, extracting the coefficient of z~! in (2.10) we obtain
exactly (2.2). a

2.1. Specializations. In the following specializations of Theorem 2.1, we em-
ploy the (short) standard notation for the g-rising factorial in (3.6),(3.8).

First, we deduce a multidimensional matrix inversion which is used in Section 3
for deriving a nonterminating A, g-Abel expansion formula.

ProPOSITION 2.3. Let a, b, and x1,...,x, be indeterminate, and suppose that
none of the denominators in (2.11) or (2.12) vanish. Moreover, let m be a fized
integer such that 0 <m < 7. Then (fak)nkezr and (gu)x,1ezr are inverses of each
other, where

211)  fase = (=) (") (0t bem (w10, xqu"))‘nl_‘k‘

« H (xz 14k —k)

i,j=1 ni—Fki

-1

and

) K|—|1-1
(2.12) g = (a + ben (214", ..., 2.¢")) (a+bem(m1q’” quk"))l =

)

2,j=1 ki—1;

-1

PROOF. In Theorem 2.1 we set a; — —d/a and c;(t;) — bY/ ™t for i =
1,...,r. After some elementary manipulations, which include Lemma B.1, we let
d — oo and obtain the inverse pair (2.11)/(2.12). O

In Proposition 2.3, if we interchange a and b and transfer some factors from
one matrix to the other we obtain the equivalent Proposition 2.4. In this form
the inverse matrices are used in Section 3 for deriving some terminating A, g-Abel
summations.
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PROPOSITION 2.4. Let a, b, and x1,...,x, be indeterminate, and suppose that
none of the denominators in (2.13) or (2.14) vanish. Moreover, let m be a fized
integer such that 0 <m < 7. Then (fak)nxezr and (gu)k1ezr are inverses of each
other, where

(213)  fore = (@em(@1q™, ., 20q™) +b) (a€m (220", ..., 2rg") +5)™'

s (=1)ikl (™3™ ﬁ (g_]q)"

11 zi zi 1+/ci—1cj)
b=l (qu)ki (z:'q ni—ki

i

and

(2.14) g = ()" (aep (@14, .., 2,q") + )"

a (;‘_zq)kl

R Ti Ti A4+1;—1;
2,7=1 (sz)l_ (IJq J)k:'—l'

By the following specialization of Theorem 2.1, we deduce a multidimensional
matrix inversion which is used in Section 3 for deriving some nonterminating A,
g-Rothe expansions.

X

PROPOSITION 2.5. Let a, b, and x1,...,x, be indeterminate, and suppose that
none of the denominators in (2.15) or (2.16) vanish. Moreover, let m be a fized
integer such that 0 <m < 7. Then (fok)nkezr and (gu)x,1ez- are inverses of each
other, where

e k|
@19) = (0 M) ()

T -1
] SN Zi ks

i,j=1 ni—ki

and

_ _ + bem(z1g', ..., zpq) — ¢l
216) ot (1)Kl (M- (1) (@ oo
(216)  gia = (1) q (a+ ben (216", ..., 2rqh) — /X))

T -1

- - . ' T yag
x (ag 1! + by 'k'em(xlq}“,..-,xrq’“‘))‘k‘ il (x—’,ql“’ ”) :
L J ki—li

J=1

PROOF. In Theorem 2.1 we set a; = d/(¢' — a) and c¢;(t;) — b'/™x;qt for
1 =1,...,r. After some elementary manipulations, which include Lemma B.1, we
let d — oo and obtain the inverse pair (2.15)/(2.16). O

In Proposition 2.5, if we interchange a and b and transfer some factors from
one matrix to the other we obtain the equivalent Proposition 2.6. In this form the
inverse matrices are used in Section 3 for deriving some terminating A, ¢-Rothe
summations.

