PROOF OF A BASIC HYPERGEOMETRIC SUPERCONGRUENCE
MODULO THE FIFTH POWER OF A CYCLOTOMIC POLYNOMIAL
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ABSTRACT. By means of the g-Zeilberger algorithm, we prove a basic hypergeometric
supercongruence modulo the fifth power of the cyclotomic polynomial ®,,(¢). This result
appears to be quite unique, as in the existing literature so far no basic hypergeometric
supercongruences modulo a power greater than the fourth of a cyclotomic polynomial
have been proved. We also establish a couple of related results, including a parametric
supercongruence.

1. INTRODUCTION

In 1997, Van Hamme [27] conjectured that 13 Ramanujan-type series including

Sk e =2,

admit nice p-adic analogues, such as

p—1

S DRk D = (1) (mod p9),

k=0

N

where (a), = a(a +1)---(a+n — 1) denotes the Pochhammer symbol and p is an odd
prime. Up to present, all of the 13 supercongruences have been confirmed. See [21,24]
for historic remarks on these supercongruences. Recently, g-analogues of congruences
and supercongruences have caught the interests of many authors (see, for example, [1-
20, 23, 25, 26, 29]). In particular, the first author and Zudilin [16] devised a method,
called ‘creative microscoping’, to prove quite a few g-supercongruences by introducing an
additional parameter a. In [13], the authors of the present paper proved many additional
g-supercongruences by the creative microscoping method. Supercongruences modulo a
higher integer power of a prime, or, in the g-case, of a cyclotomic polynomial, are very
special and usually difficult to prove. As far as we know, until now the result

n—1

ok + 15D = g% o)+ I T o mod (). (1)
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for an odd positive integer n, due to the first author and Wang [15], is the unique g-
supercongruence modulo [n]®,,(q) in the literature that was completely proved. (Several
similar conjectural g-supercongruences are stated in [13] and in [16].) The purpose of
this paper is to establish an even higher g-congruence, namely modulo a fifth power of
a cyclotomic polynomial. Specifically, we prove the following three theorems. (The first
two together confirm a conjecture by the authors [13, Conjecture 5.4]).

Theorem 1.1. Let n > 1 be a positive odd integer. Then

n+1
2

TNk

[4'“_”(<q2;q2>iq = (1 43¢+ Al (mod [n]'d,(q)), (2a)
and
S ok e = <0 ol ) @

T e

Theorem 1.2. Let n > 1 be a positive odd integer. Then

n+1
2

[4k‘ . 1] (aq_l; q2)k(q_1/a; q2)k(q_1;§2)iq4k =0 (HlOd [n]2(1 . aqn>(a . qn))7

— (ag?: ¢*)k(a?/a; ¢*)i(a? 47,
and
n—1
(ag~" s ¢*)ila™ /@ (a5 )i a 2
[4k — 1] ¢"=0 (mod [n]*(1 —aq")(a—q")).
,; (ag?: ¢*)i(a?/a; ¢*)i(a? 47
The a = —1 case of Theorem 1.2 admits an even stronger g-congruence.

Theorem 1.3. Let n > 1 be a positive odd integer. Then

n+1

[4k — 1]%@1‘*’“ = —¢"(1-q+ )2 (mod [n]%®,(q)), (3a)
and
Z[4k — 1]%%’“ =—-(1-qg+ qz)[n]gz (mod [n]ggq)n(q?)). (3b)

In the above g-supercongruences and in what follows,

(CL; Q)n = (1 — a)(l — aq) . (1 _ aqn—l)
is the ¢-shifted factorial,

is the g-number,
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is the ¢g-binomial coefficient, and ®,,(¢) is the n-th cyclotomic polynomial of q. Note that
the congruences in Theorem 1.1 modulo [n]®,(¢)* and the congruences in Theorem 1.2
modulo [n](1 — ag™)(a — ¢") have already been proved by the authors in [13, egs. (5.5)
and (5.10)].

2. PROOF OF THEOREM 1.1 BY THE ZEILBERGER ALGORITHM

The Zeilberger algorithm (cf. [22]) can be used to find that the functions

(40— (=3 (D
Fln k) = (~1)E

g(n. k) = (=1)*

satisfy the relation
(2k - 3)f(na k — 1) - (Qk - 4)f(na k) = g(” + 17k) - g(n7k)

Of course, given this relation, it is not difficult to verify by hand that it is satisfied by the
above pair of doubly-indexed sequences f(n, k) and g(n, k).

