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Abstract. We apply multidimensional matrix inversions to multiple basic hypergeometric sum-
mation theorems to derive several multiple (g-)series identities which themselves do not belong to
the hierarchy of (basic) hypergeometric series. Among these are A, terminating and nontermi-
nating ¢-Abel and ¢-Rothe summations. Furthermore, we derive some identities of another type
which appear to be new already in the one-dimensional case.
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1. Introduction

Matrix inversions are very important tools in combinatorics and special functions
theory. In particular, it is a widely spread and often used method to derive and
prove identities for (basic) hypergeometric series with the help of so-called “inverse
relations” (see Section 2), which are immediate consequences of matrix inversions.

Over the last decades, several people discovered and rediscovered useful matrix
inversions. The developments started when Gould and Hsu [21] inverted a certain
infinite lower-triangular matrix and Carlitz [8] found its ¢g-analogue. An important
special case of Carlitz’s matrix inversion was rediscovered by Andrews [1], in the
form of the powerful Bailey Transform [2]. In the sequel, Gessel and Stanton [17],
[18], Bressoud [7], and Gasper and Rahman [14], [15] gave further important con-
tributions to the subject.

Recently, Krattenthaler [29] achieved a great deal of unification for matrix inver-
sions. He proved that the matrices (fnr)n,kez and (gii)x,1ez (Z denotes the set of
integers), are inverses of each other, where

[172% (a; + bic)
H?:k+1 (cj—cx)’

Jnk = (1.1)

and

(ar + bicy) H?:l+1 (aj +bjck)
@b T =)

= (1.2)
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In fact, Krattenthaler’s matrix inversion contains all the inversions just mentioned
as special cases.

“Multidimensional” matrix inversions (according to our terminology these are
matrix inversions that arise in the theory of multiple series) associated to root sys-
tems were found by Milne, Lilly and Milne, and by Bhatnagar and Milne. The A,
(or equivalently U(r + 1)) and C, inversions (corresponding to the root systems
A, and C,, respectively) of Milne [37, Theorem 3.3], and Lilly and Milne [31],
which are higher-dimensional generalizations of Andrews’ Bailey transform matri-
ces, were used to derive A, and C, extensions [37], [38] of many of the classical
hypergeometric summation and transformation formulas. Bhatnagar and Milne [3,
Theorem 5.7], [5, Theorem 3.48] were even able to find an A, extension of Gasper’s
bibasic hypergeometric matrix inversion. But none of these multidimensional ma-
trix inversions contained Krattenthaler’s inversion as a special case.

A multidimensional extension of Krattenthaler’s matrix inversion (1.1)/(1.2), as-
sociated to root systems, was found by the author in [42]. Theorems 3.1 and 4.1
of [42], also stated as Theorems A.1 and A.23 in Appendix A of this article, cover
all the previously discovered multidimensional matrix inversions associated to root
systems [5], [31], [38] as special cases. Just recently, another multidimensional ex-
tension of Krattenthaler’s matrix inverse (1.1)/(1.2) was found [30, Theorem 3.1]
which covers the inversion of [10]. The matrix inverse of [30] has applications similar
to those in this article although the series considered in [30] are of simpler type.

Special cases of Theorem A.1 were used in [42] to derive several summation the-
orems for multidimensional basic hypergeometric series. In particular, a D, g¢r
summation theorem, A, and D, quadratic, and D, cubic basic hypergeometric
summation theorems were derived. Moreover, the D, g¢7 summation theorem of
[42] lead to new C, and D, extensions of Bailey’s very-well-poised 19¢9 transfor-
mation in [6].

The purpose of this article is to present some new applications of the multidi-
mensional matrix inversions of [42]. We utilize special (non-hypergeometric) cases
of the multidimensional matrix inversions in Theorems A.1 and A.23 in conjunc-
tion with multiple basic hypergeometric summation theorems to derive a number of
multidimensional (g-)series identities which themselves do not belong to the hier-
archy of (basic) hypergeometric series. Moreover, to most summation theorems in
this article we also provide so-called “companion summations” (for an explanation
of this terminology, see Section 2).

Our article is organized as follows. In Section 2 the notion and use of inverse re-
lations is explained, together with some standard (g-)series notation. The following
sections contain applications of our matrix inversions in Theorems A.1 and A.23.
In Section 3, we derive some A, (¢-)Abel-type expansion formulas. Related A,
(¢-)Abel summations are given in Section 4. One of these summations (Theo-
rem 4.4) has already been given (in an equivalent form with reversed order of
summations) by Bhatnagar and Milne [5, Theorem 5.15]. These authors have also
noted that by combining the different A, ¢-binomial summation theorems with
different multidimensional matrix inversions one can derive several more multiple
g-Abel summations. In this matter, Section 4 aims to give a more exhaustive treat-



ment. In Section 5, we derive some A, (¢-)Rothe-type expansion formulas. Related
A, (g-)Rothe summations are given in Section 6. Section 7 is devoted to identities
of an apparently new type. These identities appear to be new even in the one-
dimensional case. Like the Abel- and Rothe-type identities these new identities can
be derived by inverting specific (basic) hypergeometric summation theorems but
they themselves do not belong to the hierarchy of (basic) hypergeometric series. In
Appendix A, we state the multidimensional matrix inversions together with their
specializations used in this article. In Appendix B, we list some background in-
formation needed in the proofs of our multiple summation theorems such as some
A, basic hypergeometric summation theorems from Milne [37]. Finally, in Ap-
pendix C, we give the proofs of absolute convergence for the nonterminating series
in this article.

2. Preliminaries on inverse relations and (g-)series notation

Here we introduce the basic concept of “inverse relations” and introduce some
standard (g¢-)series notation.

Throughout this article, r-tuples of integers are denoted by bold letters (e.g. n =
(n1,...,n,)). Let F = (fak)n,kez- (as before, Z denotes the set of integers) be an
infinite lower-triangular r-dimensional matrix; i.e. fux = 0 unless n > k, by which
we mean n; > k; for all ¢ = 1,...,r. The matrix G = (gu1)k,1ez~ is said to be the
inverse matriz of F' if and only if

Z fakgxl = Onl

1<k<n

for all n,1 € Z", where 4y, is the usual Kronecker delta.

There is a standard technique for deriving new summation formulas from known
ones by using inverse matrices (cf. [1], [5], [11], [14], [15], [16, Sec. 3.8], [17], [18],
[29], [31], [37], [38], [39], [40], [41], [42]) If (fnk)n,keZT and (gkl)k,leZ" are lower-
triangular matrices being inverses of each other, then of course the following is
true:

> faxx = ba (2.1)
0<k<n
if and only if
Z Jrabr = ak. (2.2)

0<I<k

If either (2.1) or (2.2) is known, then the other produces another summation for-
mula. The less used dual version, the so-called “rotated inversion”, can be used to
derive nonterminating summations. It reads

> fakan = bi (2.3)

n>k



if and only if
> gabi = a, (2.4)

k>1

subject to suitable convergence conditions. Again, if one of (2.3) or (2.4) is known,
the other produces a possibly new identity.

In the subsequent sections we use special cases of our Theorems A.1 and A.23 to
derive a couple of higher dimensional summations for ordinary series and g¢-series.
We find it convenient to use capital letters for the parameters appearing in our
ordinary series and small letters for the parameters in our g-series. This convention
is not standard, it merely aims to distinguish visibly the two types of series in this
article.

