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Abstract. Recently, J. A. Tirao [Proc. Nat. Acad. Sci. 100 (14) (2003), 8138–8141]
considered a matrix-valued analogue of the 2F1 Gauß hypergeometric function and
showed that it is the unique solution of a matrix-valued hypergeometric equation
analytic at z = 0 with value I, the identity matrix, at z = 0. We give an indepen-
dent proof of Tirao’s result, extended to the more general setting of hypergeometric
functions over an abstract unital Banach algebra. We provide a similar (but more
complicated-looking) result for a second type of noncommutative 2F1 Gauß hyper-
geometric function. We further give q-analogues for both types of noncommutative
hypergeometric equations.

1. Introduction

Hypergeometric series with noncommutative parameters and argument, in the
special case involving square matrices, have been the subject of recent study, see
e.g. [3, 6, 7, 13, 14, 15, 24, 25, 29]. (For the classical theory of (basic) hypergeo-
metric series, cf. [2, 11, 26].) In particular, Tirao [29] considered a specific type of
matrix-valued hypergeometric function 2F1, and showed, among other results, that it
satisfies a matrix-valued differential equation of the second order (a “matrix-valued
hypergeometric equation”), and conversely that any solution of the latter is a matrix-
valued hypergeometric function of the considered type. This result was reformulated
by one of the present authors [25] in the more general setting of hypergeometric func-
tions with parameters and argument over an unital Banach algebra R. Specifically, in
[24, 25] two related types of noncommutative hypergeometric and Q-hypergeometric
series were studied, “type I” and “type II”, from the view-point of explicit summa-
tion theorems they satisfy. In the terminology of [24, 25], Tirao’s extension of the
Gauß hypergeometric function belongs to type I. As a matter of fact, the explicit
form of the noncommutative hypergeometric equation satisfied by the type II Gauß
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hypergeometric function has so far not been determined. (A priori, it is not clear
that the type II hypergeometric equation would be of second order or even have a
reasonable compact form.) Nor has any of the corresponding noncommutative basic
(or Q-)hypergeometric equations been determined. In this paper we give an inde-
pendent derivation of Tirao’s result for the type I Gauß hypergeometric function and
succeed in providing an analogous (however, more complicated-looking) result for the
type II case. We further give Q-analogues of the above results, hereby establishing
the explicit forms of the type I and type II noncommutative basic hypergeometric
equations. (In the basic type II case we just state the result which is not very elegant
and omit the proof.)

To eliminate possible misconception, we would like to stress that the series con-
sidered in this paper, as they involve noncommuting parameters and argument, are
much more general than the series of (sole) matrix argument as considered e.g. by
Gross and Richards [12]. In particular, since in the latter series all parameters (be-
ing scalars) commute, the specific issue of noncommutativity does not arise, and the
hypergeometric equation is just the usual one.

We point out that certain first order ordinary differential operators applied to the
Gauß hypergeometric function have been successfully used in order to study repre-
sentations of quadratic R-matrix algebras appearing in quantum inverse scattering
method, see [20], while the study of q-hypergeometric functions (and difference equa-
tions for them) have been recently used to study representation theory of Lie algebras,
quantum affine algebras, quantum groups, Yangians and quantum Yang–Baxter equa-
tions, see [10, 16, 27, 28, 30, 31]. We refer to [4, 21] for surveys on R-matrices and
Yangians, and to [8, 9] for comprehensive references on dynamical Yang–Baxter equa-
tions and quantum theory. Our results may cast new light and give a better insight on
the investigation of certain twisted versions of Yangians related to the representation
theory of infinite dimensional Lie algebras, see [22], and apt to spring further inspec-
tion upon quantum conformal field theory using infinite dimensional noncommutative
geometry, see [17, 32, 33].

We refer to [5, 23, 34], and [1, 18, 19], for comprehensive references on Banach
algebras, and on differential equations in Banach spaces, respectively.