Here we use the convention 1/(1),, = 0 for all negative integers m. We now define the
g-analogues of f(n,k) and g(n, k) as follows:

—1. ,2\3(,—1. ;2
F(n, k) = (_1)k (k—2)(k—2n+1) [4n — (¢~ ¢°)0 (a5 ¢ ) nr

q )
(4% ¢*)3 (4% ¢*)n-r(a 15 47
(_1)k71q(k72)(k72n+3)(qfl; q2)1?;(q—1; QQ)n+k—1
(1—a)*(¢% 61 (¢% Pn-rla 7
where we have used the convention that 1/(¢? ¢*),, = 0 for m = —1,—2,.... Then the
functions F'(n, k) and G(n, k) satisfy the relation

G(n, k) =

2k — 3|F(n,k — 1) — [2k — 4]F(n, k) = G(n+ 1,k) — G(n, k). (4)
Indeed, it is straightforward to obtain the following expressions:

F(n’ k— 1) q2n74k+6<1 _ q>(1 _ q4n71)(1 _ q2k73)2

G(n, k) (1 — g2 2k42)(1 — g2n)3 )
F(n,k) _ _q4—2k’(1 — q)(1 — ¢! 1)(1 — g2r+2k-3)
G(n, k) (1— g™ )

G(n + 1, k) q4—2k(1 _ q2n—1>3<1 _ q2n+2k—3)

G(n,k) (1 — ¢2)3(1 — g2n—2k+2)
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It is easy to verify the identity
q2n—4k+6(1 _ q4n—1)(1 _ q2k—3)3 q4—2k(1 _ q2k—4)(1 _ q4n—1)(1 _ q2n+2k73)
(1 — @2n—2k+2)(1 — ¢27)3 (1—¢2n)3
gl (1 — g2n1)3(1 — g2rthe3)

T (1 )31 — gy 1,

which is equivalent to (4). (Alternatively, we could have established (4) by only guessing
F(n, k) and invoking the ¢-Zeilberger algorithm [28].)
Let m > 1 be an odd integer. Summing (4) over n from 0 to (m + 1)/2, we get

m—+1 m+1

2%~ 33 Pk — 1) — 2k 4] F(n.k) = (me k:) (0, k)

ey .

We readily compute

a (m+ 3 1) qm—l(q 4 )(m+3)/
(1—¢

2 )2(4% 6% {1y (1 — a71)?
_ q"°[m]* 1 1 )
Bl [m + 1]4(_Q§ Q)?m_l)/g {(m - 1)/2} ’ (6 )

and

) _ ( 2)(m+3 /2( §(12)(m+5)/2
2 (1= a0)?(¢% )1 2(0% @) -1y /2(a 15 4%)3

_ m+2 [ w1 ]
T A PG @), [(m— 1)/2] ' (6b)

nZ_OF(n,O) - % > F(n,1) + [_11](; (m;3,1)

_ (L @mtfm +1][m + 2] + g™ [m]* [( m—)l/ ]4
-1)/2|
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< _ (¢, 4n__(1+q)[m]4[m+1][m+2]+qm+1[m]4 m—1 1*
;[471 ! (@%6%)5 - qlm + 1]4(—q;q)?m_1)/2 [(m — 1)/21 (7)

By [4, Lemma 2.1] (or [3, Lemma 2.1]), we have (—q;¢)},, 1)/
Moreover, it is easy to see that

ek (m=1)/2

=V (mod @, (g)).

(m—1)/2

m—1 1—61 ]-_qik m— —m?
Lm - 1)/2} = I === 1l 7= =02 (mod @u(q)).
k=1 k=1
and [m] is relatively prime to (—g; q)(m—1)/2. It follows from (7) that
mT-l—l
4 1 (q_17q2)i dn 2 4 4@
Z[ n— ]WQ =—((1+q)°+¢)m]" (mod [m] ®,,(q)).
n=0 !

