ELEMENTARY DERIVATIONS OF IDENTITIES FOR
BILATERAL BASIC HYPERGEOMETRIC SERIES

MICHAEL SCHLOSSER

ABSTRACT. We give elementary derivations of several classical and some new
summation and transformation formulae for bilateral basic hypergeometric se-
ries. For purpose of motivation, we review our previous simple proof (“A
simple proof of Bailey’s very-well-poised g%¢ summation”, Proc. Amer. Math.
Soc. 130 (2002), 1103-1111) of Bailey’s very-well-poised ¢%6 summation. Us-
ing a similar but different method, we now give elementary derivations of some
transformations for bilateral basic hypergeometric series. In particular, these
include M. Jackson’s very-well-poised gwg transformation, a very-well-poised
10%10 transformation, by induction, Slater’s general transformation for very-
well-poised 2,12, series, and Slater’s transformation for general ,, series.
Finally, we derive some new transformations for bilateral basic hypergeomet-
ric series of a specific type.

1. INTRODUCTION

One of the central identities connecting number theory and analysis is the Triple
Product Identity of Jacobi [26] from 1829:

>0 2 i . . _ .
> =[P A + 2+ 27, (1.1)
k=—o0 7=0

Many of the grand moments in number theory such as the theorems on sums of
squares, the Rogers—Ramanujan identities, or Euler’s pentagonal number theorem
rely on this result. In the twentieth century, this formula has been extended greatly
to produce even more effective tools for studies in number theory, combinatorics
and physics.

Among the most powerful of these generalizations is identity (3.1) below. This
formula is one of the general theorems that contain Jacobi’s [26] famous formulae
for representations by 2, 4, 6 and 8 squares as limiting cases.

Often in this area, notational complications combined with intricacy of proof
make the subject difficult to comprehend. The complex notation appears to be
unavoidable; however new methods of proof both make the subject more accessible
and uncover new results. When seeing an intricate proof one naturally asks the
question whether there exists any simple proof. The ultimate goal would be to
even have a simple method at hand which possibly could be used in many more
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related instances. In this article, we apply a very simple yet powerful method to
obtain a hierarchy of identities, starting from simple formulae, building up to more
and more complicated ones. All these identities live in the world of so-called basic
hypergeometric series [17].

The classical theories of hypergeometric series (cf. [38]) and g-hypergeometric
series (cf. [17]) consist of many known summation and transformation formulae. In
fact, most identities for series involving (g-)binomial coefficients can be uniformly
written in terms of (g-)hypergeometric series. Well-known examples are the bi-
nomial theorem, the Vandermonde summation, and their “g-analogues”. There
are numerous other summations, and also transformations for (¢-)hypergeometric
series. The g-hypergeometric series are usually called basic hypergeometric series,
where “basic” refers to the base g. The theory of basic hypergeometric series, which
contains hypergeometric series as special cases, arose initially in combinatorics and
classical analysis, and interacts similarly with number theory, statistics, physics,
and representation theory of quantum Lie algebras, see Andrews [2].

The theories of unilateral (or one-sided) hypergeometric and basic hypergeo-
metric series have quite a rich history, dating back to, at least, Euler. Formu-
lae for bilateral (basic) hypergeometric series were not discovered until 1907 when
Dougall [14], using residue calculus, derived summations for the bilateral o H> and
very-well-poised 5 Hs series. Ramanujan [20] extended the g-binomial theorem by
finding a summation formula for the bilateral ;1); series. Later, Bailey [7],[9] carried
out systematical investigations on bilateral basic hypergeometric series. Further sig-
nificant contributions were made by Slater [36],[38], a student of Bailey. See [17]
and [38] for an excellent survey of the above classical material.

Bailey’s [7, Eq. (4.7)] very-well-poised g1 summation (cf. [17, Eq. (5.3.1)]) is a
very powerful identity, as it stands at the top of the classical hierarchy of summation
formulae for bilateral series. Some of the applications of the g1 summation to
partitions and number theory are given in Andrews [1]. Several proofs of Bailey’s
6 summation are already known (see, e.g., Bailey [7], Slater and Lakin [39],
Andrews [1], Askey and Ismail [5], and Askey [4]) which, unfortunately, are not
entirely elementary. Very recently, the author [33] found a new simple proof of
the very-well-poised ¢ summation formula, directly from three applications of
Rogers’ [31, p. 29, second eq.] nonterminating ¢¢s summation (cf. [17, Eq. (2.7.1)])
and elementary manipulations of series.

The method we used in [33] extends that already used by M. Jackson [25, Sec. 4]
in her first elementary proof of Ramanujan’s 191 summation formula [20] (cf. [17,
Eq. (5.2.1)]). In [33], besides of giving an elementary derivation of Bailey’s very-
well-poised gt summation, we also gave an elementary derivation of Dougall’s [14,
Sec. 13] o Hy summation.

In this article, we apply a similar but different method to derive several classical
and some new transformations for bilateral basic hypergeometric series. In fact,
here we make use of unilateral transformations and combine them with bilateral se-
ries identities to deduce more complicated bilateral series identities. After recalling
some standard notation for basic hypergeometric series in Section 2, we review, for
purpose of motivation, our [33] elementary proof of Bailey’s very-well-poised g6
summation in Section 3. In Section 4, we combine Bailey’s [8] summation formula
for a nonterminating very-well-poised g7 series (cf. [17, Eq. (2.11.7)]) with Bailey’s
616 summation. As result we obtain a transformation formula for a very-well-poised
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gg series into a sum of two g¢7 series. This transformation is equivalent to a trans-
formation given by M. Jackson [24, Eq. (2.2)]. In Section 5, we apply our machinery
to deduce a transformation formula for a very-well-poised 10%10 series into a sum
of three 19¢9 series. This 10110 transformation is given implicitly by Slater [36] and
explicitly by Gasper and Rahman [17, Eq. (5.6.3)]. We go even further in Section 6,
where we prove Slater’s [36] general transformation for very-well-poised 2,12, series
by induction. Similarly, in Section 7, we give an elementary inductive derivation
of Slater’s [36] general .1, transformation. Instead of making use of Bailey’s non-
terminating g¢7; summation, we utilize the nonterminating 3¢, summation here.
Finally, in Section 8, using Slater’s general transformations for bilateral basic hy-
pergeometric series, we give elementary derivations of transformations of a specific
type which seem to be new. The bilateral transformations in question involve basic
hypergeometric series with quotients of parameters that are nonnegative integral
powers of g, or short, series of ¢-IPD type, following the terminology of [34]. Our
identities in Section 8 generalize some formulae recently found by Chu [11],[12].

It is worth noting that most of the classical transformations for bilateral basic
hypergeometric series are proved in the literature by specializing down from the
very general transformations provided by Slater [36]. For instance, this is how the
very-well-poised gts and 10%10 transformations (see Equations (4.1) and (5.1)) are
usually derived. Slater derives her transformations in [36] by using some general
transformations for basic hypergeometric series which Sears [35] derived by manip-
ulations of series. Slater [37] also gives shorter proofs of her transformations which
use contour integrals of Barnes’ type. Already Watson [40] had used such integrals
to derive transformations for basic hypergeometric series of any order. In contrast,
in this article we do not use contour integration. After finding the bilateral trans-
formations by elementary means, we do sometimes appeal to analytic continuation
to extend our results. Our course of deriving the general transformations (6.1) and
(7.1) is reminiscent of (but different from) Sears’ analysis in [35].

The ideas in this article should open up new avenues in the theory of multiple
basic hypergeometric series. Whereas in the one-dimensional theory it is possible to
specialize down from general high level identities, the extension of these to multiple
basic hypergeometric series are not yet known. We expect that our technique will
allow to proceed from lower level identities to systematically derive the upper level
ones. In particular, we plan to apply the methods of this article and of [33] in the
setting of multiple basic hypergeometric series associated to root systems, see e.g.
Milne [29], Gustafson [18], v. Diejen [13], and Schlosser [32].

Finally, we wish to gratefully acknowledge the helpful comments and suggestions
of George Andrews, Mourad Ismail, Christian Krattenthaler and Stephen Milne.

2. BACKGROUND AND NOTATION

Here we recall some standard notation for g-series, and basic hypergeometric
series (cf. Gasper and Rahman [17]).

Let g be a complex number such that 0 < |¢| < 1. We define the g¢-shifted
factorial for all integers k by

(a§Q)oo = H(l - aqj) and (a;q)k = M

o0
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For brevity, we employ the usual notation
(a1, am; @k = (a1; Ok - - - (am; D
where k is an integer or infinity. Further, we utilize the notations

-a17a27"'7a7“ ] - (a17a/27"'7aT;Q)k( k ("’))1+S_T k
cq,z| = -1 2 , 2.1
v95 by, by, .. by 7 kz:; @b o) (D 2 @)

and

a1, a2, .., a, 1 N (ar, a2, .., a0 Q) ( i (k))S*T‘ .

' = —1)%¢\ 2.2
T¢S_b1,b2,...,b57q’z_ Z (blvan'--7bs§Q)}g ( ) q AN ( )
for basic hypergeometric ¢, series, and bilateral basic hypergeometric s series,

respectively. See [17, p. 25 and p. 125] for the criteria of when these series terminate,
or, if not, when they converge. Note that, when we are considering ,¢; series in

k=—00

this article, we usually have s = r — 1, in which case the factor ((—1)’9q(§))1+5_r in
the series is just one. A similar fact holds for the 1, series when s = r.

To shorten some of our displays, we use Sears’ [35] “idem” notation. The sym-
bol “idem(a;as,as,...,a;)” after an expression stands for the sum of the ¢ ex-
pressions obtained from the preceding expression by interchanging a with each ay,
k=1,2,...,t.

The theory of (classical) basic hypergeometric series consists of several sum-
mation and transformation formulae involving ,41¢, or i, series. Some of the
classical summation theorems require that the parameters satisfy the additional
condition of being either balanced and/or very-well-poised. An ,1¢, basic hyper-
geometric series is called balanced if by ---b, = a1---ar41q and z = q¢. An 410,

series is well-poised if a1q = a2by = -+ = ar41b,. An .16, basic hypergeometric
series is called wvery-well-poised if it is well-poised and if as = —az = ¢ /a;. Note
that the factor
1— a1q2k
_ 2.3
T (2.3)

appears in a very-well-poised series. The parameter a; is usually referred to as the
special parameter of such a series. Similarly, a bilateral ¢, basic hypergeometric
series is well-poised if a1b1 = agbs - -+ = a,-b, and very-well-poised if, in addition,
a1 = —as = gby = —qbs.

In our computations in the following sections, we make heavily use of some
elementary identities involving g-shifted factorials which are listed in Gasper and
Rahman [17, Appendix I].

3. BAILEY’S VERY-WELL-POISED 4% SUMMATION

To motivate some of our analysis in the later sections, we review here our short
and simple proof of Bailey’s very-well-poised g1 summation:

qv/a,—q\/a,b,c,d,e a’q
56| \/a, —/a, ag/b, ag/c, aq/d, ag/é © bede
_ (ag,aq/bc,aq/bd, aq/be, aq/cd, aq/ce, aq/de, q,q/a; )
~ (ag/b,aq/c,aq/d,aq/e,q/b,q/c,q/d,q/e,a*q/bede; q)oo”

provided the series either terminates, or |a2q/bede| < 1, for convergence.

(3.1)
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The summation formula in (3.1) is one of the most powerful identities for bi-
lateral basic hypergeometric series. For some applications to number theory, see
Andrews [1, pp. 461-468].

To prove Bailey’s g9 summation, we start with a suitable specialization of
Rogers’ g¢5 summation:

p [ a, ¢v/a,—qv/a,b,c.d GCI] (ag, ag/be,aq/bd ag/cd: oo 5 o)
%% | /&, ~a,aq/b.ag/c,aq/d ¥ bed| ~ aq/b,agfc,aqfd agfbediq)o
provided the series either terminates, or |ag/bed| < 1, for convergence. Note that

(3.2) is just the special case e — a of (3.1).
In (3.2), we perform the simultaneous substitutions a — c¢/a, b — b/a, ¢ — cq™
and d — ¢¢~"/a, and obtain

6¢5 C/G/, q\/ C/G/, _q\/ C/avb/a/v anch_n/a.q %
ve/a,—+/cla,cq/b,g 7" a, gt 7T be

_ (cg/a,¢'™"/b,aq"*" /b, q/¢; @)oo

(cq/b,q*="/a,q**", aq/bc; @)oo

(3.3)

where |ag/bc| < 1.
Using some elementary identities for ¢-shifted factorials (see, e.g., Gasper and
Rahman [17, Appendix I]) we can rewrite equation (3.3) as

(cq/b,q/a,q,aq/bc; q) Z (1 —cq®*/a) (c/a,b/a;@)r(c; @)n+r (a5 @n—k (g)’f
(cq/a,q/b,aq/b,q/c; q)co (1—c/a) (g,cq/b;9)k(q; Qn+r(agq/c;@)n—k \b
(b,¢;q)n a\m

=@ (2} (34
e ) - 69

In this identity, we multiply both sides by

(1-ag®) (deqhn (ﬂ)"
(1—a) (aq/d,aq/e;q)n \cde

and sum over all integers n.
On the right side we obtain

¢ q\/_7 _Q\/av b7 c, d7 € . a2q
676 \/5,—\/5,aq/b,aq/c,aq/d,aq/e’q7 bede |

On the left side we obtain

(ca/b,q/a,q,aq/bc; q)oo i (1-ag®) (deq)n (ﬂ)"
(cqg/a,q/b,aq/b,q/¢; Qoo , (1-a) (aq/d,aq/e;q)n \cde

(1 —cg®*/a) (c/a;b/a; q)r(c; Dnin(@@)n & (a)k
XZ (1-c/a) (QaCQ/b§Q)k(q§Q)n+k(GQ/C§q)n—k( ) - (39

b

Next, we interchange summations in (3.5) and shift the inner index n — n — k.
(Observe that the sum over n is terminated by the term (g; q), 41 from below.) We
obtain, again using some elementary identities for g-shifted factorials,

(cq/b,q/a,q,aq/bc; @)oo Z (1 —cq**/a) (c/a,b]a; q)s
(cq/a,q/b,aq/b,q/c;q) (I1—c/a) (g,cq/b;9)k
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e aq**) (a;9)—2x(d,e;9) (cile)k
(1—a) (ag/c;q)-2x(ag/d,aq/e;q)-k \ bg

—2k:+2n) 2k k

XZ (1—aq (ag™*",c,dg™",eq"";q) (ﬂ)
(1—aqg %) (q,aq' " 2%/c,aq**/d,aq'"*/e;q)n \cde

Now the inner sum, provided |ag/cde| < 1, can be evaluated by (3.2) and we obtain

(cq/b,q/a,q,aq/bc; q)so Z (1 —cg* /a) (c/a,b/a;q)r(ag; q) -2k
(cq/a,q/b,aq/b,q/c;q) (1—=c/a) (q,cq/b;q)x(aq/c;q) -2
(d, e;9)—k cde\" (ag'=?*,aq'~*/cd, aq ~* /ce, aq/de; q)oo
(ag/d,aq/e;q)—r \ bg ) (aq'=%%/c,aq'~*/d,aq'~* /e, aq/cde; q)o
which can be simplified to

(cq/b,q/a,q,aq/bc,aq,aq/cd,aq/ce, aq/de; q) oo
(cq/a,q/b,aq/b,q/c,aq/c,aq/d, aq/e,aq/cde; q)

>, (1 —cq?*/a) (c/a,b]a,cd]a,ce/a;q)x  a*q \"
" ;) (1—c/a)  (g,cq/bq/d,q/e;q) (bcde)

To the last sum, provided |a?q/bcde| < 1, we can again apply (3.2) and after some
simplifications we finally obtain the right side of (3.1), as desired.