In the following section, we collect some definitions and notations, taken almost
verbatim from [24, 25]. These are needed in Sections 3 and 4 for the study of the
type I and type II noncommutative (basic) hypergeometric equations.

2. Preliminaries

Let R be a unital Banach algebra, i.e., an associative ring (over some field K)
with a multiplicative identity element, together with some norm ‖ · ‖ such that R
is norm-complete. Throughout this paper, the elements of R will be denoted by
capital letters A,B,C, . . .. In general these elements need not commute with each
other; however, we may sometimes specify certain commutation relations explicitly.
We denote the identity by I and the zero element by O. Whenever a multiplicative
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inverse element exists for any A ∈ R, we denote it by A−1. (Since R is a unital ring,
we have AA−1 = A−1A = I.) On the other hand, as we shall implicitly assume that
all the expressions which appear are well defined, whenever we write A−1 we assume
its existence. For instance, in (2.1a) and (2.1b) we assume that Ci + jI is invertible
for all 1 ≤ i ≤ r, 0 ≤ j < k.

An important special case is when R is the ring of n × n square matrices (our
notation is certainly suggestive with respect to this interpretation), or, more generally,
one may view R as a space of some abstract operators.

For any nonnegative integers m and l with m ≥ l−1 we define the noncommutative
product as follows:

m∏
j=l

Aj =

{
I m = l − 1

AlAl+1 · · ·Am m ≥ l.

In [24, 25] a more general definition was given, which however we will not need here.
For nonnegative integers k and r we define the generalized noncommutative shifted

factorial of type I by⌈
A1, A2, . . . , Ar

C1, C2, . . . , Cr
;Z

⌋
k

:=
k∏

j=1

[(
r∏

i=1

(Ci + (k − j)I)−1(Ai + (k − j)I)

)
Z

]
, (2.1a)

and the noncommutative shifted factorial of type II by⌊
A1, A2, . . . , Ar

C1, C2, . . . , Cr
;Z

⌉
k

:=
k∏

j=1

[(
r∏

i=1

(Ci + (j − 1)I)−1(Ai + (j − 1)I)

)
Z

]
. (2.1b)

Note the unusual usage of brackets (“floors” and “ceilings” are intermixed) on the
left-hand sides of (2.1a) and (2.1b) which is intended to suggest that the products
involve noncommuting factors in a prescribed order. In both cases, the product, read
from left to right, starts with a denominator factor. The brackets in the form “d−c”
are intended to denote that the factors are falling, while in “b−e” that they are rising.

We define the noncommutative hypergeometric series of type I by

r+1Fr

⌈
A1, A2, . . . , Ar+1

C1, C2, . . . , Cr
;Z

⌋
:=
∑
k≥0

⌈
A1, A2, . . . , Ar+1

C1, C2, . . . , Cr, I
;Z

⌋
k

,

and the noncommutative hypergeometric series of type II by

r+1Fr

⌊
A1, A2, . . . , Ar+1

C1, C2, . . . , Cr
;Z

⌉
:=
∑
k≥0

⌊
A1, A2, . . . , Ar+1

C1, C2, . . . , Cr, I
;Z

⌉
k

.

In each case, the series terminates if one of the upper parameters Ai is of the form
−nI. If the series is nonterminating, then the series converges in R if ‖Z‖ < 1. If
‖Z‖ = 1 the series may converge in R for some particular choice of upper and lower
parameters. Exact conditions depend on the Banach algebra R.



4 A. CONFLITTI AND M. J. SCHLOSSER

Throughout this paper, Q will be a parameter which commutes with any of the
other parameters appearing in the series. (For instance, a central element such as
Q = qI, a scalar multiple of the unit element in R, for qI ∈ R, trivially satisfies this
requirement.)