Concluding, the congruence (2a) holds.
Similarly, summing (4) over n from 0 to m — 1, we get

m—1
2k —=3]Y F(nk—1)—[2k—4] > F(n, G(m, k),
n=0

3

3
Il
o

and so
-1

2

S

’q)n4n 1+q
—q :—Gm,Q —qu,l
) . (m,2) (m, 1)

_(1 -+ q)[2m — 2][2m — 1] + q2m_2 om — 2 4
A(—a:q)5 [m —1 ] - ®
It is easy to see that
ﬁ FnT - 12] - [ml— 1 {27;7 - 22} = (-1)" ¢ "= (mod @,.(q).

and (—¢;q)m—1 = 1 (mod D,,(q)) (see, for example, [4]). The proof of (2b) then follows
easily from (8 )

3. PROOF OF THEOREMS 1.2 AND 1.3

Proof of Theorem 1.2. It is easy to see by induction on /N that
N

_plaa i @ela e k(e 6)E w

g[% e ol el D7
_ (ag;¢*)v(g/a;¢*)n((a+ 1% — a1 + ¢)(1 + ¢*¥)) [21\7]2
q(a —q)(1 — ag)(ag? ¢*)n(¢%/0; ) (—q; 0% N

(9)
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For N = (n+1)/2 or N = n — 1, we see that (aq;¢*)n(¢/a;¢*)y contains the factor
(1 —aq™)(1 —q"/a). Moreover,

T o el = [l

is a polynomial in ¢. Since [(n + 1)/2] and [n| are relatively prime, we conclude that
[ (n-1)/2] is divisible by [n]. Therefore, [ 75 5] = (14 ¢™+/2) [ (n1)/2] is also divisible
by [n]. It is also well known that [ %'=?] is divisible by [n]. Moreover, it is easy to see that
[n] is relatively prime to 1 + ¢ for any non-negative integer m. The proof then follows

from (9) by taking N = (n+1)/2 and N =n — 1. O
Proof of Theorem 1.3. For a = —1, the identity (9) reduces to
N _
S 4k - 1] (6% ¢ e _ (o @)y +a"7) {22\7}2
o (¢%9Y)7 q(1+q) (=% )3~ )y LNV
_ (4™ {mv} :
g1+ a)(—a% )y [N

Note that, in the proof of Theorem 1.2, we have proved that [21{}[ } 2 is divisible by [n],2 for

(10)

q2

both N = (n+1)/2 and N = n — 1. Moreover, [n],2 is relatively prime to (—¢?; ¢*),, for
m > 0. Hence the right-hand side of (10) is congruent to 0 modulo [n]?, for N = (n+1)/2
or N =n — 1. To further determine the right-hand side of (10) modulo [nEQ(I)n(qz), we

need only to use the same congruences (with ¢ — ¢*) used in the proof of Theorem
1.1. OJ

4. IMMEDIATE CONSEQUENCES

Notice that for n = p” being an odd prime power, ®,-(¢) = [p]qprfl holds. This
observation was used in [15] to extend (1) to a supercongruence modulo [p"][p]® 1. In
qP

the same vein we immediately deduce from Theorem 1.1 the following result:

Corollary 4.1. Let p be an odd prime and r a positive integer. Then

Stk = D= s AT mod Bl (1)
k=0 ) k
and

Zwﬂ—u%q‘*kz—<1+3q+q2>[p7“14 (mod ). (11b)

The ¢ — 1 limiting cases of these two identities yield the following supercongruences:
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Corollary 4.2. Let p be an odd prime and r a positive integer. Then

p—1

2 Ak +3 2K\ *
=1— 5 Ar d 4r+41 12
2= 16(k + 1) 2564 ( k) P (mod pT), (122)
and
p"—2 4
Ak+3 2k \ i
=1 5p" d pir+l), 12h
; 16(k + 1)* 256F ( k:) P (mod ) (12b)

Similarly, we deduce from Theorem 1.3 the following result:

Corollary 4.3. Let p be an odd prime and r a positive integer. Then

[4k — 1]%614'C = ¢ (1—q+ q2)[pr]§2 (mod [pr]zg [P] o), (13a)
and
- [4k — 1]%4}“’“ =-(1-qg+@)P% (mod [p]%[p]er1)- (13b)

The ¢ — 1 limiting cases of these two identities yield the following supercongruences:

Corollary 4.4. Let p be an odd prime and r a positive integer. Then

"1

5 4 2%\ 2
ﬂ( k) =1—-p" (mod p**1h), (14a)

I3

— 4(k 4+ 1)216% \ k
and
p"—2 2
4k + 3 2k 9 9
=1—p* T+, 14
4 216k(k> p (mOdp ) ( b)

k=0

The supercongruences in Corollaries 4.2 and 4.4 are remarkable since they are valid for
arbitrarily high prime powers. Swisher [24] had empirically observed several similar but
different hypergeometric supercongruences and stated them without proof.
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