Before we start to develop the applications of our Theorems, we need to recall
some standard notation commonly used when considering hypergeometric, respec-
tively basic hypergeometric series (cf. [16]). We define the rising factorial as

(Ao =1, (Ap=AA+1)-(A+k—1), (2.5)

where k is a nonnegative integer. If A is not a nonpositive integer, (2.5) may also
be written as the following quotient of two gamma functions,

(= T (2.6
For ¢-series, let ¢ be a complex number such that 0 < |¢| < 1. Define
(@;9)0 = [[ (1 — ag?), (2.7)
720
and the g-rising factorial,
(@q)o:=1,  (a;9)x:=(1—a)l-agq)---(1-ag""), (2.8)

where k is a nonnegative integer. If @ is not a negative integer power of ¢, (2.8)
may also be written as

(a;q)x = ((a; 0o (2.9)

aq*; @)oo

As usual, we define the g-binomial coefficient as

for nonnegative integers n, k (cf. [16, Eq. (I.39)]). For a thorough exposition on ba-
sic hypergeometric series including lists of selected summation and transformation
formulas, we refer the reader to [16]. In this article, we do not make use of the



compact ¢F; and ;¢; notation for hypergeometric, respectively basic hypergeomet-
ric series (cf. [16, Egs. (1.2.16) and (1.2.22)]). For most of the series occurring in
this article the latter notations cannot be applied and in the other cases we rather
preferred to write the sums explicitly.

Finally, for multidimensional series, we also employ the notation |k| for (k; +...+
k) where k = (k1,..., k).

Concerning the nonterminating multiple series given in this article, we have stated
their regions of convergence explicitly. The proofs of the absolute convergence of
these series are given in Appendix C.

We have followed the convention used by previous authors [3], [5], [22], [23], [24],
[32], [33], [34], [35], [36], [37], [38], [42] for naming our series as A, series. (Note
that some authors also call these series U(n) or U(n + 1) series.) According to this
terminology a series is called an A, series if the summand contains the factor

_ Zi g ki—kj
1 o

II (—==
1<i<j<r z;

in the basic case, and the factor

X, - X;

1<i<j<r

in the ordinary case (either explicitly or “hidden” as in the “A, ¢-binomial coef-
ficient” (B.4)). In Section 7 we come across D, series, see Remark 7.41 where we
also indicate a reason for the terminology.

To most of the summation theorems in this article we also provide so-called “com-
panion summations”. Here we understand a companion to be an identity very
closely (but not trivially) related to the original identity, the summations differing
only by “contiguous” factors. This is best understood by looking at two such iden-
tities in question, e.g. (3.1) and (3.3), or (5.1) and (5.3). Concerning contiguous
relations (and recurrence relations) in A,, partial fraction decompositions serve as
an adequate tool. For instructive demonstrations of the application of partial frac-
tion decompositions in the derivation of results for A, series, see [3], [5], [23], [32],
[33], [35], [36]-

3. A, (g-)Abel-type expansions

A g-analogue of Fuler’s formula

ZVA(A+ BEFY L g
€AZ — Z ( k‘ ) Zke BZ/»7 (31)
k=0
where |[BZe'~BZ| < 1[13, p. 354] (cf. [41, Sec. 4.5]), is the expansion
& b baF)k—1 ) )
1=Z(a+ )(a + bg") (z(a+bqk);q)oo 2 (3.2)

= (@ O)»



being valid for |az| < 1 [30, Eq. (7.3)]. To see that (3.2) is a g-analogue of (3.1),

do the replacements a — 1 —¢* + B, b — —B, z — Z and then let ¢ — 1. In this
k

case, lim,_,; 2 = A + Bk. Also, recall that limy_,; (1 — ¢)Z; )0 = € 2.

The formula !

et? _ - (A+Bk')kzkefBZk
1-BZ P k! ’

(3.3)

where |BZe'~8Z| < 1 (cf. [41, Sec. 4.5]), is a companion of (3.1). A g-analogue of
(3.3) is the expansion

2. (a+ bg* ; ;
Z q zq(a +b¢");q) 2, (3.4)
k=0

1—az

being valid for |az| < 1. (Already this identity seems to be new. We will give
even more general summations in Theorems 3.9 and 3.11.) To see that (3.4) is a
g-analogue of (3.3), do the same replacements which lead from (3.2) to (3.1).

In [9], Carlitz gave multidimensional extensions of (3.1) and (3.3) being related
to MacMahon’s Master Theorem. ¢-Analogues of Carlitz’s Abel-type expansion
formulas were derived in [30, Theorem 7.1 and Eq. (10.5)]. Instead of using the
multidimensional matrix inverse of [30, Theorem 3.1] we use special cases of our
multidimensional matrix inversion in Theorem A.1 and obtain multiple extensions
of (3.2) and (3.4) associated to the root system A,. For the convergence of the
following multidimensional (g-)Abel expansions, see Appendix C.

Theorem 3.5 Leta, b, z, and x1,. .., %, be indeterminate. Then there holds
1= i ( H (ﬂ) S (i—1)ki ﬁ <& . )—1
) Fiyeokr=0 A1Si<y<r 1- ;_J ! ij=1 \%i ¢ ki
X H a+ bay)(a + baig™) K 1T 56)

i=1

x (=1) DIkl g= (547 2ies (3) 1M (2[Ti=i(a + bxig*i); q) ) )

provided |a"z| < ‘q%xj_r [T, | forj=1,....r

Proof: Let the multidimensional inverse matrices fux and gk be defined as in
(A.5)/(A.6). Then (2.3) holds for

T
an = (=1)r Dl = ()47 i (94T (=D nl TT 7o

=1
xT; R,
X 1— —gmim
H ( qu )

1<i<j<r



and

T
b = (=1) DIkl = (5)+r Zin, ($HEZI -1k K] 1

=1

<Gt a), [T (1-Za)

T
1<i<j<r J

by the A, ¢¢o-summation (B.7) in Theorem B.6. This implies the inverse relation
(2.4), with the above values of a,, and bx. After performing the shifts k; — k; + I;,
i =1,...,r, and the substitutions z; — z;q~%, i = 1,...,r, we get rid of the I;’s
and eventually obtain (3.6). [ |

Theorem 3.7 Leta, b, z, and x1,...,x, be indeterminate. Then there holds
%) 1— ﬂqki—kj r . -1
z; 7‘ i )
= 2 (I () e 1T ()
k1yeekr=0 \1<i<j<r zj i,j=1 J ki

x(a + b)(a + bg!kkl=1 (—1)r=DIk| (3.8)
g (i () Tl s (z(ﬁqug;q)w),

provided |az| < ‘q%x;T [Ty | forj=1,...,r.

Proof: Let the multidimensional inverse matrices fuix and gy be defined as in
(A.11)/(A.12). Then (2.3) holds for

an = (~1) DIl g (5)4r Sy (54T ni lnl TT 7o

=1

X .
X 1— —g™ ™™
I (-2e)

1<i<j<r

and

T
bie = (—1) DIl = (D) r Tica (4 Tiea -0k e T ke
=1

x (z(a+ bq|k|);q) H (1 _ z_jqki—kj)

* 1<i<j<r

by the A, ¢¢o-summation (B.7) in Theorem B.6. This implies the inverse relation
(2.4), with the above values of a,, and bx. After performing the shifts k; — k; + I;,
i =1,...,r, and the substitutions b — bg~ 1\, z; — z;¢7%, i =1,...,r, we get rid
of the [;’s and eventually obtain (3.8). ]

The following two theorems contain “companion identities” of Theorems 3.5 and
3.7, respectively.