For nonnegative integers k and r we define the generalized noncommutative Q-
shifted factorial of type I by⌈

A1, A2, . . . , Ar

C1, C2, . . . , Cr
;Q,Z

⌋
k

:=
k∏

j=1

[(
r∏

i=1

(I − CiQ
k−j)−1(I − AiQ

k−j)

)
Z

]
,

and the noncommutative Q-shifted factorial of type II by⌊
A1, A2, . . . , Ar

C1, C2, . . . , Cr
;Q,Z

⌉
k

:=
k∏

j=1

[(
r∏

i=1

(I − CiQ
j−1)−1(I − AiQ

j−1)

)
Z

]
.

We define the noncommutative basic hypergeometric series of type I by

r+1φr

⌈
A1, A2, . . . , Ar+1

C1, C2, . . . , Cr
;Q,Z

⌋
:=
∑
k≥0

⌈
A1, A2, . . . , Ar+1

C1, C2, . . . , Cr, Q
;Q,Z

⌋
k

,

and the noncommutative basic hypergeometric series of type II by

r+1φr

⌊
A1, A2, . . . , Ar+1

C1, C2, . . . , Cr
;Q,Z

⌉
:=
∑
k≥0

⌊
A1, A2, . . . , Ar+1

C1, C2, . . . , Cr, Q
;Q,Z

⌉
k

.

We also refer to the respective series as (noncommutative) Q-hypergeometric series.
In each case, the series terminates if one of the upper parameters Ai is of the form
Q−n. If the series does not terminate, then it converges if ‖Z‖ < 1.

Finally we recall the following well known definition.
A Banach ∗-algebra is a Banach algebra R over a field K equipped with an involutive
antiautomorphism, i.e. a map ∗ : R −→ R which satisfies the following properties for
every X, Y ∈ R:

(X∗)∗ = X, viz. the map ∗ is an involution,

(X + Y )∗ = X∗ + Y ∗,

(XY )∗ = Y ∗X∗,

‖X∗‖ = ‖X‖,

and such that the restriction ∗ : K −→ K is an involutive automorphism, since K is
commutative.

For instance, the ring of complex n × n square matrices is a Banach ∗-algebra,
where the map ∗ is the adjoint operator, viz. conjugate transposition.
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3. Type I and type II noncommutative hypergeometric equations

Tirao [29] proved the following result:

Proposition 3.1. For a positive integer n, let R = Mn×n(C) be the ring of complex
n × n square matrices. Let A,B,C, F0 ∈ R be such that the spectrum of C contains

no negative integers, and let z ∈ C. Then F (z) = 2F1

⌈
A,B
C

; zI

⌋
F0 is the unique

solution analytic at z = 0 of the matrix-valued hypergeometric equation

z(1− z)F ′′(z) + (C − z(1 + A+B))F ′(z)− ABF (z) = 0,

where F (0) = F0.

As was indicated without proof in [25, Remark 2.1] this readily extends to the
following:

Theorem 3.1. Let R be a unital Banach algebra with norm ‖ · ‖, let A,B,C, F0 ∈ R
such that C + jI is invertible for all nonnegative integers j. Further let Z be central
(i.e., Z ∈ {X ∈ R : XY = Y X, ∀Y ∈ R}) with ‖Z‖ < 1. Then

F (Z) = 2F1

⌈
A,B
C

;Z

⌋
F0 (3.1)

is the unique solution analytic at Z = O of the noncommutative hypergeometric equa-
tion

Z(I − Z)F ′′(Z) + (C − Z(I + A+B))F ′(Z)− ABF (Z) = O, (3.2)

where F (O) = F0.

We provide an operator proof of Theorem 3.1. On the contrary, Tirao’s proof of
the above Proposition given in [29] is essentially different. Starting with the matrix-
valued hypergeometric equation it involves the computation of the coefficients Fk in
the analytic series F (z) =

∑
k≥0 Fkz

k by a generic Ansatz.