Our derivation of the g1)g summation (3.1) is simple once the nonterminating
605 summation (3.2) is given. But the latter summation follows by an elemen-
tary computation from F. H. Jackson’s [23] terminating g¢7 summation (cf. [17,
Eq. (2.6.2)])

a, Q\/aa —Q\/a, bv C, da a2q1+n/b0da qin .
*"| /&, ~a,aq/b. ag/c, g/ d,bedg " fa, g+ ¢

_ (ag,aq/bc,aq/bd, aq/cd; q)n
(aq/b,aq/c,aq/d, aq/bcd; q)n
as n — o0o0. Jackson’s terminating g¢7; summation itself can be proved by vari-
ous ways. An algorithmic approach uses the ¢-Zeilberger algorithm, see Koorn-
winder [27]. For an inductive proof, see Slater [38, Sec. 3.3.1]. For another elemen-

tary classical proof, see Gasper and Rahman [17, Sec. 2.6].

Concluding this section, we would like to add another thought, kindly initiated
by an anonymous referee of [33]. It is worth comparing our proof with Askey and
Ismail’s [5] elegant (and now classical) proof of Bailey’s g1)g summation. Their
proof uses a method in this context often referred to as “Ismail’s argument” since
Ismail [22] was apparently the first to apply Liouville’s standard analytic continu-
ation argument in the context of bilateral basic hypergeometric series. Askey and
Ismail use Rogers’ g¢5 summation once to evaluate the gis series at an infinite
sequence and then apply analytic continuation. Here, we evaluate the gig series on
a domain, and, for the full theorem, we actually also need analytic continuation.
In fact, we need, in addition to |a?q/bcde| < 1 two other inequalities on a, b, ¢, d, e,
namely |ag/bc| < 1 and |ag/cde| < 1, in order to apply the g¢5 summation theorem.
In the end, these additional conditions can be removed. In particular, both sides
of identity (3.1) are analytic in 1/c around the origin. So far, we have shown the
identity for |1/c| < min(|b/agq|, |de/aq|,|bde/a’q|). By analytic continuation, we

(3.6)
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extend the identity to be valid for |1/c| < |bde/a?q|, the radius of convergence of
the series.

In the following sections, our objective is to find elementary derivations of some of
the classical transformations for bilateral basic hypergeometric series. The method
we will use is very similar to the one used in this section with the difference that
for the bilateral transformations we also utilize bilateral series identities in our
derivations.

4. M. JACKSON’S VERY-WELL-POISED g%)s TRANSFORMATION

M. Jackson’s [24, Eq. (2.2)] transformation formula (cf. [17, Eq. (5.6.2)]) of a
very-well-poised gig series into a sum of two g¢7 series can be stated as follows:

ava,—gqv/a,b,c,d,e, f,g . _a¢
s [\/_ —Va,aq/b,aq/c,aq/d, aq/e,aq/ f,aq/g’ ¢ bcdefg]
_ (g,aq,q/a,c,c/a,bq/d,bq/e,bq/ f,bq/g,aq/bd,aq/be,aq/bf, aq/bg; q)oo
~ (g/b.q/d.q/e.q/f,a/g,aq/b,aq/d,aq/e,aq/f,aq/g,c/b,bc/a, b2q/a7 )0
b%/a, qb/\/a,—qb/\/a,bc/a,bd/a,be/a,bf |a,bg/a
X 8¢7[ ]
)

b/v/a,—b//a,bg/c,bq/d,bg/e,bg/f,bq/g ’bcdefg
+idem(b;c), (4.1)

where the series either terminate, or |a®q?/bedefg| < 1, for convergence. (The
standard symbol “idem(b;c)” is explained in the introduction.)

M. Jackson obtained this gig transformation formula by specializing a general
transformation of Sears [35].

To derive the above gig transformation with our elementary method, we start
with a suitable specialization of Bailey’s [8, Eq. (3.3)] summation formula for a
nonterminating very-well-poised g¢7 series. In our subsequent computations, we
further make use of Bailey’s g1 summation (3.1), and of Bailey’s g¢7 transforma-
tion in (4.6).

For convenience, we state Bailey’s nonterminating very-well-poised g¢7 summa-
tion (cf. [17, Eq. (2.11.7)]):

é [ a, ¢v/a,—qv/a,b,c,de, f 0.4
897\ /a, —/a, aq/b, ag/c,aq/d,aqe,aq/ { T
+ (ag,c,d, e, f,b/a,bg/c,bq/d, bg/e,bq/ f;q) s
(a/b,aq/c,aq/d,aq/e,aq/ f,bc/a,bd/a,be/a,bf [a,b%q/a;q) o
b%/a, gb//a,—qb/\/a,b,bc/a,bd/a,be/a,bf /a
X897\ b/ \/a,~b/+/a, ba/a, ba/c. ba/d,ba /e, ba/f P9
_ (ag,b/a,aq/cd, ag/ce,aq/cf,aq/de,ag/df ,aq/ef; @)oo
~ (ag/c,aq/d,aq/e,aq] f,bc/a,bdfa,be/a,bf [a;q)0s

where a?q = bedef. Let us briefly illustrate some of the depth of this identity.
Clearly, it contains the terminating g¢7 summation (3.6) and nonterminating g¢s;
summation (3.2) as special cases. A probably less known fact is that the b —
1 specialization of (4.2) yields an important theta function identity (namely [7,
Eq. (5.2)]). Of course, it is interesting to know how such a rich identity, as (4.2) is,
can be actually derived. Surprisingly, it can be (not trivially) derived starting from

(4.2)
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a polynomial identity, namely Bailey’s [6] very-well-poised 19¢9 transformation, see
the exposition in Gasper and Rahman [17, Secs. 2.10 and 2.11].

To derive M. Jackson’s gt)g transformation, we perform in (4.2) the simultaneous
substitutions a — abg/cde, b — ag/de, ¢ — ag/ce, d = bg™, and e — bg~™/a, and
obtain

4 abg/cde, g\/abq/cde, —q\/abq/cde, aq/de, aq/ce,bq",bg~ " /a,aq/cd

87T Vabg/cde, —+/abq/cde,bg/c,bq/d, ag* " [cde, a*q*T" [cde,bgfe T
(abg?/cde, aq/ce,bq", bq ™ |a,aq/cd, c/b,cq/d,aq?> ™ /bde,a?q*t™ [bde, cq/e; q) o
(b/c,bq/d,aq?>"/cde, a?q*t™ [cde, bg /e, aq/be, cq™, cq~™ [ a, aq/bd, acq?[bde; q) oo

X sb7 acq/bde, g\/acq/bde, —q\/acq/bde,aq/de,aq/be,cq”,cq_”/a,aq/bd_q g
Vacg/bde, —+/acq/bde, cq/b, cq/d,aq®> " [bde,a?q®> " [bde,cqfe

(abg?/cde,c/b,q' =™ /d,aq T /d, bc/a, a’q? [bede, ¢t~ e, agt T /€3 q) oo
(bg/d,aq* " /cde,a?q**" [cde, bg/e, aq/be, cq™, cq~" [ a, aq/bd; q)

Using some elementary identities for g-shifted factorials we can rewrite this as

(bg/d,aq?/cde,a’q? |cde, bq/e, aq/be, c,c/a,aq/bd; q)so
(abg? /cde, c/b q/d,aq/d,bc/a,a?q? [bede, q/e, aq/e; @)oo
y Z (1 — abg**2% /cde) (abg/cde,aq/de, aq/ce, aq/cd;q)y,
(1 — abg/cde) (g,bq/c,bq/d,bq/e; q)x

" (05 @)t (cde/agq; @) n—r (bcde)k
(a*q*/cde; @) ntr(aq/b; On—r \ aq
(cq/d,aq?/bde,a?q? |bde, cq/e,aq/ce,b,b/a,aq/cd; q) oo
(acq2/bde b/c,q/d,aq/d,bc/a,a?q? [bede, q/e, aq/e; @)oo
y Z (1 — acq'*t2* /bde) (acq/bde,aq/de, aq/be,aq/bd; q)y
(1 — acq/bde) (q,cq/bscq/d,cq/e;q)k

(¢; Q)nk(bde/aq; @)n—k (bcde) k
(a%q?/bde; q)nir(aq/c; @) n—r \ a’q
(b,c,d,e;q)n
- . (4
(@a/b.agjc,aqld aqje D)

Observe that on the left side of this identity the second term equals the first term
where b and ¢ are interchanged. This observation helps us to reduce the amount of
our subsequent computations.

In identity (4.3), we multiply both sides by

(1-ag®™)  (f,9;Dn ( alq? )”
(1—a) (aq/f aq/g;q)n \bcdefg

and sum over all integers n.
On the right side we obtain

" ava,—qv/a,b,c.de, f,g o at¢? ]
898 | \/a, —v/a, aq/b, ag/c,aq/d,aq/e,aq/ f,aq/g’  bedefq )|

On the left side we obtain
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(bg/d, aq?/cde,aq? |cde, bq /e, aq/be, c,c/a,aq/bd;q)so

(abg? /cde, c/b,q/d,aq/d, bc/a, a?q? [bede, q/e, agq/e; q) o

i 1-ag®™)  (f,9:9)n <a3q2 )"
W= (1—a) (ag/f aq/g;q)n \bedefg

y i (1 — abg**2% /cde) (abq/cde,aq/de, aq/ce,aq/cd;q)y,
= (1 —abg/cde) (¢,bq/c,bq/d, bg/e; q)x
(b; Q) nrk(cde/ag; @)n—k (b0d6>k ;
+idem(b;c). (4.4
(a2q*[cde; Q)n+x(aq/b; @n—r \ a*q (bre). - (44)

Next, we interchange summations in (4.4) and obtain, again using some elementary
identities for g-shifted factorials,

(bg/d,aq’/cde,aq? [cde, bg/e, aq/be, ¢, c/a, aq/bd; @)oo
(abq2/cde ¢/b,q/d,aq/d,bc/a,a?q? [bede, q/e, aq/e; @)oo

" Z (1 — abg'*2* /cde) (abq/cde,aq/de,aq/ce,aq/cd,b,bla;q)r
(1- abq/ cde) (q,bq/c,bg/d,bq/e,aq?/cde,a’q? [cde; q)x

o

- (1—ag® (f,9,bq", cdeq ¥ Ja; q)n, atg® \"
(1-a) (ag/f,aq/g,aql"“/b,aQq”’“/cde;q)n bedefg

+ idem(b; ¢).

n=—oo

Now the inner sums can be evaluated by the 1) summation (3.1) and we obtain
(ba/d,aq?/cde, a®q* /cde, bg/e, aq/be, ¢, c/a, ag/bd; 4)s
(aqu/cde c/b,q/d,aq/d,bc/a,a’q? [bede, q/e, aq/e; @)oo
(1 — abg'*2* /cde) (abq/cde,aq/de,aq/ce,aq/cd,b,bla;q)r
x Z
(1 —abg/cde) (q,bq/c,bq/d,bq/e,aq?/cde,a’q? [cde; q)x
y (cuz,aq/fg,aq1 k/bf,a’q* T [cdef, aq' TF [bg, a®q*TF [cdeg, a>g? [bede, ¢, 4/ a; @)oo

(aq/f,aq/g,aq* "% /b,a?q*>* [cde,q/ f,q/9,q* " /b, aq* * [ cde, a’q? /bedef g; q) o
+ idem(b; ¢),

which can be simplified to

(bg/d,bg/e, aq/be,c,c/a,aq/bd; q)o
(abg?/cde,c/b,q/d,aq/d,bc/a, q/e,aq/e; q)oo
.. (a9,a4/fg,aq/bf,a*¢* [cdef, aq/bg, a’q" /cdeg, 4,4/ a; @)oo
(aq/f,aq/g,aq/b,q/f,q/9,q/b,a’q*/bedefg; q) oo
" i (1 — abq**2* /cde) (abq/cde,aq/de,aq/ce,aq/cd,bf |a,bg/a;q)y ag k
= (1—abg/cde) (q,bq/c,bq/d,bg/e,a’q? [cdef,a’q?[cdeg; @)k \ef
+idem(b;c). (4.5)

Now, to the g¢7’s in (4.5) we apply Bailey’s [7, Eq. (4.3)] transformation formula
for a nonterminating g7 series (see [17, Eq. (2.10.1)]):

[ a, ¢v/a,—qv/a,b,c,d, e, f a’q?
597\ /a, —/a,aq/b, aqjc, aq/d, ag)e,aq) P bedef
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_ (ag,aq/ef, M/e, M/ f1 @)oo
(ag/e,aq/f, g M/ef; @)oo
)\7 q\/Xv _q\/xv )‘b/av )\C/G/, )‘d/av e, f . aq

X sfr VA —vV\ aq/b,ag/c,aq/d, \g/e, Mg/ ef ] (4.6)

where A = a?q/bed and max(|ag/ef|,|\g/ef]) < 1. The purpose of our application
of this transformation is to obtain more symmetry. Hence, by (4.6) the expression
in (4.5) is transformed into

(bg/d,bg/e,aq/be,c,c/a,aq/bd, aq, aq/bf,aq/bg, q,q/a,ba/ f,ba/g; @)
(c¢/b,q/d,aq/d,bc/a,q/e,aq/e,aq/f,aq/g,aq/b,q/ f.a/9,4/b,b*q/a; @)
X sdr b%/a, gb//a,—qb/+/a,bc/a, bd/a,be/a,bf/a,bg/a.q a’q?
b/v/a,—b/\/a,bg/c,bq/d,bq/e,bq/f,bg/g " bedefg
+ idem(b; c), (4.7)
which already completes our derivation of M. Jackson'’s very-well-poised gi)g trans-
formation formula.