Theorem 3.9 Leta, b, z, and x1,...,%, be indeterminate. Then there holds
1 i 1- %qki_h'j r i -1
See > (I (SR I ()
k1yeenskr=0 \1<i<j<r zj i,5=1 J ki
x ¢~ ()7 Tl (DR 608 T (@ + baggh) Ml (3.10)

i=1

x (1) M (g [T0_ (a + baig™);q) ) ,

forj=1,...,r

Proof: Let the multidimensional inverse matrices fhx and gk be defined as in
(A.5)/(A.6). Then (2.3) holds for

provided |a"z| < q%la:j_r [T, =

am = (= 1) DIl = ()4 Sl () +EE Gl ] <1_%qm—nj>

1<i<j<r J
T

X H x:"i_lnl (a + bx;q™)

=1

and

b = (= 1) (DIl g=(5)+r Sl () +Zim G0k ] (1_ﬁqki—kj)

1<i<j<r i
x (1—a"z) (2q[1;—, (a + bzig") H xrk’ |k|(a + brig™).
i=1

To see that (2.3) holds with the above values of a, and by, we apply the t — —b/a,

x; = 1;q%, g = ¢ R i = 1,...,r, case of the partial fraction decomposition
(B.5),
. . o a [0 h/a)
H (a + bx;g™) _ q|“|*|k| +Z i=1 _ 7
i1 (0t bz " =1 (a + bxjq*i) i_]_[l(l—qki*’”’fxi/xj)
i

and interchange summations to split > ., fakan in 7 4+ 1 sums, each of which
can be evaluated by means of the A, g¢o-summation (B.7) in Theorem B.6. The
first sum can be evaluated directly by (B.7). In the j-th of the remaining r sums
(4 =1,...,r), we first have to perform the shift n; — n; +1 before we can evaluate
the sum by (B.7) (with ; — z;¢). In the remaining sum of  + 1 products, we pull
out common factors and simplify the rest again by application of partial fraction
decomposition (here, the t = —b/a, z; — x;¢", y; = 0,7 =1,...,r, case of (B.5)),



T

1—zﬁ(a+bxiqk")z a =1-a"z.

=1 i=1 (a+ bzjqhi) [](1—gki—Fiz;/z;)

<

-

[
Wl
<

Collecting our calculations, we have established (2.3), with the above values of ay
and bx. This implies the inverse relation (2.4), with the above values of a, and

bx. After performing the shifts k; — k; +1;, ¢ = 1,...,r, and the substitutions
;i

T, = xq " 1 = 1,...,r, we get rid of the ;s and eventually obtain (3.10).
|
Theorem 3.11 Leta, b, z, and x1, ..., x, be indeterminate. Then there holds
1 oo 1— i_;qki*kj r T -1
e 2 (L () I (e
k1, ke=0 \1<i<j<r Tj i,j=1 J ki
x (a + bgkl) Kl g=(5)+r s ()2 =Dk (3.12)
T
x (—1)(r =Dkl fo’“i—““ . LK (zq(a+bq|k|)'q) )
(] I I’
i=1 o
provided |az| < ‘q%x]ﬂ [Ty | forj=1,...,r.

Proof: Let the multidimensional inverse matrices fux and gy be defined as in
(A.11)/(A.12). Then (2.3) holds for

g = (1) Vel g (B4 i ()T -ome T (1_ﬂqmnj)

- Zj
1<i<j<r
T
x (a + bg™) 27! H zm
-1
and
b = (1) DK g (DS (WEia6-vs T (1 _ ﬁqkikj)
1<i<j<r L

x (1-a2) (sa(a-+bg*):q) (a+ bg*) 2 [L75.

i=1

To see that (2.3) holds with the above values of a,, and by, we apply the ¢t — 0,

x; = x¢%, yi = g% R i = 1,...,r, case of the partial fraction decomposition
(B.5),
(@+bg™) _ ok n a(l — g~
(a+bg™) ~ 1 (@+bd¥)
r [T =g hai/zy)
_ gy @ =1 ’
(a+ bglkl) &~ T

LT (1= gki—Rizi/x;)

J

[
ol
[N
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and interchange summations to split } <y fak@n in r 4+ 1 sums, each of which
can be evaluated by means of the A, g¢o-summation (B.7) in Theorem B.6. The
first sum can be evaluated directly by (B.7). In the j-th of the remaining r sums
(4 =1,...,r), we first have to perform the shift n; — n; +1 before we can evaluate
the sum by (B.7) (with ; — x;¢). In the remaining sum of r + 1 products, we pull
out common factors and simplify the rest again by application of partial fraction
decomposition (here, the t — 0, 2; — 2;¢%, y; = 0, i =1,...,r, case of (B.5)),
. 1
1-az Z - =1-az.
i=t [ (1 = ¢ki~hizi/z;)
i=1
i%j

Collecting our calculations, we have established (2.3), with the above values of an
and by,. This implies the inverse relation (2.4), with the above values of a, and
bx. After performing the shifts k; — k; +1;, ¢ = 1,...,r, and the substitutions
b bg W,z = 2iq7 %, i =1,...,r, we get rid of the I;’s and eventually obtain
(3.12). [

We finish this section with two ¢ — 1 limiting cases of our A, g-Abel expansions.
Note, that the expansions (3.14) and (3.15) below do not generalize (3.1) and (3.3),
for here we indeed require r > 2.

Theorem 3.13 Let A, B, Z, and X4, ..., X, be indeterminate. Then there holds
o0 T
_ Xi-l-ki—Xj—kj 1
o (I () Moo xy
k1,...,kr=0 \1<i<j<r 1,j=1 (3‘14)

x A (A + Blk|)¥=1 (=1)(r— DIk Z|k|> ,

Xi+ki—X;—k\ 1
H < A +)’;Z le k]) H (1 + X’i _ Xj)];l
1<i<j<r . irj=1 (3.15)

><(A+B|k|)|k| (_1)(T—1)|k| Z|k|>,

- s

k)l,...,kh—:O

provided r > 2.

Proof: In (3.8) and (3.12), respectively, do the replacements a — 1 — ¢ + B,

b —B, 2+~ Z(1—q)", x; = ¢%i,i=1,...,r, and then let ¢ — 1. In this case,

limg_,q %‘1;(‘ = A+ BJk|. Also, observe that lim, 1 ((1—¢)"Z;¢)eo = 1 forr > 2.
|

4. A, (g-)Abel summations

A g-analogue of Abel’s theorem
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(A+xn”:ﬁé(Zy«A+Bm#4«7—Bmww (4.1)

k=0
(cf. [41, Sec. 1.5]) is the summation

n

=3 K ] (a+ B)(a+ bg)* 1 (c(a+ ba*); @) (12)

(see [26], [30, Eq. (8.1)]). To see that (4.2) is a g-analogue of (4.1), do the replace-
A

ments ¢ — 1, a — Aroy T (A+C])3(17q), b — _(AT})B(qu and then let ¢ — 1.

Another g-analogue of (4.1) is

_y[n] _(=cla+b) k. ey e
1_/;)[k:|q (1—c(a+bq_k))(c(a+bq i@k (atbg e (43)

To see that (4.3) is a g-analogue of (4.1), do the replacements ¢+ 1, a — (A-I:;C’) —
3 and then let ¢ — 1.

oY ¥ o

Other, nonsymmetric, g-Abel summations can be found in [27], being derived
there by means of umbral calculus.

In [9], Carlitz gave a multidimensional extension of (4.1) being related to MacMa-
hon’s Master Theorem. A g¢-analogue of Carlitz’s Abel summation formula was
derived in [30, Theorem 8.1]. Here we use special cases of our multidimensional
matrix inversion in Theorem A.1 to derive several multiple extensions of (4.2) and
(4.3) associated to the root system A,.

In fact, we continue the work on A, ¢-Abel summations initiated by Bhatnagar
and Milne [5]. These authors have already given one A, g-Abel summation theorem
(see Remark 4.6) which they derived by multidimensional matrix inversion. These
authors have also noted that by the same method several more multiple ¢g-Abel
summations can be derived. We take up this matter, and provide a bunch of more
A, g-Abel summation theorems.