PROPOSITION 2.6. Let a, b, and z1,...,x, be indeterminate, and suppose that
none of the denominators in (2.17) or (2.18) wvanish. Moreover, let m be a fized
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integer such that 0 <m < 7. Then (fok)nkezr and (gu)x,1ez- are inverses of each
other, where

(b+ aem(z1¢™, ..., 2.¢") — q™)
(b + a/e’n'z(xlqk1 PRI 7‘7’.7‘qk1‘) - q‘n‘)

) (aem (21", .., 2ng") + )™
[n]

i
(5:9),

(2.17)  fox = (_1)|k| q(\nl;uq)

q
X
((aem(;vlqkl, e, Trghr) + b)

T
X
1,]=

Hl (z
and

] ] -
N (aem(z1g", ..., 2.¢"") +b) I

(218) g = (1)

q
((aem (z1q*1,..,3-¢"r)+b) ) 1|

. (24),

K
S Zi Zi g1+l —1;
Z,]:l (sz>l_ (qu ])k)'—l'

3. Applications to A, series

X

3.1. Preliminaries. Here we introduce the basic concept of “inverse rela-
tions” and introduce some standard g¢-series notation.

Probably, the most important application of matrix inversion is the derivation
of (hypergeometric) series identities. There is a standard technique for deriving
new summation formulas from known ones by using inverse matrices (cf. [1], [11],
[28]). If (fak)n,kezr and (gri)k,1cz- are lower triangular matrices being inverses of
each other, then of course the following is true:

(3.1) > fakai = bn
0<k<n

if and only if

(3.2) Z gklbl = dk.
0<I<k

If either (3.1) or (3.2) is known, then the other produces another summation for-
mula. We will also use another version, the so-called “rotated inversion”, which
can be used to derive nonterminating summations. It reads

(33) Z fnkan = bx
n>k

if and only if

(3.4) > gabi = a,
k>1

subject to suitable convergence conditions. Again, if one of (3.3) or (3.4) is known,
the other produces a possibly new identity.

Subsequently, we use special cases of our Theorem 2.1 to derive a couple of
higher dimensional summation formulas for g-series.
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Before we start to develop the applications of our multidimensional matrix
inversion, we recall some standard notation for ¢-series. Let ¢ be a complex number
such that 0 < |¢| < 1. Define

(3.5) (@)oo == [J (1 — ag?),
j20
and the g-rising factorial,
(3.6) (a;9)o :=1, (a;Q)r == (1 —a)(1—aq)--- (1 —ag* ),

where k is a nonnegative integer. If a is not a negative integer power of ¢, (3.6)
may also be written as

(a;9)oo
3.7 a; Q) = ———.
3.7 (:9)s (aq*; @)oo
As usual, we define the g-binomial coefficient as
[n] — (¢ Dn
kK, (GO (G Dn—r

for nonnegative integers n, k (cf. [10, Eq. (1.39)]).
As there is no confusion with any other notation, we use the short form

(3.8) (@)k = (a5 9k
for all ¢-rising factorials throughout this article.

For a thorough exposition on basic hypergeometric series including lists of se-
lected summation and transformation formulas, we refer the reader to [10]. Here,
however, we do not make use of the compact ;¢; notation for basic hypergeometric
series (cf. [10, Eq. (1.2.22)]), since for the series occurring in this article the latter
notation cannot be applied.

Concerning the nonterminating multiple series given in this article, we have
stated their regions of convergence explicitly. The absolute convergence of these
series can be checked by application of the multiple power series ratio test [14],
[17]. However, in our proofs we have omitted such calculations. Proofs of absolute

convergence of series which are very similar to those in this paper are given in [30,
Appendix C].