5. A VERY-WELL-POISED 19%;9p TRANSFORMATION

In this section we derive with our method the following very-well-poised 10110
transformation (cf. [17, Eq. (5.6.3)]):

4.3
¢ Q\/aa_q\/aabacadaeafvgvhay :q aq
10%10 aq aq aq aqg aq aq aq agq PO
\/aa_ a7777777?77777777’ 7de€fghy
q c d bg bg bg bg bg aq aq ag ag aq.
(qvaqaavcaaadaga?aTa?afa?a%vﬁa@aﬁa@v )oo
(4,9,9 9 4 4 09 a9 ag aq ag aq be bd ¢ d b, .
b?e’f’g?h?y’b?eﬂf7g7h7y7a7a7b7b7a? o0

b2 gb _ gb bc bd be bf bg bh by atad

x ¢ a’+a’ Va’a’a’a’a’a’a’a. q
10%9 L_Lb_qb_qb_qb_qb_qb_qb_q’q’bcdefh
2’ Ja'cr'd) e’ fr g h 'y gny

+idem(b; ¢, d), (5.1)

where the series either terminate, or |a*q®/bedefghy| < 1, for convergence. (The
symbol “idem(b;c,d)” is explained in the introduction.)

Gasper and Rahman [17, Sec. 5.6] derive this 10910 transformation formula by
specializing a general transformation of Slater [36].

To derive this transformation formula with our method, we make use of a special
case of Bailey’s nonterminating gs¢7 summation (4.2), namely the key identity (4.3),
and of M. Jackson’s gtbs summation (4.1) which we just derived in the previous
section. In the course of our derivation, we also make use of Jackson’s terminating
gd7 summation (3.6), and of Bailey’s nonterminating g¢7 summation (4.2) in its
general form.

In identity (4.3), we first replace d by f. Then we multiply both sides by

(1 —ag®) (d, 9,1,y @) ( a'q® )"
(1-a) (aq/d,aq/g,aq/h,aq/y;q)n \bcdefghy
and sum over all integers n.
On the right side we obtain

¢ Q\/Ev _q\/av b7 c, dae7fvgvhay . a4q3 :|
10¥10| /6, —\/a, aq/b, aq/c, aq/d, aq/e, aq/ f,aq/ g, aq/h, aq/y’ T bedefghy |
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On the left side we obtain

(bg/ f,aq?[cef,a’q? [cef,bq/e, aq/be,c,c/a,aq/bf; q)oo
(abg?/cef,c/b,q/f,aq/f, bC/a, a?q?[beef, q/e, aq/€; @)oo
Xi (1—ag®™ (d,9,h,y;9) < a'q )”
= (1-a) (aq/d, aq/g,ag/h,aq/y; q)n \bedefghy
o~ (1 — abq'*?* Jcef) (abq/cef,aq/ef,aq/ce,aq/cf; Q)
X
= (1 —abg/cef) (g,bq/c,bq/f,ba/e; q)x
(b; Q) nirlcef/aq; @)n (bcef
(a2q?/cef; )nir(aq/b;@)n—r \ a’q
Next, we interchange summations in (5.2) and obtain
(bq/ f,aq®[cef,a’q? [cef,bq/e, aq/be,c,c/a,aq/bf; q)oo
(abg?/cef,c/b,q/ f,aq/ f,bc/a,aq? [beef,q/e, aq/e; q) o
> i (1 - abq1+2k/cef) (abQ/cefv O/Q/efa U/Q/cea GQ/Cfv b7 b/a’; Q)k: k
& (1—abg/cef) (q,bq/c,bq/f,ba/e,aq®/cef,aq*/cef;q)
‘3 (1—ag®) (bg",d,g,h,y,cefq % /a;q)n at¢® \"
(1—a) (aq'~*/b,aq/d,ag/q,aq/h,aq/y,a®q>** [cef;q)n \bedefghy
+ idem(b; ¢).

k
) +idem(b;c). (5.2)

Now to the inner sums we apply M. Jackson’s gug transformation (4.1) and we
obtain

(bq/ f,aq?[cef,a’q? [cef,bq/e, aq/be, c,cla,aq/bf; q)oo
(abq2/cef, c/b,q/f,aq/f,bc/a,a%q? [beef,q/e,aq/e€; q) oo
y Z (1 —abg* ™% Jcef) (abg/cef,aq/ef,aq/ce,aq/cf,b,b/a; q)x &
(1 —abg/cef) (q,bg/c,bq/f,bq/e,aq?/cef,a?q*[cef;q)x
(¢,aq,q/a,d,d/a,bg'** /g, bg" ** /b, bg't* [y, abg®* 2% [ce f, aq'~* [bg; @) o
(¢*=%/b,q/g9,a/h,q/y,aq***[cef,aq*=*[b,aq/g,aq/h,aq/y, a*¢*** [cef; )0

g “F/bh,aq' " * /by, a%q/bcef; q) oo (1 — b?¢***27 /a) (b2¢** Ja, bdq" |a; q),
Z
(dq_k/b bdg* [a,b?q' %% /a; q)oo (1=0*¢**/a)  (q,b¢"*"/d;q)n

(bgq* /a,bhq" /a, byq’”/a, bcef/a % On ( a'¢® )"
(bg'**/g,bg' T [ h,bg +F [y, abg> T2k [ce f; q)n \ bedefghy
(g,aq,q/a,bq", bq" /a,dq/g,dq/h, dq/y, adg>*** ce f, aq/dg; ) oo
(¢/d,q/g,q/h,a/y,aq* * [cef, aq/d aq/g,aq/h aq/y,a*q*+* [cef;q) oo
(ag/dh,aq/dy,a>¢®>t* [cde f; q) oo Z — d*¢*" /a) (d*/a, dbg" |a; q)n
(bg*/d,bdg" [a,d*q/a; )0 (1—d*/a) (q,dg*~*/b;q)n
y (dg/a,dh/a,dy/a,cdefq‘l"”/a i On ( a'¢® )"
(dg/g,dq/h,dq/y,adg®**[cef;q)n \bedefghy

which can be (slightly) simplified to

+ idem(b; ¢),
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(bg/f,ba/e,aq/be,c,c/a,aq/bf,q,aq,q/a,d,d/a,bq/g,bq/h,bq/y; q)
(c/b,q/f,aq/f,bc/a,q/e,aq/e,q/b,q/g,qa/h,q/y,aq/b,aq/g,aq/h,aq/y; @)

(aq/bg, aq/bh, aq/by; ¢) i (1 — abq't?* Jcef) (abg/cef,aq/ef,aq/ce; @)k
(d/b,bd/a,b*q/a;q)se 4= (1 —abg/cef) (4,bq/c,ba/f; q)x

(ag/cf, bd/a,bg/a,bh/a, by/a; @)x(b*q/a; @)ax (a2q2 )’“
(bg/e,bq/d,bq/g,bq/h,bq/y; Q)r(ab>q?/cef; q)2r \ dghy
i (1 —b*¢***2 [a) (b2¢** /a, bdq" /a, bgq" /a, bhq* [a; )
(1 —0%¢* [a)  (g,bg***/d,bg"**/g,bq* T [h; q)n
(byq"/a,beef [a®q; @) a'¢® \"

(bg'** [y, abg®>+t2* [ce f; q)n (bcdefghy>
(bg/f,ba/e,aq/be,c,c/a,aq/bf,q;aq,q/a;b,b/a,dq/g; @)
(abg?/cef,c/b,q/ f,aq/f,bc/a,aq? [beef,q/e,aq/e,q/d,q/9,q/h,q/Y; @) o
. (da/h,dg/y, adq’ [cef, aq/dg, ag/dh, ag/dy, a’q*/cdef; q)oo

(ag/d,aq/g,aq/h,aq/y,b/d,bd/a,d*q/a;q)
y i (1 — abg' *2* Jcef) (abg/cef,aq/ef,aq/ce,aq/cf,b/d,bd/a; q)y
—=  (L—abg/cef) (q,bq/c,bq/f ba/e,adq?/cef,a’q?cdef;q)y

oo

Z (1 —d%¢*"/a) (d?/a,dbq* a,dg/a,dh]a; q)x,
20— #a) (@ d* /b dg/a dhja; )

X(dy/mcdefq‘l"“/aQ;q)n at¢® \"
(dq/y,adq*** [cef;q)n \bcdefghy

n=0

+idem(b;c). (5.3)

We have in (5.3) a sum of four double sums. Accordingly, for more clarity, let
us write the whole expression in (5.3) as

Ti(b,c) + Ta(b,c) + Ui (b, c) + Ua(b, ¢), (5.4)

where, by definition of “idem”, Ui (b,c) = Ti(c,b) and Us(b,c) = Ta(c,b). Below,
we will selectively perform manipulations with the terms T, T5, Uy, and Us.

To evaluate T7(b,c) (and hence also Uq(b,c)), we first shift the index n of the
inner sum in T} (b, ¢) (or, equivalently, in the first term in (5.3)) by —k and then
interchange the double sum. Symbolically, we apply

n

SN f k)= fn—k,k). (5.5)

k=0 n=0 n=0 k=0

Thus, we obtain (using some elementary identities for ¢-shifted factorials)

Ti(bc) = (bg/f,bg/e, aq/be,c,c/a,aq/bf,q,aq,q/a,d, d/a; q)oo
’ (c/b,q/f,aq/f,bc/a,q/e,aq/e,q/b,a/g,a/,q/y,aq/b; Q)
. (ba/g.ba/h,ba/y, ag/bg, ag/bh,aq/by; ¢)o
(aq/g,aq/h,aq/y,d/b,bd/a,b*q/a; q)c
= (1 —b%¢*"/a) (b*/a,bd/a,bg/a,bh]a,by/a,bcef |a’q; q)n ( a*q® )n
~— (1-0%/a)  (q,bq/d,bq/g,ba/h,ba/y,abq*/cef;q)n \bcdefghy

X
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XZ (1 —abg'™* /cef) (abq/cef,aq/ef,aq/ce,aq/cf,b*q" [a,q ™ @)k
(1 —abg/cef) (q,bq/c,bq/f,bg/e,a?q> " [beef,abg® " [cef;q)r”

Now the inner sum can be evaluated by Jackson’s terminating g ¢7 summation (3.6),
which simplifies the last expression, T (b, ¢), to

(bg/ f,bq/e,aq/be,c,c/a,aq/bf,q,aq,q/a,d,d/a,bq/g,bq/h,bq/y; @)
(c/b,q/ f.aq/f,be/a,q/e,aq]e, q/b a/9,a/h,q/y,aq/b,aq/g,aq/h,aq/y;q)c
(agq/bg, aq/bh,aq/by; q) oo (1 —b2¢>/a) (b*/a,bc/a,bd/a,be/a;q)n
(d/b,bd/a,b%q/a; oo ; —b%/a)  (q,bg/c,bq/d,bg/e;q)n
x (bf/a7bg/a7bh/a7 by/a7§Q)n ( a4q3 )n (5 6)
(bg/f,bq/g,ba/h,ba/y;Q)n \bcdefghy) ~

Next, we consider T5(b,c) and Us(b,c). By interchanging the double sums in
T2(b,¢) and in Us (b, ¢) we obtain

(ba/f,ba/e, aq/be,c,c/a,aq/bf, ¢, aq,q/a; @)
(abg?/cef,c/b,q/ f,aq/ f,bc/a,aq?[beef,q/e,aq/e,q/d; @)oo
.. (b:b/a,da/g,dg/h,dg/y, adg®cef,aq/dg, ag/dh, aq/dy, a’q* |cdef; g)oo
(¢/9,4/h,a/y,aq/d,aq/g,aq/h,aq/y,b/d, bd/a, d*q/a; q)c
y i (1—d*¢*™/a) (d?/a,db/a,dg/a,dh/a,dy/a,cdef |a’q; q)n ( atq® )"
—~ (1-d?/a) (g,dq/b,dg/a,dh/a,dq/y,adq?/cef; q)n bede f ghy

= (1 - abql“‘%/cef) (abQ/Cefa GQ/ef, G/Q/Cea a/q/cfv bq_n/da bdqn/aa Q)k
> (1 —abg/cef) (g,bq/c,bq/f,bq/e,adg®> ™ /cef,a?q®>~™[cdef; q)x
+idem(b;c). (5.7)

Ts(b, ¢) + U (b, ¢) =

k=0

Now, to the inner sum of the first double sum (but not of the second!) in (5.7) we
apply Bailey’s nonterminating g¢7 summation (4.2), i.e., specifically we apply

i (1 — abg' 2% /cef) (abq/cef,aq/ef,aq/ce,aq/cf,bg™"/d, bdg" [a; @)k
= (1—abg/cef) (q,bq/c,bq/f,bq/e,adg’*"/cef,a*q> ™ [cdef;q)x
_ (abq2/cef’ c/bbc/a,dg" "/ f,aq" " |df ,dg" " [e,aq' " /de, a’? [bee f; q) oo
~ (bq/f,ba/e,adg> " /cef,a?q®~" [cdef, aq/be, aq/bf,cq~"/d, cdg™ [a; @)oo
(abg?/cef,aq/ce,aq/cf,bqg ™/d,bdg" [a,c/b,cq] f,cq/e,adq® ™ [bef; @)oo
B (b/c,bq/ f,bq/e, adq2+”/cef a?q? " /cdef,aq/be,aq/bf,cq™/d, cdq™/a; q) o
(¢ [bdef; g)oo Z acq"*?* [bef) (acq/bef,aq/ef,aq/be; q)x
(ach/bef Do = (1 —acq/bef) (a,ca/b,ca/ f;q)x

(aq/bf,cq ™/d,cdq"[a; q)x &
(cq/e,adg®+™ [bef,a2q>~™ [bdef; q)r ~

(5.8)

The result of the application of this (two term) summation is that the first term in
(5.7), T5(b,c), is split into two parts, one single sum T3 (b, ¢) and one double sum
T4 (b, c). Formally, we have

Ty (b, c) + Ua(b, c) = [T5(b,c) + Ty (b, c)] + Us(b, c).
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But T3/ (b, ¢) is precisely —Ux (b, ¢) (as can be readily checked), so two terms cancel,
thus

Ty (b, ¢) + Us(b, ¢) = Th(b,c).