Theorem 4.4 Let a, b, ¢, and xy,...,x, be indeterminate, and let ny,...,n, be
nonnegative integers. Then there holds

Zi .
( T (MQMI)M c|k|
ij=1 (i—;q;q)ki (;”—;qH’“"“f;q)an_ (4.5)

x (eIliz @+ b2ia™);0) 1y g [1(a+bzi)(a+ bwiq’“)kl) '
=1

- ¥

0<k;<mn;
i=1

..... T

Remark 4.6. The Abel summation (4.5), with reversed order of summations, is
equivalent to Bhatnagar and Milne’s Abel binomial theorem [5, Theorem 5.15].
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Proof of Theorem 4.4: Let the multidimensional inverse matrices fnx and gy
be defined as in (A.8)/(A.9). Then (2.2) holds for

akx =

q
T X ;q
<C l_Ii:1(a-73iqlCz + b) ) k|
and
b = q(|1|;-1) ¢

by the A, terminating g-binomial theorem (B.10) in Theorem B.9. This implies
the inverse relation (2.1), with the above values of ax and b;. In the resulting
identity, we reverse oder of summations by performing the substitutions k; — n; —
ki, i=1,...,r. After performing the substitutions z; — ¢~ ™ /z;,i=1,...,r, and
¢+ cqlnl H;Zl x;, we eventually obtain (4.5). ]

Remark 4.7. We reversed order of summations in the proof of Theorem 4.4 because
we prefer to have the sum in a form where the “contiguous” factor

ﬁ (a+ bxy)

= (a+bxigh)

appearing in the summand of the series cancels when k = 0 (instead of k = n).

Similar reasoning holds for most of the other terminating summation theorems in
this article.

Theorem 4.8 Let a, b, ¢, and x1,...,2, be indeterminate, and let ny,...,n, be
nonnegative integers. Then there holds

: 22 giq)

1= Z H (EJ' %4 ni q—eg(k) c\k\
o<k on: S <ﬂq.q) (ﬂqlﬁ-ki*kj-q)

1';1?.._.?13 10_1 Tj ’ ki Zj ’ nifki

X H(a + bx;)(a + bxiqk")‘k‘_le"

(4.9)

i=1
T
<[] (cxiqki_lkl [T)—i(a+ bxjq"); Q)n‘ . ) ;
i=1 T

where ex(k) is the second elementary symmetric function of {ki,...,kr}.

Proof: Let the multidimensional inverse matrices fnx and gi) be defined as in
(A.8)/(A.9). Then (2.2) holds for

akx = ﬁ a%i 3 q
i=1 \ ¢ Hg:l (axj qkj + b) ki

and
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,

r L; _ .

by = g1+ (5) I ES
=1

by the A, terminating g-binomial theorem (B.11) in Theorem B.9. This implies the
inverse relation (2.1), with the above values of ax and b;. In the resulting identity,
we reverse order of summations by performing the substitutions k; — n; — k;,

i =1,...,r. After performing the substitutions x; — ¢ ™ /z;, i = 1,...,r, and
¢ = ][}, =;, we eventually obtain (4.9). [
Theorem 4.10 Let a, b, ¢, and x4, ...,z be indeterminate, and let nq,...,n, be

nonnegative integers. Then there holds

) P PO

i Ti . Ti 41+ki—k;.
gi’;,snf i,7=1 (z]. q; q) ks (:c]- q 73 q) —k
T

i %
x [J(a+ bai)(a+ baigh )< 1" (4.11)
i=1
C inl—mn .
<11 (—_‘Il T o (a+ bm’”)m) >
=1 i n;—k;
where ex(k) is the second elementary symmetric function of {ki,..., kr}.

Proof: Let the multidimensional inverse matrices fux and gy be defined as in
(A.8)/(A.9). Then (2.2) holds for

T 1+|k|—k:i
q
ax = ;
) H (Cwi ngl(aqukj +b) q)k;.

=1

and
bl = q62(1)+(m2+1) cf‘ll H x;li
i=1

by the A, terminating ¢g-binomial theorem (B.12) in Theorem B.9. This implies the
inverse relation (2.1), with the above values of ax and b;. In the resulting identity,
we reverse order of summations by performing the substitutions k; — n; — k;,

i =1,...,r. After performing the substitutions x; — ¢ ™ /z;, i = 1,...,r, and
¢ — g H;:1 xj, we eventually obtain (4.11). [ |
Theorem 4.12 Let a, b, ¢, and x4, ...,z be indeterminate, and let ny,...,n, be

nonnegative integers. Then there holds
r (;’—jq;q)n
1= :
0<k-Z<n- -1-__[1 (ﬂq'q) (ﬂql“ﬂ—ki'q)
i1 N IT i gy \ % " ik (4'13)

X (a + b)(a + bglkhk=1 Ikl (c(a + bg'*hy; q)

In|— k|
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Proof: Let the multidimensional inverse matrices fnx and gi) be defined as in
(A.14)/(A.15). Then (2.2) holds for

- g .
W= (C(aqlkl + b)7q) |

and
b = CI(m;l) c M

by the A, terminating ¢g-binomial theorem (B.10) in Theorem B.9. This implies the
inverse relation (2.1), with the above values of ax and b;. In the resulting identity,
we reverse order of summations by performing the substitutions k; — n; — k;, i =

1,...,r. After performing the substitutions a — ag~!", ¢ — cg/®l, z; — ¢~ ™ [z,
i=1,...,r, we eventually obtain (4.13). [ |
Theorem 4.14 Let a, b, ¢, and x4, ...,z be indeterminate, and let nq,...,n, be

nonnegative integers. Then there holds

r (%q;q) r

_ i ni —ea(k) K| k;

0<ki<n; \4,j=1 (;q;q) (;q ‘ ’;Q) i=1
i=1, 7 ki J ni—ki

(4.15)

< (a+B)a+ b ) ¥ ] (o (ag ™ +0ig) ),

i=1 ni—ki

where ex(k) is the second elementary symmetric function of {ki,...,kr}.

Proof: Let the multidimensional inverse matrices fhx and gk be defined as in
(A.14)/(A.15). Then (2.2) holds for

_T i
=1l (e(aqk F b)’q> k
and

1

.
by = g1+ (5) I I1 "
i=1

by the A, terminating ¢g-binomial theorem (B.11) in Theorem B.9. This implies the
inverse relation (2.1), with the above values of ax and b;. In the resulting identity,
we reverse order of summations by performing the substitutions k; — n; — k;, 1 =

1,...,r. After performing the substitutions a — ag™"!, z; — ¢~™ Jxi,i=1,...,r,
we eventually obtain (4.15). [ |
Theorem 4.16 Let a, b, ¢, and x4, ...,x, be indeterminate, and let ny,...,n, be

nonnegative integers. Then there holds
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- ¥

0<ki<m;
=1,

r (i—jq;q) _ U
Uz q62(k) Clk‘ sz— 4
)
i—ki

Zi . Ti ki —Kj .
ij=1 (z—quq)k_ (w—jq”’” ia)

x (a+ b)(a + bg™ )= H <£q'“"”i (a + bg™); q) ) :

=1 \Ti ni—ki

(4.17)

where ex(k) is the second elementary symmetric function of {ki,...,kr}.