3.2. Multiple g-Abel- and g-Rothe-type identities. For illustration of
the usefulness of our new multidimensional matrix inversion, we give new multiple
series extensions of the g-Abel-type expansion

oo Eyk—1
(3.9) 1= @HD@HONT 4 agy) o,
0 (Dk i
being valid for |az| < 1 (see [20, Eq. (7.3)]), the g-Abel summation
(3.10) 1= Z [Z] (a+b)(a+ bq’“)ki1 c* (c(a+ bqk))n_k
k=0 q

(see [20, Eq. (8.1)]), the g-Rothe-type expansion

S _1-(a+b) (ag*+D)
(311) (oo =Y 1—(ag " +b) (@ k

k=0

k

(~1)%¢(2) (z(a +bg")) _ =",
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being valid for |az| < 1 (see [20, Eq. (7.4)]), and the ¢g-Rothe summation

" n 1—(a+d 5 . . (R) &
12 =2 [k]q s a0 (el b)), (1R
(see [20, Eq. (8.5)]), respectively. Other terminating g-Abel and ¢-Rothe summa-
tions can be found in [15], [16], and [30]. Multiple series extensions of the above
formulas have also been considered in [20, Sections 7 and 8] and [30, Sections 3-6]
(which were also derived by multidimensional inverse relations.) There the (non-
trivial) specializations which lead to the well-known Abel- and Rothe-type formulas
for ordinary series (i.e. the “¢ = 1 case”) are given explicitly.

First, we give a multiple series extension of (3.9). Theorem 3.1 generalizes the
A, g-Abel-type expansion in [30, Theorem 3.2], to which it reduces for m = r and
b b/ H::l Z;.

THEOREM 3.1 (An A, g-Abel-type expansion). Let a, b, 2z, and x1,...,x, be
indeterminate, and let m be a fized integer such that 0 < m < r. Then there holds

o= 5 (1 (SES) (%)

1y kr=0 \1<i<j<r

x (a+ ben(z1,...,2,)) (a+ bem (z1g™,. .. ,gqu’“"))ll(P1

T
x (=1)r=DIl g=(5)+r Ziny (3)+Tim =Dk 1 E

i=1

x 2K (z(a + bem (214", . .. ,xrq"“‘)))oO ) ,

provided |az| < q%x]ﬂ [T, =

forj=1,...,r.

PRrOOF. Let the multidimensional inverse matrices fnkx and gx) be defined as
in (2.11)/(2.12). Then (3.3) holds for

T
an = (—1)0 D g ()47 iy (4TI =ma ol TT 27

i=1

and

T
bk = (—1)(T—1)\k\ q—(“z(')-i-r T )+ (=) ks LIk H xzk"flkl
i=1
Ti bk
x (z(a+ beM(xlqkl""’xqur)))oo H (1 _ _qu, k]>
1<i<j<r Tj

by the A, g¢o-summation (B.2) in Theorem B.4. This implies the inverse relation
(3.4), with the above values of a,, and byx. After performing the shifts k; — k; + [;,
i =1,...,r, and the substitutions z; — z;q7%, i = 1,...,r, we get rid of the [;’s
and eventually obtain (3.13). O
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Next, we give three A, g-Abel summations. These are multiple series extensions
of (3.10). Theorems 3.2, 3.3, and 3.4 generalize the A, g-Abel summations in [30,
Theorems 4.6, 4.7, and 4.8], respectively, to which they reduce for m = r and
a—all_, z.

THEOREM 3.2 (An A, ¢-Abel summation). Let a, b, ¢, and x1,...,%, be in-
determinate, and let ny, ..., n, be nonnegative integers. Moreover, let m be o fized
integer such that 0 < m < r. Then there holds

T (29),
(3.14) 1= Y (H (24), (2 )

1 2 Ti o bhi—k;
0<k;<n; \1i,j=1 x_;-q 5 z_;q Thi=k;
i=1,...,7r o *

[k|—1
X (aem(1/21,...,1/z,) +b) (aqlklem(q_kl/xl, g ) + bqlkl)

x /| (C(aq|k|em(q_k1/:c1,--~7q_k7‘/xT)+bq|k|))\ \ k).