Now, the last expression, T5(b, c), can be simplified to

(c,c/a,q,aq,q/a,b,b/a,dg/g,dq/h,dg/y, aq/dg, aq/dh, aq/dy,dg/ f; q) s
(¢/f,aq/f,q/e,aq/e,q/d,q/9, q/h a/y,aq/d,aq/g,aq/h,aq/y,b/d,bd/a; q)oo
(agq/df,dq/e,aq/de; q) oo (1 —d?¢*"/a) (d?/a,db/a,dc/a,de]a; q),
x =y
(#q/a,c/d,cd[a;q)ec = (1—d?/a)  (g,dg/b,dg/c,dq/e;q)n
(df /a,dg/a,dh/a,dy/a;q)n [ a*q® \"
X . (5.9
(dg/f,dg/a,dh/a,dq/y;q)n \bedefghy
It is easy to see that (5.9) equals (5.6) where b and d are interchanged. Collecting

all terms, according to (5.4), completes our derivation of the very-well-poised 1010
transformation in (5.1).

6. SLATER’S TRANSFORMATIONS FOR BILATERAL WELL-POISED SERIES

In view of the success of our (more or less) elaborate but elementary derivation of
the very-well-poised 1991¢ transformation in the preceding section, we are encour-
aged to go for more. In fact, the same machinery applies, together with induction,
to prove the following general very-well-poised 2,19, transformation formula due
to Slater [36]. For r > 3,

|:q\/a7 _Q\/E7 b37 b47 cee b21‘ arfqu72
2rP2r L

_ aq ag ag 594
\/_7 \/a’b37b4""’b21~ ..bg,,-
q b br _bagq bag aq aq .

_ (q’aq’E’b4""’b7"’74"“’7’b,,+1"“’bg,"m""’m’mw
(L, 9 g ag _ag ag by by bsbs bsbr b3q, )
b37b1‘+17...7b21‘7 37b,“+17"'7b2,‘7b37 7b37 a 7 A | a K a 7qu)

L] By _gby boby babn  babae  gr-lgr2

a’ a’ @’ a ’ a 7777 a
X 27‘¢27‘71 B3 bs bag bag baq 54, b3 b2
\/57 \/Ev ba ? b5 ? ? Doy T

+idem(bs; ba,...,by), (6.1)

where the series either terminate, or |a"~1q"=2/bs...bs;| < 1, for convergence.
(The symbol “idem(bs;bs,...,b,)” is explained in the introduction.)

Slater [36] first obtained this transformation formula (or rather the more general
one in (6.11)) by extending Sears’ [35] general transformation for (unilateral) basic
hypergeometric series. Not much later, she [37] gave a direct proof using a basic
Barnes-type contour integral.

Here, we provide an inductive proof of (6.1) following closely the analysis of our
derivation of the very-well-poised 19910 transformation in Section 5.

The r = 3 case of (6.1) is readily verified using the gi)g and ¢¢s summations in
(3.1) and in (3.2), respectively. We have also shown the r = 4 and r = 5 cases in
Sections 4 and 5. So we can assume that r > 5.

Now suppose that the formula in (6.1) is already shown for any integer ¢ where
3 <t < r. To show the transformation for ¢ = r, we first perform in the key
identity (4.3) the substitutions b — b3, ¢ — by, d > by12, and € — b,.4;. In the
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resulting equation, we multiply both sides by
(]- _aq2n) (b57"'7b7'7b7‘+37"'7b27‘;Q)n (ar—lqr—2>”
(1 _a) (aq/bfn'--7CLQ/bT7aq/br+37---aa(I/b2T;Q)n bz ... by

and sum over all integers n.
On the right side we obtain

,(p q\/a7 _q\/a7 b37 b47 sy b2r . aT_qu_2
e \/57 _\/Ea GQ/b37 G(I/bala L) GQ/bQT 4 b3 PN b27- )

On the left side we obtain

(b3q/br12,aq” /babry1bry2, a*q® /babriabria, b3q/bri1; @)oo
(ab3q?/babry1bri2,bs/b3,q/bri2,aq/bri2; @)oo
(ag/bsbry1,b4,bs/a,aq/bsbri2;q) o
(b3bs/a,a?q? /b3babyy1brin,q/bry1,0q/brs1;9) 00
y i (1 —ag®) (b, ...y bpybrysy ...y b2r; Q) <aT_1qT_2>"
(1—a) (ag/bs,...,aq/br,aq/brys,...,aq/bar;q)n \ b3 ...b2y

Z (1 — absq"** /bsbyy1byy2) (absq/babry1brya, aq/bri1bry2,aq/babry1; @k
(1 — absq/babr41bry2) (g,b3q/b4,b3q/br12; @)k

(aq/bsbr12; @)k (b3; @) ntk (babry1bryo/ag; @) n—r <b3b4br+1br+2 ) k
(b3q/bry1; @)k (a2q? /babri1bri2; @) nyr(agq/bs; @Q)n—r a’q
+ idem(b3; by). (6.2)

n=—oo

k=0

Next, we interchange summations in (6.2) and obtain

(b3q/bry2,aq> /babri1bri2,aq® /babry1bria, b3¢/bri1; @)oo
(ab3q?/babry1bry2,bs/b3,q/bry2,aq/bri2; @)oo
(agq/bsbr41,b4,b4/a, aq/bsbri25¢) oo
(bgbs/a,a?q? [bgbabry1bry2,q/bry1,aq9/bri1; Q)0
9 i (1 — ab3q' 2 [byb, 4 1br12) (ab3q/babri1bryo, aq/bri1bry2,aq/babri1; @)k

= (1 — ab3q/babry1bri2) (q,b3q/ba, b3q/bry2; Q)
(aq/bsbry2,bs3,b3/a; q)x 7
(b3q/br+1,aG% [babry1bri2,a2q? [babri1bryo; )k
i (l_aqzn) (b3qk7b57"'7bT7b7‘+37"'7b27‘;q)n
= (1—a) (ag' */bs,aq/bs,...,aq/br,aq/bris,- .., aq/bar;@)n

(babri1bri2q % /a5 )y <a’"_1qT—2
(a2q2+k/b4br+1br+2§ q)n b3 ce bQT

Now, to the inner sums we apply the inductive hypothesis (i.e., the r — r — 1 case
of (6.1)), and we obtain

)n + idem(b3; b4) (63)

(b3q/bry2,aq? /babry1brin, a* ¢ [babri1bry2,b3¢/bry1; @)oo
(ab3q? /bab,1bry2,b4/b3,q/bry2,aq/bri2; @)oo
(aq/bsbri1,b4,b4/a, aq/bsbri25q) s
(bsba/a,a?q? [b3babri1bria, ¢/bry1,aq/bri1; @)oo
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x i (1 — absq™* /baby1bry2) (absq/babry1brya, aq/briabryz,aq/babry1; @k
= (1 —absq/bsbry1bry2) (4,b3q/b4,b3q/br125 @)
(CLQ/b4br+27 b37 b3/a’; Q)k k

(b3q/bri1,aq?/bsbyy1brya,a?q? [babri1bryo; @)k 1
(q7a7Q/a7b57' "7b7‘7b5/a7' "7bT/a;q)oo
(ql_k/b37 q/bT+37 DR q/b2T7 aq2+k/b4b7'+lbr+2; Q)oo
(bsq" % /bris, .. b3q tF [bar, ab3® 2K [babr 103 @) o
(aqlik/b37 GQ/bT-‘,-Sa ey GQ/b2r7 a2q2+k/b4b7'+1br+2; Q)oo
(agt =% /bsb,y3,...,aq * [bsba,, a?q? /b3bab,y1br42; q) oo
(b5q_k/b37 ey b’l‘q_k/bf}a b3b5qk/aa ey b3quk/a/7 b§q1+2k/a; Q)OO
i (1 B b§q2k+2n/a) (b§q2k/aa b3b5qk/a7 sy b3bqu/a; q)n
2 T a) (g Beg b Bsd i)
(bsbrysg®/a,. .., bsbarq" [a, bsbabry1brya/a®q;q)n (arquz ) "
(bag % /byys, ..., bag T* /bar, absq® 2% [bsbr1bry2;q)n \ D3 .. D2y
(q7 a, Q/a7 b3qk7 b67 ey b’r7 bqu/a’ bﬁ/a7 sy bT/a; q)oo
(q/b5,q/brys, .-, q/bar,aq?T* [bsbry1bry2; )0
(54 /bris, - - -, b5q/bar, abs@® " [babri1bry2; @)oo
(agq/bs,aq/brys, ... ,aq/ber,a?q>+* [bsbry1brio; @)oo
x (GQ/b5br+3a ey aq/b5b2ra a2q2+k/b4b5br+1 br+2; q)oo
(b3g® /b5, b6 /bs, ..., by /bs, b3bsq" /a,bsbe/a, . .., bsby Ja,b2q/a; q)oo
i (1 - bngn/a) (bg/% b3b5qk/a7 b5b6/aa IERE b5bT/a’; q)n
— (1-b3/a) (a,b5¢" /b3, b5q/bs, ..., b5q/br;Q)n
(bsbrys/a, ..., bsbar/a, babsbyp1briag™ 7% /a?; q)n (GT_IQT_2 ) "
(b5q/bry3, ..., bsq/bar, absq®t* [bsbry1bri2;q)n  \ b3...ba2r

+ idem(bs; bg, - - - bT)> + idem(bs; bs),

which can be simplified to

(b3q/bry2,b3q/bry1,aq/b3bry1,ba,bs/a, aq/bsbri2,q,a,q/a,bs,... b q)c0
(ba/b3,q/br12,aq/bri2,b3ba/a,q/bry1,aq/bry1,q/b3,q/brys, - - - q/b2r; @)oo
y (bs/a,...,br/a,b3q/brys, ..., b3q/b2r, aq/b3brys, . .., aq/bsbar; @)oo

(aq/bs,aq/brys,...,aq/bar,bs/bs, ..., b /b3, b3bs/a,. .., bsb./a,b2q/a;q)co

x i (1 — absq™™*2* /bab,y1b,y2) (absq/babry1bry2, aq/byi1bry2,aq/babry1; @)k
— (1 - absq/bsbrs1bri2) (4,b3/b4,b3q/bry2; @)k
(aq/b4br+2, b3b5/a, ey bgbr/a, b3br+3/a, ey bgbgr/a; Q)kz
(b3q/bry1,b3q/bs, ..., b3q/br,b3q/bry3,...,b3q/bar; Q)
(b3q/a; @) ( a" 3¢ 3 )k
(ab3q2/b4bT+1bT+2; q)gk b5 e brbr_,_g e bQT
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y Z —b3g® 2 [a) (b2g** [a, bsbsgF [a, . .., b3brgF Ja; q)n
(1—-b3¢%*/a)  (q,bsq'**/bs, .. -7b3q1+k/b7"§(I)n
(b3br+3q /a, ..., b3ba,q" Ja,bsbsb,i1b,42/a2q; q)n (arqu2 ) "
(bag % /byys, ..., bag T* /bar, absq® 2% [bsbri1bry2; @)n \ D3 .. Doy
(b3q/bry2,b3q/brs1,aq/b3brq1,bs,bs/a,aq/bsbry2,q,a,q/a;q)
(ab3q?/babry1bry2,ba/bs,q/bry2,aq/bri2,b3bs/a, a?q? [b3babri1bri2; @)oo
(b3,b6, ceey br,bg/a, b6/a, . ,bT/a, b5q/bT+3, . ,b5q/b2T;q)oo
(Q/br+1aGQ/br+1,Q/b5,Q/br+37---7Q/b2r,GQ/b57GQ/br+3,---7GQ/b2r;Q)oo
(absq? /babri1bryo, aq/bsbrys, ..., aq/bsbar, a®¢ [babsbryi1bri2; @)oo
(bg/bg,,b@/bs,. . b /b5,b3b5/a, b5b6/a,.. .,b5br/a7 bgq/a; Q)oo
x i (1 — ab3q" 2" /babry1bry2) (absq/babriibrya; aq/briibria, aq/bsbryi; @)k
= (1 —absq/bsbri1bryi2) (q,b3q/ba, b3q/bry2; Q)
(aq/bab,y2,bs3/bs, bsbs/a; q) &
" (03q/r 11, absq® [babys1brr2, G2G2 [babsbyr1brra; @)r L
( 3q/ r41,a05¢ / 40r 410742, 0°¢ / 4050741 T+27Q)k
y i (1 —b2g*/a) (b2/a,bsbsq" /a,bsbs/a, ..., bsb,/a;q)n
— (1=0b8/a) (q,b5q"*/b3,b5q/bs, - .-, b50/br; D
(bsbrys/a, ..., bsbar/a, babsbyp1briag™ 7% /a?; q)n (GT_IQT_2)H
(b5q/bry3, ..., bsq/bar, absq®t* [bsbry1bri2;q)n  \ b3 ... D2y

+ idem(bs; bg, - - - ,br)> + idem(bs; by). (6.4)

We have in (6.4) a sum of 2(r — 3) double sums. Accordingly, for more clarity,
let us write the whole expression in (6.4) as

T1(b3,bs) + To(b3,bs) + - - - + Tr_3(b3, ba)
+U1(b3,b4) +U2(b3,b4) +"'+Ur_3(b3,b4), (65)

where, by deﬁnition of “idem”, U;(bs,by) = T;(bs,b3) for i = 1,...,r — 3. Fur-
ther, Ez 9 (bg,b4) = Tg(b37b4) + idem(b5;b6,..., T) (and ZT_ U; (b37b4) =
Us(bs, by) + idem(bs; bg, . .., b,.)). Below, we will selectively perform manipulations
with the respective terms T; and U; (i =1,...,r — 3).