Proof. First of all, the (right multiple of the) type I noncommutative hypergeometric
series

2F1

⌈
A,B
C

;Z

⌋
F0

=

[∑
k≥0

(
k∏

j=1

(C + (k − j)I)−1(A+ (k − j)I)(B + (k − j)I)

)
Zk

k!

]
F0

is clearly analytic at Z = O and 2F1

⌈
A,B
C

;O

⌋
F0 = F0.

Next we show that 2F1

⌈
A,B
C

;Z

⌋
F0 is a solution of the differential equation (3.2).

We define the linear operator

DT := T + Z
d

dZ
,
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where T ∈ R, acting (from the left) on functions of Z over R.
If F (Z) is analytic at Z = O we can write F (Z) =

∑
k≥0 FkZ

k, where Fk ∈ R for
any nonnegative integer k. It is immediate that

DT F (Z) =
∑
k≥0

(T + kI)FkZ
k.

Hence

DA

(
DB 2F1

⌈
A,B
C

;Z

⌋)
=
∑
k≥0

(A+ kI)(B + kI)

⌈
A,B
C, I

;Z

⌋
k

,

and

DC−I 2F1

⌈
A,B
C

;Z

⌋
=
∑
k≥0

(C + (k − 1)I)

⌈
A,B
C, I

;Z

⌋
k

= C − I+
∑
k≥1

(A+ (k − 1)I)(B + (k − 1)I)

×

(
k−1∏
j=1

(C + (k − 1− j)I)−1(A+ (k − 1− j)I)(B + (k − 1− j)I)

)
Zk

k!

= C − I+
∑
k≥0

(A+ kI)(B + kI)

×

(
k∏

j=1

(C + (k − j)I)−1(A+ (k − j)I)(B + (k − j)I)

)
Zk+1

(k + 1)!
.

Thus we have

d

dZ

(
DC−I 2F1

⌈
A,B
C

;Z

⌋)
= DA

(
DB 2F1

⌈
A,B
C

;Z

⌋)
. (3.3)

Since the differential equation

d

dZ
(DC−I F (Z)) = DA (DB F (Z)) , (3.4)

or, more explicitly,

d

dZ

(
C − I + Z

d

dZ

)
F (Z) =

(
A+ Z

d

dZ

)(
B + Z

d

dZ

)
F (Z),

is equivalent to (3.2), it follows from (3.3) (and multiplication of a constant from the

right) that 2F1

⌈
A,B
C

;Z

⌋
F0 satisfies the differential equation (3.2).

The uniqueness of the solution (3.1) of (3.2) with F (O) = F0 readily follows from
the theorem of existence and uniqueness of solutions of differential equations in Ba-
nach spaces (hence in Banach algebras), cf. e.g. [19]. All we need to show is that
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if there were two solutions F1(Z) and F2(Z) then F ′1(O) = F ′2(O). (As we are con-
sidering a second order differential equation, two initial conditions, fixing F (O) and
F ′(O), are required to make the solution unique.)

Assume that F1(Z) and F2(Z) are solutions of (3.2) with F1 (O) = F2 (O) = F0.
Then we have

Z(I − Z)F ′′1 (Z) + (C − Z(A+B + I))F ′1(Z)− ABF1(Z)

= Z(I − Z)F ′′2 (Z) + (C − Z(A+B + I))F ′2(Z)− ABF2(Z).

Evaluating this equation in Z = O we get C F ′1(O) = C F ′2(O) and since C is invertible
the claim follows. �

Now we are ready to state and prove the following new result concerning type II
noncommutative hypergeometric series. It appears to lie in the nature of the type II
series that the result is not as simple and elegant as in the corresponding type I case.
In particular, the following theorem as stated requires the condition C(C−A−B)+AB
being invertible, which has no counterpart in the type I case.