PRrOOF. Let the multidimensional inverse matrices fnkx and gx) be defined as
in (2.13)/(2.14). Then (3.2) holds for

q
ar =
k (c(aem(xlqkl,...,aqukr) + b))k
and
=gl
by the A, terminating g-binomial theorem (B.3) in Theorem B.6. This implies the

inverse relation (3.1), with the above values of ax and b;. In the resulting identity,
we reverse order of summations by performing the substitutions k; — n; — k;, i =

1,...,r. After performing the substitutions ¢ — cq!™, z; — ¢ ™ Jxi,i=1,...,r,
we eventually obtain (3.14). O

THEOREM 3.3 (An A, g-Abel summation). Let a, b, ¢, and x1,...,%, be in-
determinate, and let nq, ..., n, be nonnegative integers. Moreover, let m be o fized

integer such that 0 < m < r. Then there holds

T (59
0<k;<n; \4,j=1 (%q) (%ql'HCi—kj)
=1, ’ ki J n;—ki

Y i

k|1
X (aem(1/21,...,1/2,) +b) (aq|k|em(q_k1/x1, .. .,q_kr/:cT) + bq|k|)

T
x g0 T ob (coiq™ (aem(q™ 21, -, a7 J2:) + b)), . ) :
=1

where ez(k) is the second elementary symmetric function of {ki,...,kr}.

PROOF. Let the multidimensional inverse matrices fni and gi; be defined as
in (2.13)/(2.14). Then (3.2) holds for

T

a = H qx;
k claem (z1g*, ..., xrqk) + 1) ks

i=1
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and

b ‘1|+E1 1 l c |1| Hx

by the A, terminating g-binomial theorem (B.4) in Theorem B.6. This implies the
inverse relation (3.1), with the above values of ax and b;. In the resulting identity,
we reverse order of summations by performing the substitutions k; — n; — k4,

i =1,...,r. After performing the substitutions z; — ¢ ™ /z;, ¢ = 1,...,r, we
eventually obtain (3.15). O

THEOREM 3.4 (An A, ¢-Abel summation). Let a, b, ¢, and x1,...,z, be in-
determinate, and let ny,...,n, be nonnegative integers. Moreover, let m be a fized

integer such that 0 < m < r. Then there holds

(3.16) 1= > (H (i—q)n g2

S Ti 14ki—kj
ng <nl i,7=1 FQ) (;q + ])
i=1,. ’ ki 7 n;—k;

i

[k[—1
X (aem(l/wla cees l/xr) + b) (aqlklem(q_kl/xh sy q_kT/-'Er) + bqlkl)

x clk Hx_k ( ¢ (ag™le,, (g "“/xl,...,qk“‘/xr)+bq|kl)) ),
ni—k;

where e (k) is the second elementary symmetric function of {ki,...,k-}.
PROOF. Let the multidimensional inverse matrices fuk and gix) be defined as
n (2.13)/(2.14). Then (3.2) holds for
r gkl =k

W = H (Cmi(aem(xlqkla s 7‘/EquT) + b));”

=1

and

bl = 62(1)+ ”+1 — H.Z‘

by the A, terminating g-binomial theorem (B.5) in Theorem B.6. This implies the
inverse relation (3.1), with the above values of ax and b;. In the resulting identity,
we reverse order of summations by performing the substitutions k; — n; — k;, © =
1,...,r. After performing the substitutions ¢ — g/, z; — ¢=™ [z, i=1,...,r,
we eventually obtain (3.16). O

In the following, we give two A, g-Rothe-type expansions. These are multiple
series extensions of (3.11). Theorems 3.5 and 3.6 generalize the A, g-Rothe-type
expansions in [30, Theorems 5.1 and 5.2], respectively, to which they reduce for
m=r and b b/ [[i_; ;.
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THEOREM 3.5 (An A, g-Rothe-type expansion). Let a, b, z, and x1,...,2, be
indeterminate, and let m be a fized integer such that 0 < m < r. Then there holds

o) 1— w_z:q/c,:—kj T 2 —1
(B17) (o= Y. ( 11 <71$i = ) 11 <jQ)
k1yenkr=0 \1<i<j<r Tj i,j=1 I/ ks
(1= (a+ben(z1,...,2)))
(1 = (aq=* + bg=¥le, (2165, . . ., 2rqFr)))