To evaluate Ti(bs,bs) (and hence also Uy(bs,bs)), we first shift the index n
of the inner sum in T7(bs,bs) (or, equivalently, in the first term in (6.4)) by —k
and then interchange the double sum. Symbolically, we apply the interchange of
summations as in (5.5). Thus, we obtain (using some elementary identities for
g-shifted factorials)

(qaavq/a7b47"'7bT7b4/aa---7br/a;q)oo
(q/b3,q/brs1,---,q/bar,aq/b3,aq/bry1, . .., aq/bar; @)oo
(b3Q/b7‘+17 DR} b3q/b2T7 G/Q/b3b7“+17 DR} GQ/b3b27«; Q)OO
(b4/b37-- b /b37b3b4/a ., b3b, /a7b§Q/a§ @)oo

(1 —b2¢®"/a) (b2/a,bsbs/a,. .., bsb./a;q)n
X Z 5
1 _b3/a (Q7b3Q/b57"'7b3q/bT;q)n

Ty (b3, bs) =
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(bsbrys/a, ..., bsbay/a,bsbab,y1bri2/aq; q)n (arlqrz ) "
(b3q/brys, ..., b3q/bar, absq?/bsbri1bri2;q)n \ b3... by
x i (1 — absq"+?* [babyy1byy2) (absq/babryabri2, aq/briibrya, ag/babryi; @)k
(1 — ab3q/bsbry1br12) (¢,b3q/bs, bsq/br12; @)k
y (aq/babri2,b3q" /a,q™; Q) "
(b3q/bri1,a2q> =™ [bsbabyy1brg2, absq®t™ [bsbry1brg2; @)k

Now the inner sum can be evaluated by Jackson’s terminating g¢7 summation in
(3.6), which simplifies the last expression, T} (b3, bs), to

k=0

(g,a,q/a,ba, ... beybsfa, ... brla;q)eo
(q/b3,q/bry1,- - - ,q/b2r, aq/b3,aq/byy1, - .., aq/b2r5q) o
(b3q/bry1, - -, b3q/bar,aq/bsb,y1, .., aq/bzbar; @)oo
(ba/bs, ..., by /b3, b3bs/a, ..., bsb,/a,b3q/a; q)oo
$ OB e i bymah (402 g
~ (1 —b2/a)  (q,b3q/ba,-..,b3q/bor;q)n bs...boy

Next, we consider Ty(b3,bs) and Ua(bs,bs). By interchanging the double sums
in T2 (b37 b4) and in U2 (b3, b4) we obtain

T5(b3,bs) + Ua(bs, ba)
_ (bSQ/br+27 bsiI/br+17 GQ/bsbr+17 by, b4/a, GQ/bsbr+27 q,a, q/a; Q)oo
(ab3q?/babry1bry2,bs/bs3,q/bri2,aq/bri2,b3bs/a, a?q? [b3bsbry1bri2;q)oo
% (b3,b6, .. .,br,bg/a,b@-/a, e ,br/a,b5q/br+3, e ,b5q/b2T;q)oo
(q/br41,0q/br11,q/b5,q/bry3, - - -, q/b2r,aq/bs,aq/brys, - - . ,aq/b2r; @) o
(absq? /babri1bryo, aq/bsbrys, ..., aq/bsbar, a?q? [babsbryi1bri2; q) o
(b3/bs,b6/bs, - .., by /b5, b3bs/a,bsbs/a, . .., bsby/a, biq/a; q) o
i": (1 —b2¢*/a) (b3 /a,bsbs/a,bsbs/a, . .., bsbr/a;q)n
—= (1-b/a)  (q,b5q/b3,b5q/bs, ..., b5q/br;q)n
(bsbris/a, ..., bsbar/a,babsbyi1b,42/a%q; q)n (aquTQ > "
(b5q/brys, - .., b5q/bar, absq? /babr41bri25q)n \ b3 ... b2y
y i (1 — ab3q 2 Jbyb,1br42) (ab3q/babri1bri2,aq/bri1bri2,aq/babri1; @)k
(1 — absq/bsbry1bry2) (g,b3q/b4,b3q/br12; Q)
(agq/babry2,bsq™" /b5, b3bsq™/a; Q) &
(b3q/bry1,absq?*+ ™ /babry1bryo,a?q> =™ /babsbry1bryo; @)k
+ idem(b3; by). (6.7)

k=0

X

Now, to the inner sum of the first double sum (but not of the second!) in (6.7) we
apply Bailey’s nonterminating g¢7 summation (4.2), i.e., specifically we apply

i (1 — ab3q'*?* [byb, 4 1br12) (ab3q/babri1bry2, aq/bri1bry2; @)k

(1 — ab3q/babr41br42)) (q,b3q/bs, b3q/bri2; @)k
(aq/babry1,aq/bsbri2,b3q ™ /bs,b3bsq™ /a; q) k

(b3q/bry1,absq?t™ /babri1brya, a2q?2™/babsbri1bryo; @)k

k=0
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(ab3q? /babri1bry2,bs/bs, bsbs/a, bsg* ™ [by2;q)
(b3q/bry2,b3q/bry1,absq®>T™ [babry1bryo, a?q? =™ /babsbri1bri2; @)oo
y (aq' ™ /bsbry2,bsq"t™ /bry1,aq" ™ [bsbry1, a?q? [bsbabry1bry2; @)oo
(aq/b3bri1,aq/b3bria, bag™™/bs, babsq™ /a5 q) o
(ab3q” /babry1bry2,aq/babry1, aq/bsbrya, b3q™" /bs, bsbsq™ /a; @)oo
(b3/bg,b3q/bry2,b3q/bri1,absq?T™ [bybri1byy2,a2q% =" [babsbyy1bri2; @)oo
y (ba /b3, baq/bry2,b1q/brs1, absg® " Jbsbri1byyo, a?q* ™ [b3bsbry1bria; @)oo
(aq/b3bry1,aq/bsbri2,baq™™ /b5, babsq™ [ a, absq? [b3bry1bry2;q)co

i (1 — abag'*?* [b3b, 1 1b,42) (abaq/bsbyy1brio, aq/bry1bria; @
P (1 — absq/b3byy1br12) (g, b4q/b3; q)

(aq/bsbr1,aq/bsbri2,b4q™" /bs, babsq" /a; @)k & (68)
(b4q/bry2,b4q/bry1,absg? T [b3bry1bry2,a2q? "™ /b3bsbri1bry2; @)k
The result of the application of this (two term) summation is that the first term
in (6.7), T2(bs, bas), is split into two parts, one single sum T3 (b3, bs) and one double
sum T4/ (b3, bs). Formally, we have
Tg(b3, b4) =+ Ug(b3, b4) = [Tzl(b;;, b4) + TQH(b3, b4)] —+ UQ(b3, b4)

But Ty (bs,by) is precisely —Us,(bs,bs) (as can be readily checked), so two terms
cancel, thus

T5(b3, bs) + Ua (b3, bs) = T5(bs, bs).

Now, the last expression, T5(bs, bs), can be simplified to

(¢,a,q/a,bs,bs,bg,...,b.,bs/a,bsja,bg/a,...,b.[a;q¢)c0
(4/b5,q/br41, - - ., q/b2r,aq/bs,aq/br41, - - ., aq/bar, b3 /b5, ba/bs; @) o
(b5q/bry1,- -, b5q/bar,aq/bsbyy1, ..., aq/bsb2r; @) o
(b6 /bs, - .-, by /b5, b3bs/a, bsbs/a, bsbs/a, ..., bsb,[a,b2q/a; q)

oo

o3 U /a) (1) bobs fa babs [ )
(1—b2/a)  (q.b5q/b3, b5q/bs;q)n
(b5b6/a,,..,b5bzr/a;q)n <a7‘—1q7-_2)n (6 9)
(b5q/b6""’b5q/b2r§Q)n bz ...boy ) )

It is easy to see that (6.9) equals (6.6) where b3 and b5 are interchanged. Collecting
all terms, according to (6.5), completes our derivation of the very-well-poised 2,12,
transformation formula in (6.1).

n=0

We conclude this section considering Slater’s well-poised 5,12, transformation
in its general form.

If, in (6.1), we set ba,—1 = —ba, = v/a, and then let r = r + 2, and relabel
b; — b;_a, we obtain the following transformation formula for a well-poised 2,12,
series:

bl,bg,...,bgr . aTqT
202y ag ag ﬂaqv_ﬁ
b1 b2’ " bay 1---U2r
q b br biq big ag ag .
_ (q’a’E’b27""br’72""’77br+1""’E’b1b7~+1""’b1b2,«7’q)°°
(L, 4 g ag _ag ag by br biba bib. bia. )
b17br+17"‘7b27_7bl7b7‘+17"'7b21‘7b17"'7b17 a 9 a b a?qOO
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(b1_q _bqu Vag _ \ag

. 2
s =5 @)oo bl biby biba  bibay arq’

a’ .
2r@or—1| @y o 7Y e g
(% —FVa—Vage l he g e by ... bay
+ ldefn(bl7 b27 ceey b’r‘)7 (610)

e

X

where the series either terminate, or [a"g" /b1 ... ba,| < 1, for convergence. On the
other hand, we can derive (6.1) from (6.10) by choosing b1 = —ba, = ¢4/a and
relabelling of the parameters b; — b;12. Thus, the transformations (6.1) and (6.10)
are equivalent.

Slater [36], in fact, derived the more general transformation

T AT
b17b27"'7b27‘ ) a q
2021 [ ag ag ﬂvqa_ib b
b1 b2 " " bon 1...09p
q q g a2 ar Qg aq.
_(aaEvaf?a--'aaﬂgv"'va_Ta?w"ajaaa"'757Q)oo
- (i 4 a9 a9 a2 ar 219 a1q. )
by " 0 bor b1 V7 bor a1’ a1 ag 0 a117q00
(g aiq _ag 99 oy oy veg _ vag,
y by 7" "7 boy ' @1b1? " a1ba,y’ o' va' a1’ a; 4]
2
a1a2 a10r aq ag % ag g _ g — .
( a 7 a77a1427"'7a1a7~’ o a2 Va’ aa\/aa \/57(])00
ai1b1 aibs a1boy a'rq'r
’ AR . . .
X 2rar %1 dig a1§ 7q7_b b +1dem(a17a27~'-7ar)a (611)
b1 ? ba 7" bop 1---927r

where the series either terminate, or |a"q" /b ...ba,| < 1, for convergence.

It is easy to see, that the transformation in (6.11) which involves only bilateral
series is much more general than the transformation in (6.10) since in (6.11) we
have r additional parameters as,...,a,. The special case a; = b;, i = 1,...,r, of
(6.11) is exactly (6.10).

We were able to prove the transformation in (6.10) (which is equivalent to (6.1))
by induction. We started from less complicated identities and ultimatively deduced
more complex ones involving more parameters. The natural question arises whether
we can also prove the more general transformation (6.11) by elementary means.
Unfortunately, we were not able to derive (6.11) directly by the method of this
article. Instead, we want to point out that the transformation we derived, (6.10),
can be extended to (6.11) by an r-fold application of “Ismail’s [22] argument” (which
is actually a classical analytic continuation argument). We provide a sketch of how
this works.

Tt is easy to see that both sides of (6.11) are analytic in each bl’l, by bt
in a domain around the origin. We know that the identity is true when b; = a;,
for i = 1,...,r. What needs to be done is to extend (6.10) first by an additional
parameter by, then by bs, etc. This means that if we have already extended (6.10)
by b1,...,b;, what we should have derived is the identity in (6.11) where b; = as,
fori = j+1,...,r. So, we proceed by induction starting with 5 = 0 (identity
(6.10)) and ending with j = r (identity (6.11)). In the inductive step, we consider
the transformation (6.11) where b; = a;, for i = j +1,...,r. We call that identity
E;i1. We need to show that E;;, is true, provided E; is true, which is (6.11)
where b; = a;, for ¢ = j,...,r. We observe that both sides of E;,; are analytic
in 1/b; around the origin. The identity is true for b; = a;j¢~", n; = 0,1,2,....
This follows by the a; — a;q~™ case of the inductive hypothesis, E;. (This can
be verified by looking at all the terms involving j. Further note that the index of
the j-th sum is shifted by —nj;, since the j-th bilateral series becomes a unilateral
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series.) Since Ej; is true for an infinite sequence of 1/b; which has an accumulation
point, namely 0, in the interior of the domain D of analyticity of 1/b;, we can apply
the identity theorem to deduce that E;i; is true for 1/b; throughout D. Now, by
induction, (6.11) follows, with the general additional parameters by, ..., b;.

7. SLATER'S GENERAL BILATERAL TRANSFORMATIONS

Here we consider series which are not necessarily well-poised. An important
transformation for general ¢, series was given by Slater [36]. Her formula in its
general form, see (7.16), connects r+1 bilateral .1, series. However, the special case
of the transformation where only one of the series is bilateral and the r other series
are all unilateral (,¢,_; series) itself is interesting, as it includes many important
identities for (bilateral) basic hypergeometric series as special cases. This formula
reads as follows:

ai,az,...,0a0r
rr 4,2
bi,ba,. .. by
b br q . a a a
_ (q7a27"'7a‘r7ala"'7a;7alz7alz7q)00 ¢ L ﬁ,%,..., bqu'q b1-~~bT
q a2 Ar q. r¥Yr— a1 a1 s Uy
(avaw"7i7b17"-7b7‘7z7;aq)00 az """ anr a...arz

+idem(as;as,...,a,), (7.1)

where the series either terminate, or |by ...by/a1 ... ar| < |2| < 1, for convergence.
(The symbol “idem(ay;as,...,a,)” is explained in the introduction.)