Theorem 3.2. Let R be a unital Banach ∗-algebra with norm ‖·‖, let A,B,C, F0 ∈ R
such that C(C −A−B) +AB and C + jI are invertible for all nonnegative integers
j. Further let Z be central (i.e., Z ∈ {X ∈ R : XY = Y X, ∀Y ∈ R}) with ‖Z‖ < 1.
Then

F (Z) = F0 2F1

⌊
A,B
C

;Z

⌉
(3.5)

is the unique solution analytic at Z = O of the noncommutative hypergeometric equa-
tion

Z(I − Z)F ′′(Z) + ZF ′(Z)(C − I − A−B)

+
(
(I − Z)F ′(Z)− F (Z)C−1AB

) (
C(C −A−B) +AB

)−1
C
(
C(C −A−B) +AB

)
= O, (3.6)

where F (O) = F0.

Remark 3.1. If, instead of the condition of C(C − A − B) + AB being invertible, C
would commute with A and B, then we would have a much simpler hypergeometric
equation, as the type II hypergeometric function would essentially be a starred type
I hypergeometric function. More precisely, if C commutes with A and B, one has (as
one readily verifies)

2F1

⌊
A,B
C

;Z

⌉
= 2F1

⌈
B∗, A∗

C∗
;Z∗
⌋∗
,

and the corresponding hypergeometric equation in place of (3.6) is just

F ′′(Z)Z(I − Z) + F ′(Z)(C − Z(I + A+B))− F (Z)AB = O.

As this would not yield anything really new, we prefer not to impose the strong
condition of C commuting with A and B, but nevertheless, in order to make progress
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at a particular point in the following proof (namely, after arriving at (3.10)), impose
the (slightly awkward-looking) condition of C(C − A−B) + AB being invertible.

Proof of Theorem 3.2. First of all, the (left multiple of the) type II noncommutative
hypergeometric series

F0 2F1

⌊
A,B
C

;Z

⌉
= F0

∑
k≥0

(
k∏

j=1

(C + (j − 1)I)−1(A+ (j − 1)I)(B + (j − 1)I)

)
Zk

k!

is clearly analytic at Z = O and F0 2F1

⌊
A,B
C

;O

⌉
= F0.

Next we show that F0 2F1

⌊
A,B
C

;O

⌉
is a solution of the differential equation (3.6).

We have

d

dZ
2F1

⌊
A,B
C

;Z

⌉
=
∑
k≥1

(
k∏

j=1

(C + (j − 1)I)−1(A+ (j − 1)I)(B + (j − 1)I)

)
Zk−1

(k − 1)!

=
∑
k≥0

(
k+1∏
j=1

(C + (j − 1)I)−1(A+ (j − 1)I)(B + (j − 1)I)

)
Zk

k!

=
∑
k≥0

⌊
A,B
C, I

;Z

⌉
k

(C + kI)−1(A+ kI)(B + kI). (3.7)

We define the linear operator D̃T by

D̃T := T +
d̃

dZ
Z,

where T ∈ R, acting from the right on functions over R. Here d̃
dZ

is the differential
operator applied from the right side. With other words

F (Z)
d̃

dZ
=

d

dZ
F (Z),

and

F (Z) D̃T = F (Z)T + Z
d

dZ
F (Z),

where F (Z) is any function of Z (Z being central) over R.
In particular, we have

F (Z) D̃T = (D∗T (F (Z)∗))∗
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where D∗T := T ∗ + Z∗ d
dZ∗ .