T

_ _ . i — |

X (aq * 1 bg |k|em(x1qk1,...7xqu’))‘k‘ 1= H
i=1

x (=1)7Ikl

x " Zimt (OFTIL (=08 S (a4 be(a1g™, .. 2rg™))) ) ,

forg=1...,r.

provided |az| < ‘q%x;T [T, zi

PRrROOF. Let the multidimensional inverse matrices fux and gix) be defined as
in (2.15)/(2.16). Then (3.3) holds for

an = (—1)r DIl ()47 i (3)+ i me T[ oo
i=1
[n] ()1 _ Fi ni-n,
X 2™ (2) ) H 1 ot
1<i<j<r J

and

T
bie = (—1) DK = (5)+r Ziny (941 -1k H$:ki—\k\
=1
x zI¥l (z(a + bem(@1g™, "qukT)))OO H 1- ﬂqki—lw'
(z)oo X

by the A, 1¢1-summation (B.6) in Theorem B.8. This implies the inverse relation
(3.4), with the above values of a,, and byx. After performing the shifts k; — k; + [;,
i =1,...,r, and the substitutions a — ag!!l, b — bglll, 2z —» z¢~ IV, z; — zig ",
i=1,...,7r, we get rid of the I;’s and eventually obtain (3.17). O

1<i<j<r

THEOREM 3.6 (An A, ¢g-Rothe-type expansion). Let a, b, z, and x1,...,x, be
indeterminate, and let m be a fized integer such that 0 < m <r. Then there holds

oo 1— ﬂqk)i—k_j r . -1
T4 3
(3.18) (2)o = Z ( H (71 - 7 ) H (x—jQ)k.
E1y.00kr=0 \1<i<j<r 4,j=1 i
y (1 —(a+ben(z1,-...,2)))
(1 — (ag= +bg=Mley, (z1g"1, . . ., 2,q%)))

x (aq_‘k‘ +bq_|k|em(a:1qk1,...,quk"))‘k‘ (—1)/l

x g0k K (o0 4 bey (214", 220")) )
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provided |az| < 1.

PRrOOF. Let the multidimensional inverse matrices fnkx and gx) be defined as
in (2.15)/(2.16). Then (3.3) holds for

an = 2 ()7 Tl (1 _ ﬁqm—nj>

T
1<i<j<r J

and

bk=z

K| (z(a+bem(x1qk1,...,:vqu")))oo S =1k 1— Ti ki—k;
q q
(2)0 Zj

by the A, 1¢1-summation (B.7) in Theorem B.8. This implies the inverse relation
(3.4), with the above values of a,, and bx. After performing the shifts k; — k; + I,
i =1,...,r, and the substitutions a — ag/'l, b — bglll, z — 2¢~V, z; — 2;¢7%,
i=1,...,r, we get rid of the /;’s and eventually obtain (3.18). O

1<i<j<r

Finally, we give three A, g-Rothe summations. These are multiple series exten-
sions of (3.12). Theorems 3.7, 3.8, and 3.9 generalize the A, ¢-Rothe summations
in [30, Theorems 6.3, 6.4, and 6.5], respectively, to which they reduce for m = r
and a — a[[;_; z;.