We are able to give an elementary inductive proof of this general transformation
formula. We proceed by similar means as in the previous sections where Slater’s
general transformation for well-poised bilateral 5,12, series was derived. For de-
riving the transformation in (7.1) we make use of other identities. In particular,
where we were before using identities for very-well-poised g¢7 series, here we instead
utilize identities for balanced 3¢- series.

The r = 1 case of (7.1) is readily verifed using the 141 and 1¢¢ summations
in (7.2) and in (7.3), respectively. Ramanujan’s [20] 1¢; summation (cf. [17,
Eq. (5.2.1)]) reads

a | _ (ab/a,az,q/azq)e
1¢1 4,2 = )

b (b,q/a,2,b/az;q)oo
where the series either terminates, or |b/a| < |z| < 1, for convergence. The summa-
tion in (7.2) is a bilateral extension of the g-binomial theorem (cf. [17, Sec. 1.3]),

a . _ (az§ Q)oo
1¢0 |:_7Q7z:| (Z,C])oo ) (73)
where the series either terminates, or |z| < 1, for convergence. The summation
in (7.3) was first discovered by Cauchy [10]. Clearly, (7.2) reduces to (7.3) when
b = q. The first elementary proof of the 171 summation formula (7.2) was given by
M. Jackson (as pointed out to us by George Andrews [3]). Jackson’s proof essentially
derives the ;9; summation from the ¢-Gaufl summation, by manipulation of series.
In [33] we reviewed Jackson’s proof and extended it to a method to provide new
elementary proofs of Dougall’s [14] 2 H, summation and Bailey’s [7] very-well-poised
6W¥s summation, respectively.
Now let us establish the r = 2 case of (7.1).

(7.2)
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Here, and later we make use of a special case of the identity in (4.3). Namely
set b — az, ¢ — aq/ba, d — a1, and e — ag/by in (4.3), and then let a — co. We
obtain

(biba/az,bafar, az,b1/a15q) 00 o= (b1/az,b2/a2; @)k (015 Q)nrr

(az/ay,by,biby/ara2,b2; @)oo £ (¢, 010/a2; @)k (brb2/a2; ) rk
; (a1,a2;@)n
+idem(as;as) = —7———. (74
(a1;02) (b1,02;9)n 74

Alternatively, we could also have invoked the non-terminating g-Pfaff-Saalschiitz
summation theorem (cf. [17, Eq. (11.24)]),

sba [a b,c ] N (q/e,a,b,c, fq/e;9) o p ag/e,bq/e,cqfe.
ef’ (e/a,aq/e,bq/e,cafe, fi @)oo g*/e fafe 1
— (q/evf/avf/bvf/CQQ)OO (75)
(GQ/evbQ/ech/67f§Q)oo’ .
where ef = abcq. If we simultaneously replace a, b, ¢, and e in (7.5) by by /as,
ba/az, a1q™, and a;q/as, respectively, we obtain after some manipulations (7.4).

For the r = 2 case of (7.1), we multiply both sides of (7.4) by 2™ and sum over
all integers n. On the right side we obtain

ai, a2
21/J2[ by D7 ]

On the left side we obtain

(biba/az,ba/ar,az,b1/a1;9) oo Z i b1/a2,b2/a27 Or(01;Dntk g
(a2/ay,b1,biba/araz, ba; q) (g,a1q/a2; @)k (b1b2/az; @) nik

(b1b2/a27b2/a17a27b1/a1;q)oo o~ (bi/a,ba/az,a1;q)k 4
(az/a1,b1,b1b2/a1a2752;Q)oo (qaa1Q/a2,b1bz/a2;Q)k

+ idem(as;az) =

(a1¢"; Q) . .
X Z (Brbag Jan; O ———"=" 2" 4+ idem(aq; az).

n=—oo
Now we can evaluate the inner sums by the 1¢; summation (7.2). This yields

(b1b2/a2,b2/a1,a2,b1/a1§(1)oo = (bl/a2ab2/a27a1§‘1)k k
(az/ar,by,b1bz/ara2,b2; @)oo £ (¢, 019/ a2, b1ba/az; )k

(q,b1bz/araz,a12¢",¢" " Ja12; @)oo
(bibag/as, ¢*=* Jay, z,b1ba/ar1a22; ¢) o

+ idem(as; az),

which can be simplified to

(bg/al,GQ,bl/al,q,alz,Q/alz;q)oo — (bl/a27b2/a2;q)k (g)h
(az/a1,b1,bs,q/a1, 2, biba/a1a22; Qoo =4 (g,a1q/a2; )k \2z

+idem(a;as). (7.6)
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Now, to the 3¢1’s in (7.6) we apply Heine’s [21] g-Euler transformation (see [17,
Eq. (1.4.3)]):

(7.7)

2b [a,b;q’z] _ (abz/c; q)oo 261 [c/a,c/b_ a_bz] 7

¢ (2390 o

c c
where max(|z|, |abz/c|) < 1. Hence, by (7.7) the expression in (7.6) is transformed
into

(ba/a1,a2,b1/a1,q,a12,q/a12;q) p [G1Q/b1,a1Q/b2.q bibs
2¥1 -

;1 q, + idem(ay; as),
(az/a1,b1,b2,q/a1,2,4/ % @)oo aiq/az a1a22:| (a1;.02)

(7.8)

which is exactly the right side of the r = 2 case of (7.1).
Now suppose that the formula in (7.1) is already shown for any integer ¢ where
1 <t < r. To show the transformation for ¢ = r, we multiply both sides of (7.4) by

(@3, 161 Qn
(b37-"7b7‘;q)n

and sum over all integers n.
On the right side we obtain

ai,az,...,ar
Tlprl:bl’bz’ . b 74, % :|

On the left side we obtain

(blb2/a2,b2/a1,a2,b1/a17 i a3, ~7ar’ )nzn
(a2/a17b17b1b2/a1a27b27 b37 .- ,q)n

@ + idem(as;az)

y i ((bl/a2ab2/a2§q)k(a1§Q)n+k

“ (¢, a1q/a2; @)k (b1b2/az; @)y
:(b1b2/a27b2/a17a27b1/a1;q)oo = (b1/az,b2/az,a1;q)r
(a2/a1,b1,biba/arasz, b2;¢)co pard (q,a1q/az, biba/az;q)y

k
alq , a3, .. a’r;q)n n .
X E 2" +idem(a;; as).

blb2q’”/a2,bza b @n (a1;02)

Now to the inner sums we apply the inductive hypothesis (i.e., the r — r — 1 case
of (7.1)), and we obtain for the last expression

(bibo/as, ba/ar, as,b1/a1;q)o0 = (b1/az,bo/az,a1;q)x &
(az/ay,by,bibz/araz,b2; @)oo £= (¢, 019/ a2, b1ba/az; )k

(¢*=*%Jar,asq7* /a1, ..., arq% /a1, bibag" Jas, bs, ..., by, 2,4/ %5 9) 0

y i (a1a2q/biba, a1t [bs, ... a1¢*T* /brsq)n ( bi...by )n
(¢,a14" " Jag, ..., 014" % Jar; q)n ai...ar%

(q7 alqk7a47 e 7a’r7b1b2qk/a2a37b3/a37 “ee ,br/ag,a3z,q/a3,z; q)oo
(C_I/a3, alqk/a3a a4/a37 e 7a’r/a37 bleqk/a27 b37 ey bTazaq/z;q)oo

l(%a& ooy, biby/aag, bsqfk/ah .- -7brqik/alaalzqkaqlik/alzﬁ ?) oo

n=0
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o

y Z (a2a3q1_k/b1b2,a3q/b3,...,agq/br;q)n ( by...by )n

(q7a3qlfk/a17a3(Z/a4a---7GBQ/GT§Q)n ai...arz

n=0

+ idem(as; aq, - - -, aﬂ) + idem(ay; a2),

which can be simplified to

(b2/al7a27bl/al7q7 as, ... 7a‘T7b3/a17 .- '7b’r'/a17alz7 Q/G1Z7Q)oo
(az/a1,b1,b2,q/ar,a3/ay, ..., ar/a1,bs, ..., by, 2,4/2;q)c0

o0

% Z (bl/ag,bg/ag,alq/b3,...,alq/bT;q)k (bg...brq>k

= (g, a19/az,a1q/as, ... ,a1q/ar; k. \as...ar2
o0

% Z (a1a2Q/b1b2aa1q1+k/b3a'"aa1q1+k/b7‘;CI)n < by...by >n
(g, 014" /as, ..., a1¢'1* Jar; q)n ai...a;z

n=0

(b2/ar,a2,b1/a1,q,a1,a4,...,ar,b1ba/azas, bs/as, ... ,by/as,a3z,q/a32;q)co
(a2/a1,b1,biba/araz, b2, q/as, a1 /as, as/as, ... ,ar/as,bs, ..., by, 2,4/%;q) 0

o0

% Z ((b1/a2,bz/a27a1/a3§51)k qk

¢,a1q/az,biba/asas; q)k

k=0

y i (asasq' % /bi1ba, as3q/bs,...,a3q/by;q)n ( bi...by )n
(g,a3¢' "% /a1, a3q/as,...,a3q/ar;@)n \a1...a;%

n=0

+ idem(as; aq, - . ., aT)> +idem(as;az2). (7.9)

We have in (7.9) a sum of 2(r — 1) double sums. Accordingly, for more clarity,
let us write the whole expression in (7.9) as

Ti(a1,a2) + To(a1,a2) + - -- + Tr—1(a1, az)
+ Ui(a1,a2) + Ua(ar,a2) + - -+ + Ur_1(a1, a2), (7.10)

where, by definition of “idem”, U;(a1,a2) = T;(az,ay1) for i = 1,...,7 — 1. Fur-
ther, Y07, Ti(a1,a2) = Ta(ar,a2) + idem(az;au, .. .,a,) (and Y72} Ui(ar,a2) =
Us(ay,as) +idem(as; aq, .. ., a,)). Below, we will selectively perform manipulations
with the respective terms T; and U; (i =1,...,7 —1).

To evaluate Ti(a1,az2) (and hence also Ui(ai,a2)), we first shift the index n
of the inner sum in Ti(a1,az2) (or, equivalently, in the first term in (7.9)) by —k
and then interchange the double sum. Symbolically, we apply the interchange of
summations as in (5.5). Thus, we obtain (using some elementary identities for
g-shifted factorials)

(g,az,...,ar,b1/a1,...,by /a1, a12,q/a1%;¢) o
(g/ar,az2/ar, ... ar/a1,b1,...,br,2,4/2¢) 00

o0

5 Z (ayazq/biba,a1q/bs, . .., a1q/br;q)x < by...b, >"

(g,a1q/as,...,a1q/ar;q)n ai...azz

Ti(a1,a2) =

n=0
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n

bi/as,ba/as, g™ ™;
XZ( (b1/az2,b2/as2,q Qs qk.

¢, a1q/az,bibag™" [ara2;q)

k=0
Now the inner sum can be evaluated by the terminating ¢-Pfaff—Saalschiitz sum-
mation (cf. [17, Eq. (IL.12)]),
a,b,g " (c/a,c/b;q)n
7 ;4,9 = —————, 7.11
302 [07 abqkn/c q Q] (c, c/ab; q)n ( )
which simplifies the last expression, T1 (a1, as), to
(q,a2,...,ar,b1/ay,...,by/ar,a12,q/a12;9) oo
(¢/ar,a2/ay,...,ar/a1,b1,...,br,2,4/2;q)c0

y Z (alq/bl,alq/bQ,...,GIQ/br;Q)n ( b1~~~br ) ) (712)

(q,alq/a27...7a1q/ar;q)n ai...arz

n=0
Next, we consider T>(a1,a2) and Us(a1, az2). By interchanging the double sums
in Ty(a1,a2) and in Usz(a1, az) we obtain
Ty (a1,az) + Uz(a1, az)
_ (b2/ay,az,b1/a1,q,a1,a4,...,a.,b1bz/azas, bz/as, ... ,b,/as,a3z,q/a3z;q)co
(az/a1,b1,bib2/aras, ba,q/as,a1/as,as/as,. .. ar/as, bz, ..., br, 2,4/2; @)oo
y f: (agazq/biby, azq/bs, . - .,a3q/br;@)n < by...by )n

(g,a3q/a1,a3q/aq,...,a3q/ar;q)n \a1...ar2

n=0
oo

(b1/ag,ba/az,arq " Jas; x4 | .
% +idem(aq;az). (7.13

k=0
Now, to the inner sum of the first double sum (but not of the second!) in (7.13) we
apply the nonterminating 3¢» summation in (7.5), i.e., specifically we apply

o0

Z (b1/az,b2/az,a1q7"/as; q)x ¢
(

¢, a1q/az,bibaq™ " [azasz; @)k

k=0
_ (az/a1,bag7" /a3, big™" /a3, biba/a1az2; q)
 (bi/ar,ba/as, azg="/as, bibag™" [asas; q) oo
(az/ay,by/az,baf/az,a1q”™/az,bibaqg ™ [a1a3; q)o
(a1/az,bi/a1,b2/ar,azq=™ /a3, bibaq="/a2a3; q) oo

o0

(bi/a1,b2/a1,a2q " /as; @)k 4
X E . (7.14
(q,azq/al,blbzq—”/alaaq)kq (7.14)

k=0
The result of the application of this (two term) summation is that the first term in
(7.13), Tx(a1, az), is split into two parts, one single sum T4(aq, a2) and one double
sum T4/ (aq, a2). Formally, we have
Ty(a1,a2) + Us(ay, az) = [Ty(a1, az) + Ty (a1, a2)] + Uz(ay, az).