Proof: Let the multidimensional inverse matrices fnx and gi be defined as in
(A.14)/(A.15). Then (2.2) holds for

r 1 [k|
- q .
=11 (5 ),

1=

and
bl = qe2(l)+(m2+1) c_‘ll H_/L-Z_ll
=1

by the A, terminating g-binomial theorem (B.12) in Theorem B.9. This implies the
inverse relation (2.1), with the above values of ax and b;. In the resulting identity,
we reverse order of summations by performing the substitutions k; — n; — k;, i =
1,...,r. After performing the substitutions a ag Pl e ez s g /i,
i=1,...,r, we eventually obtain (4.17). [ |

The following two theorems contain “companion identities” of Theorems 4.4 and
4.12, respectively.

Theorem 4.18 Leta, b, ¢, and x1,...,x, be indeterminate, and let ny,...,n, be
nonnegative integers. Then there holds

- (i_j'q; q)n-
1= -
0<k_2< ) H Zi g. Zi gltki—k;.
)SkiSng 1,7=1 zQ7q xq ' q
i=1, .7 I ki J n;—k;

(1 = eJIi, (az; + b)) N
(1= eIl (az; + bg~ ")) (cITi_; (az; + bg=F ),q)‘k‘

x = T] (az: + qu)|n||k|>.

i=1

(4.19)

Proof: Let the multidimensional inverse matrices fux and gy be defined as in
(A.8)/(A.9). Then (2.2) holds for

1 q
(1~ :
i ( c H::l (azi + b)) (CH::I (axiqki +b) q) [k|—1
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and

(1 (ax;qhi +b)
= H i

iy (ax; +b)

To see that (2.2) holds with the above values of ax and by, we apply the t — —a/b,
@i = x5, ¥+ ¢, i =1,...,r, case of the partial fraction decomposition (B.5),

r b - 1—qliz;/x;
H (azig" +b) 4V + Z il;Il( /)

11 (ax; +b) ’
i=1 j=1 (a$3 =+ b) (1 — xi/xj)

=

[
Wl
S

and interchange summations to split > . < gkib1 in 7 + 1 sums, each of which
can be evaluated by means of the A, terminating ¢g-binomial theorem (B.10) in
Theorem B.9. The first sum can be evaluated directly by (B.10). In the j-th of
the remaining r sums (j = 1,...,r), we first have to perform the shift [; — [; +1
before we can evaluate the sum by (B.10) (with z; — z;¢). This gives

q
T ; ' q
(C Hi:l (awiqkl + b) ) x|

T
1 i=1
T (o™ +7) 4

) (cn;lmiqki - b)”) o

Il
—
—~
)
8

<
_|_
=
=
—~
—
I
8
~
8
<

Now, by application of partial fraction decomposition (here, the t = —a/b, z; — x;,
yi— ¢, i=1,...,r, case of (B.5)), and simplification, this is transformed into ay.
Thus we have established (2.2), with the above values of ax and b;. This implies the
inverse relation (2.1), with the above values of ay and b;. We simplify the resulting
identity a bit, and eventually obtain (4.19). ]

Theorem 4.20 Leta, b, ¢, and x1,...,x, be indeterminate, and let ny,...,n, be
nonnegative integers. Then there holds

T
0<Ie <n1 i,j=1 w;q1+kl k. 3 q

1= Z ( H (%’q;q)m cnl=lk|
(%q;q)ki ( )ni,k,. (4.21)

(1 —-cla+10))
(1 — c(a + bg—Ikl))

(C(a + b~ *); q) Wt by~ Kl =k

Proof: Let the multidimensional inverse matrices fnx and gi be defined as in
(A.14)/(A.15). Then (2.2) holds for
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ax = (1 - c(a::- b)) (c(aq'f| + b);q> k| -1

and
my _py (ag" +b)
b = (2) C |1‘ e
1=4 (a+0b)
To see that (2.2) holds with the above values of ax and by, we apply the ¢t — 0,
T = @i, yi = ¢, i =1,...,r, case of the partial fraction decomposition (B.5),
T
1—dlig, )
(ag"! +b) b(1 — gl p o LA —daw/z)
E T gl =g+ L ,
(a+0) (a+0b) (a+0b) = 1= /)
i=1
i%i

and interchange summations to split > o <) gxib1 in r + 1 sums, each of which
can be evaluated by means of the A, terminating g¢-binomial theorem (B.10) in
Theorem B.9. The first sum can be evaluated directly by (B.10). In the j-th of
the remaining r sums (j = 1,...,r), we first have to perform the shift [; — [; +1
before we can evaluate the sum by (B.10) (with z; — z;¢). This gives

q .
(da=m9),,
r 10— qriai/zy)

_ b i=1 q .
(a +b) c(agl¥l + b) ng ﬁ (1 = 2i/2;) (c(aq|k| +b)’ q) Ik|—1 '
i

Now, by application of partial fraction decomposition (here, the ¢t — 0, x; — x;,
yi — ¢~ ,i=1,...,r, case of (B.5)), and simplification, this is transformed into aj.
Thus we have established (2.2), with the above values of ax and b;. This implies the
inverse relation (2.1), with the above values of ax and b;. We simplify the resulting
identity a bit, and eventually obtain (4.21). [ |

We finish this section with two ¢ — 1 limiting cases of our A, ¢-Abel summations.
These are higher-dimensional generalizations of the Abel summation (4.1).

Theorem 4.22 Let A, B, C, and X4, ..., X, be indeterminate, and let ny,...,n,
be nonnegative integers. Then there holds

(A+C)ln

3 i (1+Xi — Xj)u,
- Z ( H |:(]-+Xi_Xj)k:,- (1+Xi+;§i_Xj_kj)m—ki:| (423)

0<ki<n; \4,j=1
i=1

=1,..., E

x A (A + Blk)¥ 1 (C - B|k|)|“|_|k|).
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Proof: In (4.13), do the replacements a — (Aic) + (A+C])B(17q), b —Mﬁ,
c— 1,2, ¢%,i=1,...,7r, and then let ¢ — 1. [

Remark 4.24. The same specializations as above applied to (4.15), (4.17), or (4.21)
(up to relabelling), also give identity (4.23).

Theorem 4.25 Let Ay,...,A,, B, and C be indeterminate, and let nq,...,n, be
nonnegative integers. Then there holds

Ai Aj
C\n\_ Z (ﬁ (1+__?)ni
- Ai A A A
i \om (105 %), (k=B k) L] )
. |kl |1
x(c_njzl(AjJerj)) HA (A; + Bk;)
. B
Proof: In (4.5), do the replacements a +— T =) b— m, ¢ — 1,
z; — q/B i=1,... r and then let ¢ — 1. ]

Remark 4.27. The summation in Theorem 4.25 is equivalent (with reversed order
of summations) to [5, Corollary 5.21]. The same specializations as above applied
0 (4.9), (4.11), or (4.19) (up to relabelling), also give identity (4.26).

5. A, (g-)Rothe-type expansions

Another formula due to Euler (compare with (3.1)) is

> A A+ Bk -
1+2)%=>Y" +Bk( L )Z’“(1+Z) Bk, (5.1)
k=0
where (1+Z)B < 1[13, p. 350] (cf. [41, Sec. 4.5]). A g-analogue of this identity is

o0

1—(a+b) (ag % +b;q)  ( N 1
;; 1—(ag~* +b) (4; Q)% (—1)’"11( ) (z(a+ bqk)7Q)oo 2", (5.2)

being valid for |az| < 1 [30, Eq. (7.4)]. To see that (5.2) is a g-analogue of (5.1),

do the replacements a — ¢* — B, b — B, z — —Z and then let ¢ — 1. In this case,
—k i

limg_,q w = A+ Bk + j — k. Furthermore, we use lim,_, W =

(14 Z)=A-Bk,

The formula

A oo
u+2- ?Z =y (A ZBk) ZM1 4 2)7 Pk, (5.3)
-7 =
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(B-1)Z

(1+2)"
.3) is the expansion

(5.3) is the expansi

where ‘ 1 (cf. [41, Sec. 4.5]), is a companion of (5.1). A g-analogue of

(24 Qoo i (ag™" + b; )i

1—az (@) (—1)kq(g) (2q(a + bg"); q)Oo q* 2F, (5.4)
k=0 '

being valid for |az| < 1. (Already this identity seems to be new. We will give
even more general summations in Theorems 5.9 and 5.12.) To see that (5.4) is a
g-analogue of (5.3), we can do similar replacements which lead from (5.2) to (5.1).