THEOREM 3.7 (An A, g-Rothe summation). Let a, b, ¢, and x1,...,z, be
indeterminate, and let nq,...,n, be nonnegative integers. Moreover, let m be a
fized integer such that 0 < m < r. Then there holds

(3.19) ﬁ( ) ) ( H (5?—‘1)” ")
. CT;)n; = q=i=
R 0<k; <n; (ﬁ—jq)k_ (ﬁ—jq“’“i*kj)n__k

i=1,...,T *

irj=1

(1—(aem(1/z1,...,1/2,) + 1))
(1= (aem(q "1 /m1, ..., q F [ar) + b

x (—1) Kl Ikl Hacf’ (czighi(aem (g™ Jz1,. ... q " [2,) + b))n,—ki )

=1

) (aem (g™ /21, a7 [2n) +0)

PROOF. Let the multidimensional inverse matrices fuk and gx be defined as
in (2.17)/(2.18). Then (3.2) holds for

-1
q qx;
ak = " X "
<(aem(x1q’”1 s Tpghn) + b)) k| 11;[1 <c(aem(w1q’”1 ye s Trghr) + D) ) s

and

T
by = g1+ iz (5) 11 G £ -t

. ¢ xT; 1

=1
by the A, ¢-Chu—Vandermonde summation (B.8) in Theorem B.10. This implies the
inverse relation (3.1), with the above values of ax and b;. In the resulting identity,
we reverse order of summations by performing the substitutions k; — n; — k;,
1 =1,...,r. After performing the substitutions a — ag!™, b — bglnl, ¢ — cq Il
x> q ™ jx;, i =1,...,r, we eventually obtain (3.19). d

i
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THEOREM 3.8 (An A, ¢-Rothe summation). Let a, b, ¢, and x1,...,z, be
indeterminate, and let ny,...,n, be nonnegative integers. Moreover, let m be o
fized integer such that 0 < m <r. Then there holds

< . (24),

i

r
C
— glnl—ni —
oo () = %
i=1 i 0<k; <n;
i=1,...,7

62(1()-‘,—(“2(') (1 — (aem(l/xlv"'71/x7“)+b))
(1= (aem (g F1/21,...,q % [z,) + D))
X (aem(qikl/xlv cee qikr/xr) + b) k| (_1)|k| cl

T
ki € nl—mn _ k.
x 1= ’“’(;q' = (g™ (g o, g /mr>+bq"">) )
i=1 ¢ ni—k;

xq

where ex(k) is the second elementary symmetric function of {ki,...,kr}.

PROOF. Let the multidimensional inverse matrices fnkx and gx) be defined as
in (2.17)/(2.18). Then (3.2) holds for

-1 r 1+|k|—k;
q q
akx = < A k ) H ( k kr )
(aem(z1q*, ... 20q") +0) ) gy o5 \cxilaem(zigh, ... 2rgh) + ) )
and
by = qez(l)+(“'2+1) M Ha:i_li (cxi)i;
i=1

by the A, ¢-Chu-Vandermonde summation (B.9) in Theorem B.10. This implies the
inverse relation (3.1), with the above values of ax and b;. In the resulting identity,
we reverse order of summations by performing the substitutions k; — n; — k;,

i =1,...,r. After performing the substitutions a — aq™, b — bg™l, ¢ — cg'™,
x;—q ™ a0 =1,...,r, we eventually obtain (3.20). a

THEOREM 3.9 (An A, ¢-Rothe summation). Let a, b, ¢, and z1,...,z, be
indeterminate, and let nq,...,n, be nonnegative integers. Moreover, let m be a

fized integer such that 0 < m < r. Then there holds

(321) (@O = 3 (H o <(q)n |

- Ti o 1+k;—k;
0<ki<n; \1i,j=1 qu z_jq R
i=1,...,7

(1-(aem(1/z1,...,1/2,) + b)) ( .
(1= (aem(g=F1/z1,...,q~ " [ap) + b)) "

« (~1)K q(u;\) Cll (c(aq'klem(qfkl/xh R L bq|k|))‘n‘_‘k‘ )

(" 21, ¢ Jx,) + b)‘k‘

PROOF. Let the multidimensional inverse matrices fnx and gy, be defined as
in (2.17)/(2.18). Then (3.2) holds for