But T4/ (a1, az2) is precisely —Us(a1,az2) (as can be readily checked), so two terms
cancel, thus

Ty(a1,a2) + Uz(ay, a2) = Ty(az, az).
Now, the last expression, Tj(az,az), can be simplified to
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(q7a17a27a47 .- -7aT7b1/a37 .. '7b7'/a37a327 q/a3z;Q)oo

(q/as,a1/as,az/as,as/as, ... ,ar/as,bi,...,br,2,4/%; )0
o0

y Z : (azq/b1,a3q/ba, . .., a3q/br;q)n ( bi-..by )n (7.15)

= (¢,a3q/a1,a3q/az, asq/as, - . ., asq/ar; Q)n \ a1 ... arz

It is easy to see that (7.15) equals (7.12) where a1 and a3 are interchanged. Collect-
ing all terms, according to (7.10), completes our derivation of Slater’s 1, transfor-
mation formula in (7.1).

We conclude this section considering Slater’s ,1), transformation in its general
form:

a1,02,-..,0r
rwr 14,2
bi,ba,. .. by
c1 c1 q q big brq q .
(a,...,a—T,CQ,...,CT,a,...,c—r, PR 611 ,ACIZ, Aclz’q)oo
- q q c1 c1 C2q crg 1.
(a_lv"'aa_raa’"'ac_ra cp 0t élvblv"‘vb’l‘vAzan7q)oo

M . e M
X 1y [&’ ok 5 2| +idem(cis ey, .. ep), (7.16)
L
where A = a; ...ar/c1 . .. ¢, and the series either terminate, or |by ... by/a1 ... ar| <
|z| < 1, for convergence.

The transformation in (7.16) which involves only bilateral series is much more
general than the transformation in (7.1) since in (7.16) we have r additional param-
eters ¢y, ...,c.. It is not difficult to see that the special case ¢; = a;q, i =1,...,r,
of (7.16) is exactly (7.1). However, for some purposes we rather consider a trans-
formation equivalent to (7.16), see (7.17), below.

The natural question arises whether we can also prove the more general trans-
formation (7.16), which involves only bilateral series, by elementary means. Unfor-
tunately, we were not able to derive (7.16) directly by the method of this article.
Instead, we can extend (7.1) to (7.16) by an r-fold application of Ismail’s argument.
This works similar as in Section 6 where we described how the transformation in
(6.10) for well-poised 2,92, series can be extended to the transformation in (6.11).
We provide a sketch of how Ismail’s argument is applied here.

First, let us transform the identity in (7.16) to an equivalent identity by replacing
z by z/A, shifting the summation indices by one, and reversing the infinite sums
on the right hand side. Specifically, we apply

i (2L 2l e (cl...cTz)k
szoo(cl—l,...,bc"lq;q)k ai...ar
R U e R L s (Cl...crz)_l_k
_h:—oo (bcl—q,...,bcr—lq;q)_l_,§ ai...a,
=)= b by (%7-‘-76;?;q)k<b1‘..b,)’“
(l_c_i)-- (1—;—i ClL...Crz £~ %7 7C;1q’qk ai...ayz

to the ,1,.’s on the right hand side of (7.16). Hence, (7.16) becomes

w al,az,...7ar_q Cl...Cp2
r¥r sy T —
bl,bQ,...,br ’al...ar
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cig c1q q ¢ b by q .
_(a17"'7a,\7627""CT’a""’c_,"a""’é’clz7clz’Q)Oo
- q q c19 c1q c2 Cr q.
(a""’a_,—’ o 7T CT757"'7évblv"'abT7z7;7q)oo
19 14 bl b
B B L A/ . .
X rYPr cllq c1g v 49> +1dem(017027---7c7‘)7 (717)
PRI Cl...Cpr2

where the series either terminate, or |by ...b./a; ...a,| < |z| < 1, for convergence.

In (7.17), Slater’s general 1, transformation is written in a more convenient
form for us since here we immediately see that the special case ¢; = a;, i =1,...,r,
of (7.17) is exactly (7.1). In the following, we closely follow the final analysis of
Section 6.

It is easy to see that both sides of (7.17) are analytic in each al_l7 a:,_l7 cenant
in a domain around the origin. We know that the identity is true when a; = ¢;,
for i = 1,...,r. What needs to be done is to extend (7.1) first by an additional
parameter ap, then by as, etc. This means that if we have already extended (7.1)
by ai1,...,a;, what we should have derived is the identity in (7.17) where a; = ¢;,
fori = j+1,...,7. So, we proceed by induction starting with 5 = 0 (identity
(7.1)) and ending with j = r (identity (7.17)). In the inductive step, we consider
the transformation (7.17) where a; = ¢;, for i = j + 1,...,r. We call that identity
E;{1. We need to show that E;;4 is true, provided E; is true, which is (7.17)
where a; = ¢;, for ¢ = j,...,r. We observe that both sides of E;;; are analytic
in 1/a; around the origin. The identity is true for a; = c;q~ ™, n; = 0,1,2,....
This follows by the ¢; — c;qg~™ case of the inductive hypothesis, E;. (This can be
verified by looking at all the terms involving j. Further note that the index of the j-
th sum is shifted by —n;, since the j-th bilateral series becomes a unilateral series.)
Since E;41 is true for an infinite sequence of 1/a; which has an accumulation point,
namely 0, in the interior of the domain D of analyticity of 1/a;, we can apply the
identity theorem to deduce that Ej;;q is true for 1/a; throughout D. Now, by
induction, (7.17) follows, with the general additional parameters ay, ..., a,.

8. TRANSFORMATIONS OF ¢-IPD TYPE

Following the terminology in [34], we say that a basic hypergeometric series is
of g-IPD type if there are s upper parameters ag,...,as and s lower parameters
b1,...,bs such that each a; differs from b; multiplicatively by a nonnegative inte-
gral power of g, i.e. a; = b;q™*, m; > 0. The terminology “IPD” in “¢-IPD type”
stands for “Integral Parameter Differences” and is motivated by the title of Karls-
son’s [28] article. Originally, Minton [30] and Karlsson [28] had discovered some
corresponding summation formulae for ordinary hypergeometric series (where there
are s upper parameters ag, ..., as and s lower parameters by, ..., bs such that each
a; differs from b; additively by a nonnegative integer, i.e. a; = b; + m;, m; > 0).

Gasper [15, Eq. (19)], found g-analogues of Karlsson and Minton’s summations
and also extended these to transformation formulae. In [16, Eq. (5.13)], he also
found a summation formula for a particular very-well-poised basic hypergeometric
series of ¢-IPD type. All of Gasper’s identities of ¢-IPD type were subseqgently
generalized by Chu [11],[12] to bilateral series.

Using here, and in the following, the notation {z, } for the s basic hypergeometric
parameters z1,...,z, (v =1,...,s), and also |m| = }_7_, my, for brevity, Chu’s [11,
Eq. (15)] transformation formula for a specific o4 5924 s series of ¢-IPD type can be
stated as follows:
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a,b, {hug™} . ¢V ~ (g,bg/a,c/b,d/b; q oo 1T (hi/b; Qm,
24524 ¢, d,{h,} b T =" (q/a,q/b,c,d;q) H his @) m;

bg/c,bg/d,{bg/h,} ¢ qN 'm‘ !
X 245P14s [bq/a, {bql_m”/hy} 4, b B (8'1)

where N is an arbitrary integer, and where the series either terminate, or |g/a| <
|V | < |bg™*! /ed|, for convergence.

On the other hand, Chu’s [12, Theorem 2] summation formula for a specific
very-well-poised g1 2596425 series of ¢-IPD type is

aq 14+m, 1_|m‘
aa,—qv/ab,¢,d, G, {h,}, {*5—} . aq
6+25V6+25 aqg aq a —mo 0 4

" \/67 \/—7 bq7 Cq7 dq7dq7{hy} {hl/q V} be

_ (4,4,04,9/a,aq/bd, ag/cd, dg/b,dq/c; 9o ﬁ (ag/dhi, dg/hi; @)m,
(aq/b,aq/c,aq/d,dq/a,q/b,q/c,q/d,dq; @)oo ;-1 (aq/hira/hi; Dm;

(8.2)

provided the series either terminates, or |ag'~I™! /bc| < 1, for convergence.

Chu established both of these formulae by means of partial fraction expansions.
Haglund [19, pp. 415-416] noticed that the transformation in (8.1) can be obtained
by specializing Slater’s general transformation (7.16) for ,4, series. It is also true
that the summation in (8.2) can be derived by specializing Slater’s transformation
(6.11) for well-poised 212, series.

Rather then specializing Slater’s transformations, in the spirit of this article
we give elementary derivations of ¢-IPD type identities. We show here that both
of Slater’s general transformation formulae, (7.16) and (6.11), can be extended by
induction to transformations of g-IPD type, see Propositions 8.1 and 8.4 below. The
simple analysis involves interchanging of sums, and the expansion of certain factors
in terms of the g-binomial theorem (8.5) or ¢-Pfaff-Saalschiitz summation (7.11),
respectively. Finally, we state some interesting special cases (in addition to (8.1)
and (8.2)) of the general ¢-IPD type transformations explicitly, see Corollaries 8.2,
8.3 and 8.6.

Proposition 8.1 (A general , ¢, ¢-IPD type transformation). Let ay,...,a,,
bi,...,br, C1,...,Cr, h1,...,hs, and z be indeterminate, let my,...,ms be non-
negative integers, let A = ay...az[c1...cp, Im| = Y 7_; m;, and suppose that the
series in (8.3) are well-defined. Then

hiq.
sl [ala-- aarv{huqm”} q,z ]_ﬁ(aq’q)mi
retree| Ve b ghy 0% T g
% (;_1""70, 7027-"767'7% '-7%71)61_1(17"'7 c1 Aclz7Aclz7q)
(%7---7%7%7 . 7;170621(17"'7%7[)17 -abraAZQ7A_Z7Q)OO
mg g {h q“”""}
Xty |y WKy 3,z | +Hidem(erse, .. er), (8.3)
IR et bl

where the series either terminate, or |by ...b,q~1™ Jay...a,] < |2| < 1.

Proof. We proceed by induction on s. For s = 0 the transformation is true by
Slater’s general transformation (7.16). So, suppose the identity is already shown
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for s = s — 1. Then,

ai,-..,0ar, {huqm,,}
’I‘+S¢T+S|: bl,-- br,{h } 34, 2 :|

[e%s) sfl
_ Z (at,. .., ar7qu zq 7(11» k(hsq QO
e (b1,..,b i1 (hs; @)k

1 S (al, veey Apg q k 7/q i q k k
B hsq" . (84
(hs; @)m., k; (b1,... 1;[ (hi; )k (hsq"; Q) m,- (8-4)

Now we expand the last ¢-shifted factorial by the terminating ¢-binomial theorem
(cf. [17, Eq. (11.4)]),

160 [q_ ;q,z] = (247" @Qns (8.5)
which is just the a +— ¢~ ™ case of (7.3). That is, we apply
= (€™59)5 0 kg
(hsd®; Q. =Y 2 (hag™t™)
= (©9);
and obtain for the expression in (8.4)
(o) S*l ms —-m .
]. Z (0/17-.-70/7‘7 q)k H Z(q g;q)] (h qk-‘,—mg)J
(hs; Qm, L (b1se b @)k o) = (@9
1 7m.;.
= sq )
(hs; @)m., Z% J
ala . am )k (hiqmi§Q)k ik
X z2q¢’) . (8.6
,Ew G g L (g G0 89

Note that j is bounded by mys, thus the interchange of summations in (8.6) is
justified (provided |by...byq~™/a;...a,| < |2| < 1). Now we can apply the
inductive hypothesis to the inner sum which gives us

1 @59 5 77 (hig/e1;Qm, (e1/ar, - e1/ar @)oo
hs M s %
(hs;Q)m.qj;O (¢:9); (hea™) g (his@m:  (@/a1,---,0/ar; @)oo

(c2,---y¢ryqfea,y ... q/crbrgfer, ... brg/cr, Acrzg? ¢t 7 JAc129) o
(01/027---701/07702(]/017---aCTQ/Clabla oy bpy AzqM I, g7 [ A2 )0

(a1q/ct, - - arq/er; Qr Tp (hig* ™ Jer; q) ik
X 4
Z bl(I/Cl,... Tq/cl q H h q/Cl, ( 1 )

+idem(cl;cz,...,cr).
In this expression, we again interchange summations, and obtain
(c1/a1,...,c1/ar, oy yCryq/eay ... qfcr big/ca, ... brq/cr, Aciz,q/AC12; @)oo
(Q/ala" '7q/a7‘701/c27‘ .. 7cl/cTacQQ/Cla" -7Cr(1/017b17-- '7bT7AZq71/Az;Q)

1 T (hg/er;dme = (argfes,- - arg/e; Qe Tp (g t™ Jer; )
(hs;Q)msH (his Q) m, Zoo(blq/ch---,brq/cl;q)k1.1;[1 (hig/c1; @x 4

X

=1 k=—
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Ms —my. ) h 1+k+mg J
X Z (g 9; < o4 ) +idem(cy; ez, .., Cp).
7=0

(¢:9); c1
We simplify the inner sums, according to (8.5),

mg

() [ hag TR :
Z(q Q)J( q ) :(hqu_k/Clﬂl)ms’

=0 (¢:9); C1

and eventually deduce the proposition. O

If, in Proposition 8.1, we set r = 2, a1 — a, as — b, by — ¢, by — d, ¢c1 —
e, and 2z — eq " /ab, then the second term on the right side of (8.3) vanishes.
Furthermore, the parameter ca cancels out in the first term on the right side. We
obtain

Corollary 8.2. Let a, b, ¢, d, e, and hy,...,hs be indeterminate, let N be an
arbitrary integer, mq,...,mg be nonnegative integers, and suppose that the series
in (8.7) are well-defined. Then

po [0 Ahoa™ Y e MY (e (efae/b,cafe,dajesq)os
24s¥2+s C,d,{h,,} » 4, ab (q/a,q/b,c,d;q)(x,

q
" 7 (hig/e; )m, resths [aQ/equ/e,{huqu”/e}.q eq
(hi; Qm; 72 cqfe dgfe,{hug/e} T ab |

i=1

(8.7)

where the series either terminate, or |e/ab| < |¢V| < |eq!™!/cd|, for convergence.

For e = d the 54 4124 s on the right side of (8.7) reduces to a 54 @145 series. This
gives a transformation for a 54 492y into a (multiple of a) 2, ;01 s series which is
different from Chu’s transformation in (8.1).