If F (Z) is analytic at Z = O we can write F (Z) =
∑

k≥0 FkZ
k, where Fk ∈ R for

any nonnegative integer k. It is immediate that

F (Z) D̃T =
∑
k≥0

FkZ
k (T + kI), (3.8a)

and

F (Z) D̃−1U =
∑
k≥0

FkZ
k (U + kI)−1, (3.8b)

provided U + kI is invertible in R for all nonnegative integers k. (As U is invertible,

so is D̃−1U = (U + d̃
dZ
Z)−1 = U−1(I + d̃

dZ
ZU−1)−1 where the last expression can be

expanded as a geometric series and becomes meaningful. Independently, it is easy to

see from (3.8a)/(3.8b) that the action of D̃−1U on a power series is inverse to that of

D̃U .)
Hence((

2F1

⌊
A,B
C

;Z

⌉
D̃−1C

)
D̃A

)
D̃B =

∑
k≥0

⌊
A,B
C, I

;Z

⌉
k

(C + kI)−1(A+ kI)(B + kI)

= 2F1

⌊
A,B
C

;Z

⌉
d̃

dZ
,

by (3.7).
It follows that

G(Z) = 2F1

⌊
A,B
C

;Z

⌉
D̃−1C

is a solution of the differential equation(
G(Z) D̃A

)
D̃B =

(
G(Z) D̃C

) d̃

dZ
.

This is simply a “reversed” version of (3.4) with A and B interchanged and C + I in
place of C. It thus follows from Theorem 3.1 that G(Z) satisfies the reversed type I
noncommutative hypergeometric equation:

Z(I − Z)G′′(Z) +G′(Z)(C + I − Z(I + A+B))−G(Z)AB = O. (3.9)

We now need to rewrite (3.9) in terms of F (Z) = 2F1

⌊
A,B
C

;Z

⌉
. We have

F (Z) = G(Z) D̃C = G(Z)C + ZG′(Z),

and

F ′(Z) = G′(Z)(C + I) + ZG′′(Z),
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which, in conjunction with (3.9), gives

(I − Z)F ′(Z) + F (Z)(C − A−B)− F (Z) D̃−1C

(
C(C − A−B) + AB

)
= O. (3.10)

Next, we multiply both sides of (3.10) from the right with(
C(C − A−B) + AB

)−1D̃C

(
C(C − A−B) + AB

)
(which is

(
C(C −A−B) +AB

)−1
C
(
C(C −A−B) +AB

)
+ d̃

dZ
Z). After a series of

computations, including the simplifiction

I − (C − A−B)
(
C(C − A−B) + AB

)−1
C = C−1AB

(
C(C − A−B) + AB

)−1
C,

we eventually arrive at (3.6). Further, by multiplying a constant from the left, it

follows that F0 2F1

⌊
A,B
C

;Z

⌉
satisfies the differential equation (3.6).

Using the same argument as in the proof of Theorem 3.1, one readily establishes
the uniqueness of the solution (3.5) of (3.6) with F (O) = F0. �

4. Type I and type II noncommutative basic hypergeometric equations

For a parameter Q ∈ R which commutes with all other parameters (that appear in

the respective expressions) we define the Q-difference operator
dQ
dQ Z

by

dQ

dQ Z
F (Z) = (I −Q)−1Z−1(F (Z)− F (QZ)).

Its action on monomials is

dQ

dQ Z
Zk = (I −Q)−1(I −Qk)Zk−1,

while in combination with the multiplication operator Z one has

dQ

dQ Z
(ZF (Z)) = F (Z) +QZ

dQ

dQ Z
F (Z) . (4.1)

Clearly, as Q → I, the Q-difference operator
dQ
dQ Z

approaches the differentiation

operator d
dZ

.
We have the following Q-analogue of Theorem 3.1:

Theorem 4.1. Let R be a unital Banach algebra with norm ‖·‖, let A,B,C, F0, Q ∈ R
such that Q commutes with A,B,C, F0 and such that I − CQj is invertible for all
nonnegative integers j. Further let Z be central (i.e., Z ∈ {X ∈ R : XY = Y X, ∀Y ∈
R}) with ‖Z‖ < 1. Then

F (Z) = 2φ1

⌈
A,B
C

;Q,Z

⌋
F0 (4.2)
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is the unique solution analytic at Z = O of the noncommutative basic hypergeometric
equation

Z(C − ABQZ)
d2
Q

dQ Z2
F (Z)

+(I −Q)−1
[
(I − C) + (I − A)(I −B)Z − (I − ABQ)Z

] dQ

dQ Z
F (Z)

−(I −Q)−2(I − A)(I −B)F (Z) = O, (4.3)

where F (O) = F0.