—1
q q

ar =

8 ((aem(xlq’“l,...,xrq’“r) +b))|k| (c(aem(:clqkl,...,qu’“r) +b))k
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and
141

b = q( ) ¢ (e
by the A, ¢-Chu—Vandermonde summation (B.10) in Theorem B.10. This implies
the inverse relation (3.1), with the above values of ax and b. In the resulting
identity, we reverse order of summations by performing the substitutions k; —
ni — ks, @ = 1,...,r. After performing the substitutions a — ag/™, b — bgl™l,
x> q ™ a0 =1,...,r, we eventually obtain (3.21). d

CoNCLUDING REMARK 3.10. In this Section, we derived multidimensional g¢-
Abel- and g-Rothe-type identities by inverse relations. If we specialized our inverse
pair of matrices as in the Propositions of Section 2 but with ¢;(t;) — b'/™(x; + t;)
instead of ¢;(t;) — b/™x;q" (and similarly adjusting the specialization of a;), in
combination with certain A, hypergeometric series, we could have derived some
Abel and Rothe summations for “ordinary” (¢ = 1) A, series (see [3] and [30] for
other A, Abel and Rothe summations). However, we did not aim to give a complete
treatment of possible applications of our matrix inversion in Theorem 2.1, but rather
wanted to provide a few examples for evidence.

Appendix A. A determinant evaluation

We need the following Lemma in the proof of Theorem 2.1.

LEmMA A.l. Let x1,...,%r, Yo,Y1,---,Yr, and a be indeterminate. Let P(x) =
(x—yo)...(x —y.), and let m be a fived integer with 0 < m <r. Then

(A1) Pla)- det (xrﬂ(%m)—f_ar+x<a‘<m>—j_P (””i))

1<i,j<r \ ¢ P(a)
= (aem(xh .- '7wT) + em+1($17 ce. 71'7") - €m+1(y07 ce- 7yr))
T
X H(a — ;) H (i — ;).
i=1 1<i<j<r

REMARK A.2. This generalizes [29, Lemma A.1l], which is the special case
m = r. For m = r the following proof reduces to Don Zagier’s [31] shorter and
more elegant proof of [29, Lemma A.1] which he kindly communicated to us.

PROOF OF LEMMA A.1. From the standard identity det(]g 7) = cdet(M —

¢=1¢n) applied to M = (a7 ™X0S™ ), ¢ = (qrlism=3) 5 = (P(z;)) and ¢ =
P(a), we see that the left-hand side of (A.1) is just the determinant D of the

(r+1) x (r+ 1) matrix with rows (g TX0S™=1 grix@smi=2 - x(r<m) p(g.y),
where x,11 = a. Substracting from the last column a linear combination of the
other columns to replace P(x) by z™t'+ (—=1)"*le,1(vo,-..,yr)z"~™ we can

simplify D to

1\ r+1+x(jém+1)*j> oyl (H—l—j)
(-17_det (] D e (o o9) | _det (4]

T

= (em—f-l(xla---axraa)_em-l—l(yOa"'vyT)) H(a_xi) H (wi_xj)7

i=1 1<i<j<r

where we made use of [22, (3.1) and (3.9)]. O
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Appendix B. Background information — A, basic hypergeometric
summation theorems

Here we state a simplification lemma, and some A, basic hypergeometric sum-
mations from Milne [25] we need in the proofs of our theorems of Section 3.

LEMMA B.1.
_ Zigki—kj\ 1 (ﬂ li—k:‘)
I (Somh ) [ ALt o gyl (M5 Simitt,
11 1—Zigh=t ) AL (g, 14—,
1<i<j<r Tj i,j=1 qu KL

REMARK B.2. Lemma B.1 is equivalent to Lemma 4.3 of [25], which is proved
by some elementary manipulations.

REMARK B.3. When reversing order of the summations in the proofs of Sec-
tion 3, we permanently make use of the fact that the “A, g-binomial coefficient”

. (24)

iy Zi Zi g1+ki—k;
= | (2e) (2ehm)

i

(B.1)

remains unchanged after performing the substitutions k; — n; — k; and z; —
q ™ /xz;, for i =1,...,r. This can be seen using Lemma B.1.