We can also reverse the o 502y s series on the right side of (8.7). We obtain

a,b, {hug™} eqN] _ ()N (e/a,e/b,cq/e, da/e; @)oo

2+S¢2+S [ e, d’ {hl/} y 4, ab 5 (q/a, q/b, c, d7 q)oo

T (hig/e; @) efc,e/d,{e/h,} cdg"~Im!
o el e SR B
where the series either terminate, or |e/ab] < |¢"| < |eq/™!/cd|, for convergence.
We immediately see that the special case e = bg of (8.8) is exactly Chu’s transfor-
mation (8.1).

Another noteworthy specialization of Proposition 8.1 is simply the r = 1 case,
rewritten in the following corollary:

Corollary 8.3. Let a, b, ¢, z, and hy,...,hs be indeterminate, let mq,...,mgs be
nonnegative integers, and suppose that the series in (8.9) are well-defined. Then

[t ] _ (labajeazafazige
teritsl b {h} T (g/a,b,azq/c,claz; q)oo

s (hzq/c7 q)ml GQ/C, {hyq1+m,, /C} .
X H " hiy Oms 14+5¥14s bg/c,{hg/cy | (8.9)

=1

where the series either terminate, or |bg~I™ /a| < |2| < 1, for convergence.
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We can set ¢ = b or ¢ = aq in (8.9) to reduce the ;459145 series on the right
side to a 14505 series if we want. If we first let ¢ — b, and then b — ag in (8.9),
the series on the right side of (8.9) reduces to 1 and we would obtain the following
summation:

a,{h,q™} ] (4,9, a2,9/a2;@)00 1 (hi€/5q)m,
s B 4,2 = , 8.10
et [ ag, {h} 4 (ag,4/a,2,4/2 Q)0 =7 (hi;@)m, (810

where the series either terminates, or |¢'~/™|| < |2| < 1, for convergence. Now, in
the beginning of this article we assumed |g| < 1. It follows from the convergence
condition (|¢*~I™!| < 1) above that |m| needs to be either 0 (thus there are no
parameters h; and we are left with a plain 141), or that the series terminates, and
in our case, this would mean that the series reduces just to one term. On the
other hand, we may consider |g| > 1 for a nonempty region of convergence. In this
case the convergence condition for the bilateral series on the left side of (8.10) is
1 < |z] < |¢*='™!|. But unfortunately, our derivation of the identity is not valid
in this case. Clearly, if |¢| > 1, we could not have used induction because the
inductive basis would already have been false. In total, (8.10) does not give a new
summation.

Nevertheless, we can still specialize Corollary 8.3 to a summation by choosing
¢ — b, and then b — ag'™ where n is a small positive integer. In this case,
the series on the right side of (8.9) has only a finite number of terms and can be
summed explicitly. For instance, (when s = n =m = 1) we have

a,hg ] (1=h/aq) — (1 =h/a)z/q (4% q,a2,q9/a2;q)

iq,z| = . (8.11
2¢2[a‘12vh h* (1-h) (q/a,aq?,2/q,4%/ % @) (8.11)

provided |g| < |2| < 1. For z = —h/a the right side of (8.11) factors (completely
into linear factors), and we have

2¢2[a, hg _ﬁ] _(Q=nr*/aq)  (¢*.¢,—h,=q/M5 D)oo
aq27h7 ' (1 - h) (Q/aaaqzv_h/aqv _aq2/h;q)oo’
provided |¢| < |h/a] < 1.

Let us now consider transformations of ¢-IPD type for well-poised basic series.
We have

(8.12)

Proposition 8.4 (A well-poised o,p2st2,42s ¢-IPD type transformation). Let a,
A1y ---y0p, b1y b, and hy, ..., hs be indeterminate, let mq, ..., ms be nonnega-
tive integers, |m| = Y_7_, m;, and suppose that the series in (8.13) are well-defined.
Then

14+my,

b, bop, {R} {2} _aTg ™
2r+2s¢2r+2s[ﬂ . ag %}7{huq*mu}’q’ bi...boy

b1 " boy?
q q q a2 ar ag aq ai1q a1q.
(a7E7a27--~aarvEw--aa_rajv'“a?’aaa“'aa_r? b17""b2r’q)°°
- (i q agq aq a2z ar Q19q a1q aiaz a1a1~.q)
b17"'7b2r7b17"'7b27‘7a17"‘7a17a27"'7 a?" a yr a b oo
( aq ag a1 _ a1 Vag _ Vag, ) s (alq aq . )
a1b1?” " " a1b2r? a'  ya' a1’ a1 ?4/0 hi ’a1h,-7q mi

X

I

2 ag 9q .
agq ag 91 ag g q . Q) m,;
(alagv---vala,‘v a’ a2 Va’ \/57\/57 V@5 Q) oo i=1 (hi7hi7q) i

b by h Tty -
s 2w2 ) mal7""ma21’{alau}7{a1qh,, } a’rqr |m|
r+2s r4+2s hyq~ v y Yy
O N T

a
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+idem(as;az,...,a;), (8.13)
where the series either terminate, or |aTqT*|m|/b1 .. bar| < 1, for convergence.

Proof. We proceed by induction on s. For s = 0 the transformation is true by
Slater’s transformation (6.11) for well-poised series. So, suppose the identity is
already shown for s — s — 1. Then,

14+m,
b17 -y bap, {h Hh{*%—} arq ™l
2T+2s¢2r+2s aq Yo g ——————
bl ”7b2¢ } {th u} bl-..er

i (b, -+ bar; @)k H ¢ (hisag ™t ™ [his q)x (_aTqT‘(mlJr"'*m‘))k
(ag/b1, ... aq/ba; Qn -5 (aq/his hig= ™5 q)k bi...bor

y (hs,aq'*™ [hs; @)k _ (borq/hs,aq/barhs; @)m.
(GQ/hm hsq M3 q)k (GQ/hsa q/hs§ Q)ms

q)
i (b1,...,bar; Q) 31:[1 (hiyag*™™™i /hi; q) (_arqr(m1+---+m5_1))
m(“q/bla-‘-vaq/b% (aq/hi, hiq=™i; Q) by...bar

k

k=— i=1

1+k 1—k .
><(aq [hs,q /th)ms‘ (8.14)

(b2rq/h57 aq/bQThs; q)ms
Now we expand the last quotient of ¢-shifted factorials by the terminating g-Pfaff—
Saalschiitz summation (7.11) and obtain for the expression in (8.14)

(b2TQ/h57 GQ/b2rhs; Q)mq f: (b17 -y baps Q)k 51:[1 (hi7 aq1+mi/hi; q)k
(ag/hs,q/hs; Dm. = _(aq/by, ..., aq/bar; @k -5 (aq/hi; hiqg=™ 5 @)k

k mg — -m
y (_ arqr—(m1+...+ms_1)) Z (bzrq k/a7 b2qu7 q s;q)j qj
bi...boy o (q, b2’rq/hsa barhsq—ms /a; q)j

_ (b2rq/h57 GQ/bZThS; q)mq i (b2r/a7 b27‘7 q_ms > q)j qj
(aq/hs,q/hs; Dm. =5 (@, b2rq/hs, barhsq™™ [a; q);
b17 sy b21‘—17 bQTqJ; Q)k
X -
kz (ag/bi,...,aq/bzr—1,aq" 7 [bar; @)k
s—1 k

x H (hi, ag"™™™ /i q) (_ aTqT<m1+“'+ms—1)j) e
i— aq/hza hzq mZ;Q) bi...boy

1
Note that j is bounded by m, thus the interchange of summations in (8.15) is justi-
fied (provided |a"q"~I™! /by .. .ba,| < 1). Now we can apply the inductive hypothesis
to the inner sum which gives us

(b2TQ/hsa GQ/bQThs; Q)ms < (b2r/a7 bor, g™ Q)j
2 (

(GQ/hs, q/hs; q)ms ) ¢

= (¢, 0200/ hs, barhsq~™ [a;q);
% (aaq/aaa'?v'"7aT7q/a27'--aq/a’T;q)00
(q/bla ceey Q/b2r—17 ql_]/b27‘a aq/bh ey GQ/b2r—17 aql_j/bZ'r; q)oo
y (az/a,...,ar/a,aq/az,...,aq/ar,a1q/b,...,a1q/bar—1,a1¢* 7 [bar; @) o
(az/a1,...,ar/ai,a1q/as,...,a1q/ar, a1az2/a,...,a16,/0;q¢)co
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o (ag/aibi,...,aq/arbsr—1,aq =7 /a1bar, a1 /v/a, —a1 /\/a,/ag/ar, —v/aq/a1; @)oo

(aq/a1a27--‘7aq/a1a’r7a%/avaq/a%7q/\/_a_q/\/aa\/_a_\/a;q)oo
1:[ (a1q/hi,ag/arhi; @)m, i (aibi/a,...,a1ba,—1/a,a1barg’ Ja; @)k
i—1 (ag/hi, a/hi; @)m, h——oo (a1q/b1, ..., a1q/bar—1,a1¢" 7 [bar; @),
k
) +idem(as; az, ..., ar).

8§

xﬁ (arhifa, a1 ™ [hi; )i (_aTqT—(m1+---+ms-1)—j
1 (aq/hi;arhig=™ [a; )k bi...ba

In this expression, we again interchange summations, and obtain

(b2rq/hs,aq/b2rhs; Q)m, (a,q/a,a2,...,a;,q/az,...,q/ar;9)
(aq/hs,q/hs; Qm.  (a/b1,---,q/b2r,aq/b, ..., aq/bor; @)oo
(az/a,...,ar/a,aq/as, ... ,aq/ar,a1q/by,...,a1q/b2r; @)oo
(az/a1,...,ar/a1,a1q/as,...,a1q/ar,a1a2/a,...,a10,/0;q¢)co
(aq/aiby,. .., aq/aibs,,a1/v/a,—a1/v/a,\/aq/ar, —v/aq/a1;q) o
X
(aq/alag, .. ‘7aq/a1a’r7a%/avaq/a%7 Q/\/_a _q/\/aa \/_a _\/a; q)oo

s—1

(a1g/hi, aq/arhi; Qm;, <~ (a1di/a, ..., a1bar/a; q)x
X
il:[l (aq/hi, q/hi; @)ms k;m (a1q/by, - .., a1q/bar; @)k

H (a1hi/a, ar1q**™ [hi; @) (_arqr‘(m1+"'+ms—1)>’”‘
—1 alQ/hzaalhzq m’/a,Q) by...bo,

y Z (barq % /a1, a1b2r¢% Ja, g ™ 5 q);

I +idem(asi;as, ..., ar).
(¢, b2rq/hs, barhsg—™ [a;q) ; 1 (a0, )

Jj=0

We simplify the last inner sum, according to (7.11),

% (borg* /a1, a1b2,¢" /0,71 0); 5 (a10"*/hs, ag'F farhs; @)m,
= (4,020a/hs, borhsq ™ [ a3 q); (barq/hs, aq/borhs; Qm,

and eventually deduce the proposition.

It is worth noting the case a; = by = —ay = —by = ¢v/a of Proposition 8.4

where the series are specialized to be very-well-poised. Then the first two terms
on the right side of (8.13) vanish and we end up with the following (r — 1)-term
transformation:

Proposition 8.5 (A very-well-poised 2,4 25%2r 25 ¢-IPD type transformation). Let
Q, az,---,0r, bg,... by, and h1,. .., hs be indeterminate, let my, ..., ms be nonneg-
ative integers, |m| = >_i_, m;, and suppose that the series in (8.16) are well-defined.
Then

1+my,

o [ b g
\/__\/_’ b3 "7b2, {Zq} {huq_m"} bs...bo,

q q g a4 ar g aq.
(a7a,a47 O/T,a “"a_,"77'"7777H7""a_’q)°°
(L ag 04 ar 239 asq. q)
b3’ “7521’1)3 T 7bar’a3’ "7 a3 aa’" 77 ar )
(as a3q _aq aq q s a3q _aq q)
X "'7b2r’a3b3 "7a3b27—’ II h 7a3h’ ms4
a3a4 asa aq aq a3q aq . i
( @ 2 a Yagas’’t azar’ a ’_2_7 Joo i=1 h"h"q)m’
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qas gas aabs azbay aszhy asqtt™v 1 pr_9_
X 901 Va' Va) a 0t a17{ a }7{ o } a" = q" [m|
¥ a3 a3 asq a3q 834} fashyg™™y T pypy,
Va’ a?' bz 707 bo ' L, I a

+ idem(as;aq,...,a.), (8.16)
where the series either terminate, or |a"~'q"~2='™I /by ... by, | < 1, for convergence.

Finally, let us conclude this section stating an important special case of Propo-
sition 8.5 explicitly. We take r = 3, a3 — f, b3 — b, by — ¢, bs — d, bg — e, and
obtain:

Corollary 8.6. Let a b, ¢, d, e, f, h1,...,hs be indeterminate, let my,...,ms
be nonnegative integers, |m| = >_:_, m;, and suppose that the series in (8.17) are
well-defined. Then

" q/a, —q\/c_z,b,c7d7€,{hu}a{aqlh+mu} . M
| e a5, e e ey (hgmey T bede

e d e

(a, 4,49 1a fa fq aq ag aq aq..) = s ([2 89..)
_ a’ b ¢ d°? e’bf’cf’df’ef’ oo h/i7fhi7q ms
- .

> hi?

9 ¢ 4 ¢ ag aq aqg agq f2q W].q agq q

(b7c7d7e’b’c’d’e’a’f2’) i—l(i )z
af af bf cof df ef fh fq1 mv 2 1—
%7_%’77777777{71/}7{—” _a’q [m|

______ (8.17)

Va' Va’b’crd’e

where the series either terminate, or |a?q*~ ™! /bede| < 1, for convergence.

x6+25¢6+25 —my >4, )
bi [ fg fqa fg fq7{£_3}7{fh$} bede

The special case f — d, e = a/d of (8.17) is Chu’s summation in (8.2).

For multidimensional extensions of Equation (8.8), Corollaries 8.2, 8.3 and 8.6,
see [34], where transformations of ¢-IPD type are derived for multiple basic hyper-
geometric series associated to the root system A,_;.
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