In [9], Carlitz gave multidimensional extensions of (5.1) and (5.3) being related
to MacMahon’s Master Theorem. g-Analogues of Carlitz’s Rothe-type expansion
formulas were derived in [30, Theorem 7.3 and Eq. (9.2)]. From these a (noncommu-
tative) g-analogue of MacMahon’s Master Theorem was deduced [30, Theorem 9.2].
Also other multiple extensions of (5.1) and (5.2), associated to the root system A,.,
were found [30, Theorems 7.8 and 7.6]. Instead of using the multidimensional ma-
trix inverse of [30, Theorem 3.1] we use special cases of our multidimensional matrix
inversion in Theorem A.l to derive multiple extensions of (5.2) and (5.4) associ-
ated to the root system A,. For the convergence of the following multidimensional
(¢-)Rothe expansions, see Appendix C.

Theorem 5.5 Leta, b, z, and xq,...,x, be indeterminate. Then there holds
oo 1— ﬂqki—k_j r . 1
T T Gi—1)k; i
(@)oo= 3. ( 11 (1_7_> A | | (x—fq;q)
k1y...,k-=0 1<i<j<r T i,5=1 Vi ki
(]. — (a + b)) — || k r rki— k|
b; Ik Hi 5.6
A= (M +p) 4 FHDm2 II= (5.6)

i=1

x (=17 g7 == (3 (2(a+ bg); q)oo > :

provided |az| < q%:cj” [T @i forj=1,...,r.

Proof: Let the multidimensional inverse matrices fhx and gk be defined as in
(A.17)/(A.18). Then (2.3) holds for

G = (—1)= DIl = (3)4r Siay (4TI 0m . (1 - ﬁqm—m)

o Zj
1<i<j<r
T
ol . -1 rni—|n
x zl |(z,q)|n| sz'
=1

and

b = (=)0 DIk = () +r S (LR ] (1_ﬁqki—kj)

oy X
1<i<j<r

(2(a+ bg*); q) ﬁ 7=kl

k|
X z
(2:@)oo el
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by the A, 1¢1-summation (B.15) in Theorem B.14. This implies the inverse relation
(2.4), with the above values of a,, and bx. After performing the shifts k; — k; + [;,

i=1,...,r, and the substitutions a — ag/'l, z — z¢ W, z; » z;q7 %, i =1,...,r,
we get rid of the [;’s and eventually obtain (5.6). [ |
Theorem 5.7 Leta, b, z, and x1,...,%, be indeterminate. Then there holds
0 1— ﬂqki—k]’ T . -1
. v ;

(29)00 = Z H 117& CIE“I(1 ki H (;(JQQ)

kiyenkr=0 \1<i<j<r zj i,j=1 J ki

(1 -(a+b))

Ty @ o 69)

x(~1) (%) (z(a+bQ'k');q) )

provided |az| < 1.

Proof: Let the multidimensional inverse matrices fnx and gi be defined as in
(A.17)/(A.18). Then (2.3) holds for

T ; ) X ) )
an = 2 (z1) ) =0 ] (1 - jq"""]>
1<i<j<r J

and

b = 2/x (2(a+bg™);q) Zim0k ] (1 _ ﬁqki—kj>

(zaQ)oo 1<i<j<r -’I;j
by the A, ;#1-summation (B.16) in Theorem B.14. This implies the inverse relation
(2.4), with the above values of a,, and bx. After performing the shifts k; — k; + I;,
i=1,...,r, and the substitutions a — ag!!l, z — z¢=V, z; — z;q7 %, i =1,...,r,
we get rid of the /;’s and eventually obtain (5.8). ]

The following two theorems contain “companion identities” of Theorems 5.5 and
5.7, respectively.

Theorem 5.9 Leta, b, z, and x1,...,%, be indeterminate. Then there holds
T; ki—k;

(2¢:9) — 1— hghh -
e - 2 |\ (=)

E1yeeekr=0 \1<i<j<r T .

_ ZT; B

x (ag |k|+b;Q)\k\ (=1)7Ikl Ikl H (;q;q) (5.10)
ij=1 "7 ki

.
Xq|k|+7"Zf=1 (%) (zq(a 4 bq‘k‘); q) H x;‘ki_lk|> ,
=1
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provided |az| < q%:cj” [Ty | forj=1,...,r.

Proof: Let the multidimensional inverse matrices fhx and gk be defined as in
(A.17)/(A.18). Then (2.3) holds for

= (1) Dl g~ (347 Zi () +Sim-vm (1_ﬁqm—m>

py Zj
1<i<j<r

x (a+ (b—1)g"™) 2™ (zq0)7} [

i=1
and
bie = (—=1) DK = (57 Zin S+ -1k I (1 _ ﬂqki—k»
1<i<i<r T
Z(I(a+bq|k|)§CI) - ki —|k
x (a+ (b—1)¢*) M (1 - az ( oo T 2k x.
(@ (0= 1) s (1= as) SR ]

To see that (2.3) holds with the above values of a, and bk, we apply the t —
—(b-1)/a, z; = g™, yi = ¢ %, i = 1,...,r, case of the partial fraction
decomposition (B.5),

(a+ (b 1)g")
(a+ (b 1)g¥)

a(l — qlnl_lkl)
(a+(b—1)q)

T

_ ol a '
q T ar 0= Da") ; (1—ghihiz;/aj)

gmI— 1Kl

=

(1—qmihiz;/xy) (5.11)

)

@
Il
-

3

[
W
S e

and interchange summations to split > <, fak@n in r + 1 sums, each of which can
be evaluated by means of the A, ;¢;-summation (B.15) in Theorem B.14. The
first sum can be evaluated directly by (B.15). In the j-th of the remaining r sums
( =1,...,r), we first have to perform the shift n; — n; +1 before we can evaluate
the sum by (B.15) (with z; + z;q). In the remaining sum of r +1 products, we pull
out common factors and simplify the rest again by application of partial fraction
decomposition (here, the t — 0, 2; — 2;¢%, y; = 0, i =1,...,r, case of (B.5)),

: 1
1—az Z = =1—-axz.

s=t [I(1 =g~ Fizi/z;)
i=1

i

Collecting our calculations, we have established (2.3), with the above values of a,
and by,. This implies the inverse relation (2.4), with the above values of a, and
bx. After performing the shifts k; — k; +1;, ¢ = 1,...,r, and the substitutions
a—ag'l, z— 2¢7 M, z; = x;q7 %, i =1,...,r, we get rid of the I;’s and eventually
obtain (5.10). [ |
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Theorem 5.12 Let a, b, z, and xq,...,x, be indeterminate. Then there holds
i ki—k;
(69 _ - iy (i=1)k;
l—az Z H 1-% e
k1,-.0kr=0 \1<i<j<r Tj L
_ Z;
< og ™+ i (-0 T] (Zaia) (5.13)
J ki

,5=1

x 2kl g+ (5) (zq(a+bq|k|);q) )

provided |az| < 1.