THEOREM B.4 (An A, g¢o-summation). Leta and 1, ... ,x, be indeterminate.
Then there holds

oo 1— ﬂqkifkj r 2 —1
T
2 wo= > (T () T (2)
k1yeeky=0 \ 1<i<j<r ; ik
x (=1)7Il gl g7 Xim ()X -k TT x:ki—|k|> _
=1
REMARK B.5. Theorem B.4 can be obtained from Theorem 1.47 of [25] by

substituting z — z/[];_, a;, then letting a1 — o0,...,a, = o0, and relabelling
2> a.

THEOREM B.6 (A, terminating ¢-binomial theorems). Let z and x1,...,2, be
indeterminate, and let ny,...,n, be nonnegative integers. Then there holds

(B3) (D) = D, <H (_q)n (_1)|k|q(|§)z|k|>7
0<ki<ni \ij=1 (i—jq)ki (ﬁ—jq“rki—kj)m_k

i=1,...,7 i

B4 [[Crn = (H (24)

i

T
x (=1)Il iz (%) Ik fo’)’
=1
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g
e | (3), (Bam)

®5) H(fql): 3

=1 i 0<k;<n;
i=1,...,m i
T
x (=1 =209+ (%) ¥ [Ty )
i=1
where e (k) is the second elementary symmetric function of {ki,...,k-}.

REMARK B.7. The summations (B.3), (B.4), and (B.5) are Theorems 5.44,
5.46, and 5.48 of [25], respectively (slightly rewritten using Lemma B.1).

THEOREM B.8 (4, 1¢1-summations). Leta, ¢, and 1, .. ., T, be indeterminate.
Then there holds

(B.6) %= > < 11 (%)H (%q)l

k,okr=0 \1<i<j<r

(c/a)ss _ > 1-— i—;qki*kj r 2 _1
o o= 5 (1 (SER) T (%)

4,j=1 ki

x (a)\k\ (_1)|k| q(“g‘l)"rzle(i—l)ki (2)|k| > .

()|
REMARK B.9. The summation (B.6) can be obtained from Theorem 7.6 of [25]
by letting a; — 00,...,a, = o0, and relabelling b — a. The summation (B.7) can

be obtained from Theorem 7.9 of [25] by letting b — oo.

THEOREM B.10 (A, ¢-Chu—Vandermonde summations). Let a, ¢, and x1, ...,
x, be indeterminate, and let ny,...,n, be nonnegative integers. Then there holds

H::]_(Cxi/a)ni _ . (i_;q)m

(B.S) (C)lnl _Oégﬁn,<7}_=[1 (%Q)k (g_;ql—i_ki_kj)m_k,
MMy (2e™) oy e IK

T o 5 )

B9 — t= 2 (H (_q)n
() n| . \i (ﬁq)ki (ﬁ_j-qprkrkj)n,-—ki

X M (_1)|k| qez(k)+ ) ( )Ikl Hx_k )
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where ez (k) is the second elementary symmetric function of {ki,...,kr},

B10) m _ > ﬁ (i_q>n

C T; T . A
(©)in| 0<k;<n; \ij=1 (EQ) (z—;qu’ kf) _
=17 ki ni—ki

y (@) x (—1) q(“;l) (E)lkl

(C)\k\ a

REMARK B.11. The summations (B.8) and (B.9) are Theorems 5.28 and 5.32

of [25], respectively (slightly rewritten using Lemma B.1). The summation (B.10)
can be obtained from Theorem 7.6 of [25] by letting a; — ¢~ ™, i =1,...,r, and
relabelling b — a.

(1]
2]
(3]

[10]
[11]
[12
[13]
[14]
[15]
[16]
[17]
[18]

(19]
(20]

(21]
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