For commuting parameters Theorem 4.1 reduces to [11, Ex. 1.13]. We prove The-
orem 4.1 in a similar way to our proof of Theorem 3.1.

Proof. First of all, the (right multiple of the) type I noncommutative basic hyperge-
ometric series

2φ1

⌈
A,B
C

;Q,Z

⌋
F0

=

[∑
k≥0

(
k∏

j=1

(I − CQk−j)−1(I − AQk−j)(I −BQk−j)(I −Q1+k−j)−1

)
Zk

]
F0

is clearly analytic at Z = O and 2φ1

⌈
A,B
C

;Q,O

⌋
F0 = F0.

Next we show that 2φ1

⌈
A,B
C

;Q,Z

⌋
F0 is a solution of the difference equation (4.3).

We define the linear operator

DQ,T := (I −Q)−1(I − T ) + TZ
dQ

dQ Z
,

where T ∈ R, acting (from the left) on functions of Z over R.
If F (Z) is analytic at Z = O we can write F (Z) =

∑
k≥0 FkZ

k, where Fk ∈ R for
any nonnegative integer k. Since

DQ,T Z
k = (I −Q)−1(I − TQk)Zk,

it is immediate that

DQ,T F (Z) = (I −Q)−1
∑
k≥0

(I − TQk)FkZ
k.

Hence

DQ,A

(
DQ,B 2φ1

⌈
A,B
C

;Q,Z

⌋)
= (I −Q)−2

∑
k≥0

(I − AQk)(I −BQk)

⌈
A,B
C,Q

;Q,Z

⌋
k

,
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and

DQ,CQ−1 2φ1

⌈
A,B
C

;Z

⌋
= (I −Q)−1

∑
k≥0

(I − CQk−1)

⌈
A,B
C,Q

;Q,Z

⌋
k

= (I −Q)−1(I − CQ−1) + (I −Q)−1
∑
k≥1

(I − AQk−1)(I −BQk−1)(I −Qk)−1

×

(
k−1∏
j=1

(I − CQk−1−j)−1(I − AQk−1−j)(I −BQk−1−j)(I −Qk−j)−1

)
Zk

= (I −Q)−1(I − CQ−1) + (I −Q)−1
∑
k≥0

(I − AQk)(I −BQk)(I −Qk+1)−1

×

(
k∏

j=1

(I − CQk−j)−1(I − AQk−j)(I −BQk−j)(I −Qk+1−j)−1

)
Zk+1.

Thus we have

dQ

dQ Z

(
DQ,CQ−1 2φ1

⌈
A,B
C

;Q,Z

⌋)
= DQ,A

(
DQ,B 2φ1

⌈
A,B
C

;Q,Z

⌋)
. (4.4)

Since the Q-differential equation

dQ

dQ Z
(DQ,CQ−1 F (Z)) = DQ,A (DQ,B F (Z)) , (4.5)

or, more explicitly,

dQ

dQ Z

(
(I −Q)−1(I − CQ−1) + CQ−1Z

dQ

dQ Z

)
F (Z)

=

(
(I −Q)−1(I − A) + AZ

dQ

dQ Z

)(
(I −Q)−1(I −B) +BZ

dQ

dQ Z

)
F (Z),

is equivalent to (4.3) (which can be verified using (4.1) and simple identities such as
(I−Q)−1(I−CQ−1)+CQ−1 = (I−Q)−1(I−C)), it follows from (4.4) (and multipli-

cation of a constant from the right) that 2φ1

⌈
A,B
C

;Q,Z

⌋
F0 satisfies the differential

equation (4.3).
The uniqueness of the solution (4.2) of (4.3) with F (O) = F0 readily follows from

the theorem of existence and uniqueness of solutions of differential equations in Ba-
nach spaces, just as in the proof of Theorem 3.1. �

In a Banach ∗-algebra R, for a parameter Q ∈ R which commutes with all other pa-

rameters (that appear in the respective expressions) we define
d̃Q
dQ Z

as the Q-difference

operator acting from the right on functions over R, i.e.,
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F (Z)
d̃Q

dQ Z
=

(
d∗Q

d∗Q Z
(F (Z)∗)

)∗
where

d∗Q
d∗Q Z

F (Z) = (I −Q∗)−1(Z∗)−1(F (Z)− F (QZ)).

By a similar analysis as in the proof of Theorem 3.2 one can also work out a type
II noncommutative basic hypergeometric equation which is again of second order.
As one would expect, the result has a significantly more complicated form than in
the type I case (compare Theorem 3.2 with Theorem 3.1). In particular, a required
condition is that C and (I−C−1A−C−1(I−C−1A)B) have to be invertible, which has
no counterpart in the basic type I case. Since the proof (which essentially follows the
lines of the proofs of Theorems 3.2 and 4.1) is just tedious but not very illuminating,
we state the result without it.

Theorem 4.2. Let R be a unital Banach ∗-algebra with norm ‖·‖, let A,B,C, F0, Q ∈
R such that Q commutes with A,B,C, F0 and such that C, (I − C−1A − C−1(I −
C−1A)B) and I − CQj are invertible for all nonnegative integers j. Further let Z be
central (i.e., Z ∈ {X ∈ R : XY = Y X, ∀Y ∈ R}) with ‖Z‖ < 1. Then

F (Z) = F0 2φ1

⌊
A,B
C

;Q,Z

⌉
(4.6)

is the unique solution analytic at Z = O of the noncommutative basic hypergeometric
equation

F (Z)
d̃2
Q

dQ Z2
Z(I − C−1ABQZ)

× (I − C−1A− C−1(I − C−1A)B)−1C(I − C−1A− C−1(I − C−1A)B)

+F (Z)
d̃Q

dQ Z
(I −Q)−1

× (I − C−1A− C−1(I − C−1A)B)−1(I − C)(I − C−1A− C−1(I − C−1A)B)

+F (Z)
d̃Q

dQ Z
Z(I −Q)−1

[
C − A−B + (C−1AB + C−1ABQ− I)

× (I − C−1A− C−1(I − C−1A)B)−1C(I − C−1A− C−1(I − C−1A)B)
]

+F (Z)(I −Q)−2
[
A+B − C − I − (C−1AB − I)

× (I − C−1A− C−1(I − C−1A)B)−1C(I − C−1A− C−1(I − C−1A)B)
]

= O,

(4.7)

where F (O) = F0.
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Remark 4.1. Similarly as in Theorem 3.2 (see the Remark 3.1), if instead of the
condition of (I −C−1A−C−1(I −C−1A)B) being invertible, C would commute with
A and B, then we would have a much simpler Q-hypergeometric equation (as in type
I), stemming from the observation that in this case the type II Q-hypergeometric
function is a starred type I Q-hypergeometric function (with starred parameters,
but with the upper parameters A and B being interchanged). More precisely, if C
commutes with A and B, one has (as one readily verifies)

2φ1

⌊
A,B
C

;Q,Z

⌉
= 2φ1

⌈
B∗, A∗

C∗
;Q∗, Z∗

⌋∗
,

and the corresponding Q-hypergeometric equation in place of (4.7) is

F (Z)
d̃2
Q

dQ Z2
Z(C − ABQZ)

+F (Z)
d̃Q

dQ Z
(I −Q)−1[(I − C) + (I − A)(I −B)Z − (I − ABQ)Z]

+F (Z)(I −Q)−2(I − A)(I −B) = O.
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