Proof: Let the multidimensional inverse matrices fhx and gy be defined as in
(A.17)/(A.18). Then (2.3) holds for

E ; ) xT; . )
an = (a+ (b= 1)g™) 2 (219) ) gZi=eC70m ] (1 - w—fq"l‘"])
1<i<j<r J

and

[kl[Y.
Z‘k‘ (z(I(a(+ bCI) )7Q)OO qZ::l(i*l)ki
2q59)

T (),
Tj

1<i<j<r

b= (a+ (b—1)¢™) (1 - a2)

To see that (2.3) holds with the above values of a, and bk, we apply the ¢t —
—(b-1)/a, z; = x;¢", y; = ¢~ %, i =1,...,r, case of the partial fraction de-
composition (B.5), as in (5.11), and interchange summations to split 3 <1 fnk@n in
r+1 sums, each of which can be evaluated by means of the A, ¢;-summation (B.16)
in Theorem B.14. The first sum can be evaluated directly by (B.16). In the j-th of
the remaining r sums (j = 1,...,7), we first have to perform the shift n; — n; +1
before we can evaluate the sum by (B.16) (with z; — z;¢). In the remaining sum
of r + 1 products, we pull out common factors and simplify the rest again by ap-
plication of partial fraction decomposition (here, the t — 0, z; — ¢ % /z;, y; = 0,
i=1,...,r, case of (B.5)),

T (=1)" |k|7rij._r T
1+az E ( T) 1 i i o
s=t  JI(1-g"Fizi/z;)
i=1

i#j

=1-az.

Collecting our calculations, we have established (2.3), with the above values of a,
and bx. This implies the inverse relation (2.4), with the above values of a, and
bx. After performing the shifts k; — k; +1;, ¢ = 1,...,r, and the substitutions
a— agll, 2 — 2¢7 W, 2 = 275, i = 1,...,r, we get rid of the I;’s and eventually
obtain (5.13). [ |
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We finish this section with two ¢ — 1 limiting cases of our A, ¢-Rothe expansions.
Note, that the expansions (5.15) and (5.16) below do not generalize (5.1) and (5.3),
for here we indeed require r > 2.

Theorem 5.14 Let A, B, Z, and X4, ..., X, be indeterminate. Then there holds

> Xi+ki—X,—ki\ _

Kk1,...,kr=0 1<i<j<r 4,j=1 (515)

A+B&Dkﬁﬂ)

A
A+ BK]|

T

X1'+k:i—Xj—kj _1

1<i<j<r i,j=1 (5.16)

MA+BmmHﬂH)

-5

E1yereskr=0

provided r > 2.

Proof: In (5.8) and (5.13), respectively, do the replacements a — ¢* —B—1, b —
B+1,z2—-Z(1—¢q)" ', 2; = ¢%,i=1,...,r, and then let ¢ — 1. In this case,

limg_q %:‘JFW = A+ B|k| +j. Also, observe that limg_,; W =1
since r > 2.

Remark 5.17. Note, that if we specialize (5.6) and (5.10) as above, we would obtain
(5.15) and (5.16), respectively, with Z replaced by (—1)""1Z.

6. A, (¢g-)Rothe summations

A g-analogue of the (Hagen-)Rothe summation formula [19]
A+C ~ A (A+Bk\ (C-Bk
_ 1
< n ) ;A%—Bk( k )(n—k) (6.1)

is the summation

oS [n] A=latb) e
(C’q)n_kz:%[k]ql—(aq_k—}—b)( q +b7Q)k (62)

X (c(a+0bg");@)n—r (~1)*q(3) &

(see [27], [30, Eq. (8.5)]). To see that (6.2) is a g-analogue of (6.1), do the replace-
ments a — g% — B, b B, ¢ ¢~ 47, and then let ¢ — 1.

In [9], Carlitz gave a multidimensional extension of (6.1) being related to MacMa-
hon’s Master Theorem. A g-analogue of Carlitz’s Rothe summation formula was
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derived in [30, Theorem 8.2]. Here we use special cases of our multidimensional
matrix inversion in Theorem A.1 to derive several multiple extensions of (6.2) as-
sociated to the root system A,.

Remark 6.53. Of course, there are different ways to write an identity with binomial

coefficients like (6.1). After performing the substitutions A — —A, B — —B,
C +— —C this identity may be written as

(A+C)n=>_ <Z) ﬁm + BEk)y, (C — Bk)p_». (6.4)
k=0

We provide multidimensional extensions of this form of the Rothe summation (see
Theorem 6.15).

Remark 6.5. If we iterate (6.2) s — 1 times we obtain

N £ 1—(a; +b; Y
(C; q)N = Z ( |:k'1 o ks:| H 1— (a-(q—’“i +)b) (aiq ki + b’uq)kz

k1,..., ks>0 q =1
e , N e (5) (6.6)
x (eITiz (i +0ig™)3q) y_pp (D)™ g'2 :
x cl¥l H (ai + biqk")E;iJr1 kj)
=1

(see [30, Eq. (8.4)]), where

[ N ] — (G
iyoos ks q C (G Dk - (G D, (Q§Q)N—|k|

is the g-multinomial coefficient. Identity (6.6) is a Rothe-type generalization of the
g-multinomial theorem (for the g-multinomial theorem cf. [16, Exercise 1.3 (ii)]).

Other similar convolution formulas, in the ¢ = 1 case, are listed in [20]. For a
combinatorial approach to convolution formulas containing many free parameters,
see [44].

In the following, we give a couple of A, g-Rothe summations.

Theorem 6.7 Let a, b, ¢, and x1,...,2, be indeterminate, and let ny,...,n, be
nonnegative integers. Then there holds

_ - r (ﬁﬁ—jq;q)m
H(Cl'“q)m = Z (H (;—;q;q)ki ( ] ) .

T 1+ki—k;.
i=1 0<ki<ni \i,j=1 7.4 thi—kisq
i=1,...,r J ni i

(1—(a+0))
(I~ (ag ¥ +0))

r k; ; i -
X(_l)\k\ qu=1 (2) Hajfl (cmiqk’ (aq [kl + b)7 q)n-—k' ) .

i1

(ag™ ™! + b; q) ey

-~
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Proof: Let the multidimensional inverse matrices fnx and gi be defined as in
(A.20)/(A.21). Then (2.2) holds for

71 Id
q qz;
ax = | 34 —— 34
« ((aq|k|+b) )k g<0(aq'k'+b) )ki

and

by = U+ ( _'I'Hl"( lzq)
i

by the A, ¢-Chu—Vandermonde summation (B.19) in Theorem B.18. This implies
the inverse relation (2.1), with the above values of ax and b;. In the resulting
identity, we reverse order of summations by performing the substitutions k; —

i

n; — ki, © = 1,...,r. After performing the substitutions b +— bg'™l, ¢ — g1,
x; ¢ ™/, i =1,...,r, we eventually obtain (6.8). ]
Theorem 6.9 Let a, b, ¢, and x1,...,2, be indeterminate, and let ny,...,n, be

nonnegative integers. Then there holds

Zi e
() = (1 (B0,
—q ) = -

i=1 n; 0<k <n; \i,j=1

y "”('1 —(a+b)
(1 — (ag='%l + b))

xqe20+(5) T % (fq“‘”"(a+bqk);q> )
% n; —k;

=1

—ki

(ag ™+ bigypg e (-p 10

where ez (k) is the second elementary symmetric function of {ki,...,kr}.

Proof: Let the multidimensional inverse matrices fnx and gi be defined as in
(A.20)/(A.21). Then (2.2) holds for

o= q y -1 ﬁ q1+|k|_k}i q
(ag®l +1)’ k| =1 cri(ag +0)"" ),

bl - q62(1)+ lH—l — 1] H]; Cxu

and

by the A, ¢-Chu—Vandermonde summation (B.20) in Theorem B.18. This implies
the inverse relation (2.1), with the above values of ax and b;. In the resulting
identity, we reverse order of summations by performing the substitutions k; —
n; — ki, @ = 1,...,r. After performing the substitutions b — bg®l, ¢ — cq™l,
x; ¢ ™/, i =1,...,r, we eventually obtain (6.10). [ ]
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Theorem 6.11 Let a, b, ¢, and x1,...,x, be indeterminate, and let ny,...,n, be
nonnegative integers. Then there holds

r (;—;q; q) . K|
(C; q)‘n‘ = Z ( o " 1+k.nik. (—]_)lkl q( 2 )
9ghismi \ig=l1 (’”_jq; q)k,- (’”_J'q ' ];q)ni—ki (6.12)
(1-(a+D)) “Ik| g Ik[y. Ik|
X(l — (aq*\k\ +b)) (aq + b; Q)|k| (c(a-l—bq )’q)|n|*|k| c

Proof: Let the multidimensional inverse matrices fhx and gy be defined as in
(A.20)/(A.21). Then (2.2) holds for

(wtmia)

(Gtm9)

akx =

and

b = q(m;l) M (g Dy
by the A, ¢-Chu-Vandermonde summation (B.21) in Theorem B.18. This implies
the inverse relation (2.1), with the above values of ax and b;. In the resulting
identity, we reverse order of summations by performing the substitutions k; —
n; — ki, i =1,...,r. After performing the substitutions b bg!™l, z; s g™ [z,
i=1,...,r, we eventually obtain (6.12). [ |

For illustration, we give the A, Rothe-type generalization of the g-multinomial
theorem which follows from iterating (6.12).

Theorem 6.13 Let ay,...,as, b1,...,bs, ¢, and x1,...,x, be indeterminate, and

let Ny, ..., N, be nonnegative integers. Write |k;| for >\, kij, for convenience.
Then there holds
()N = > <(_1)Z5=1 ol g5 ('3

kij 20, i=1,...,7, j=1,...,s

0S¥S_q kij SN;, i=1,or

r (gf—;q; q)Nt
el . .
tu=1 (ﬂ 1432501 Reg =251 Fug ) <ﬂ (EDDELTES Dty MR )
w4 q Ne=3054 k?tjjl;[]_ e 1 ki
S
<] (1= (a; +b;))

o1 (U= (aq7 M1 + b))

X

(ajq_lk"| +b559) x|

. : Sieyin Kl
i K] H(aj+qu|kj|) i+ )

=1

x (an‘:l(aj +qu|k”);q)|Nlizs -
j=11%j

(6.14)
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We finish this section with two ¢ — 1 limiting cases of our A, ¢-Rothe summa-
tions. These are higher-dimensional generalizations of the Rothe summation (6.4).

Theorem 6.15 Let A, B, C, and X4, ..., X, be indeterminate, and let nq,...,n,
be nonnegative integers. Then there holds

T

[IA+C + Xi)n,
i=1
= Z ﬁ [ 1+ Xi — Xj)n, ]
o \ L (O X =X O+ X+ ki = X = B (6.16)
A (A + Blk]|) ﬁ(C—B|k|—|k|+X'+k-)
A +B|k| | k| 11 i i)ni—ki |

_ - A+ Xi = X)n,
A+ O = 2 ( 1__[1 [(1 +Xi = X (14 Xi + ki — X; —kj)nik,-]

0Ski<ni \dpj=

i=1,...,7

A

“A+ BN (A+ Blk[) (C - Blkl)n—k>-

(6.17)

Proof: In (6.8) and (6.12), respectively, do the replacements a +— ¢~4 + B,
b= —B,cr ¢t z; = ¢%i,i=1,...,r, and then let ¢ — 1. [

Remark 6.18. Note, that if we specialize (6.10) as above, we obtain (6.16) with
A——-A, B~ -1—-B,andC+— 1—|n| -

7. Some identities of a new type

In this section we derive some identities of an apparently new type. The types of
factors appearing in the summand of the series are similar to those appearing in
the Rothe identities. The identities of this section are different, and involve more
factors, though. In our derivations we apply different summations than those we
used for deriving the Abel- and Rothe-type identities in the previous sections.

We start by considering one-dimensional series. For the proof of absolute conver-
gence of the series in the following two theorems, see Appendix C.

Theorem 7.1 Let A, B, C, and D be indeterminate. Then there holds

-5 () (=titime) ((=45550)

X(—1)k C (A+Bk) c 1
) D D . \D D(A+Bk)), (7.2)
B—D)(A+Bk B—D
(- % g L )

A
(E - B(A+Bl~c +1
r

A A+Bk A B—D ’
(E_ : B(A-li-Bk)+1) F(E—%+m+l)
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provided 2 £1, or, B=D and ® (%52) < 2.

Proof: In the r = 1 case of Theorem A.1 we set d — 1, ¢1(t) — A + Bt, and
ay — C' + Dt, and after some elementary manipulations we obtain that the infinite
matrices (fnk)n,kez and (gri)kicz are inverses of each other, where

(5 -5 +4), , (5 - pim +#)

frk = nk (7.3)
A
(Dn—k (E ~ searem Th+ 1)n_
and
—t { A+BI—C— 1—(A4Bl)(C+Di
gr = (=1)F! A-:_gkg—g—gi) (17((A+Bkg§C+Dk)))

)k:
(% — AEBR) 4141
(1)k—z(

Then (2.3) holds for a,, =1 and

N——

¢ ___ 1
y oy \D D(A+Bk)+l+1)k_l

VRS

1
BA+BR T l)k_l

A A _ 2C  (B=D)(A+Bk) (B—D)
F(F - B(A1+Bk) +tk+ 1) F(% - % + BD + Boa+BR T 1)
A c A+Bk A C B-D
F(E_B+( D )_B(A-lf-Bk)+1) F(§—5+%+1)

by the classical Gaufs summation (cf. [16, Eq. (1.2.11)]),

by =

S~ (A (Bl _ DOTC—4-B) )
= 1 (C)ry T(C—-AT(C-B)

(where R(C) > R(A)+R(B)). This implies the inverse relation (2.4), with the above
values of a,, and by. After performing the shift & — k + [, and the substitutions

A~ A—BIl, C+— C— DI, we get rid of | and eventually obtain (7.2). [
The following theorem gives a “companion identity” of (7.2).

Theorem 7.6 Let A, B, C, and D be indeterminate. Then there holds

2 (i) (e
L D (%_@+l)k (%—ﬁ)k (7.7)

—~~
>

=

o

A C B—D)(A+Bk B—D
F(E ~ 5rEm + 1) F(% — I+ (DTN o Bé(AH;k))

X s
A C A+Bk A e} B-D
| ___+( ) _ (1 k)+1>|‘(___+ﬁ)

/N

provided 2 £ 1, or, B=D and ® (%54) < 2.
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Proof: Let the inverse matrices (fnk)n,kez and (gri)r,icz be defined as in equa-
tions (7.3)/(7.4). Then (2.3) holds for

an,=(A—C+ (B—-D)n)
and
by =(A—C+ (B-D)k)
B—D)(A+Bk B—D
" <B+D)F(% - B(A-li-Bk) +k+ 1) P(% - % +1 1)3(DJr L4 BJ(J(A+1%1§)>

D A _ C , (A+Bk A_C B-D
F(E -G+ P e + 1) F(E bt B/:(>(A+E)ck))

Namely, we use

(A=C+(B=Dpn) _, . (B=D)(n-Fk)
(A-C+(B-Dk) ' (A-C+(B-Dk)

to split >, < frnkan into two sums, both of which can be evaluated by means of the
classical Gaufl summation (7.5). Addition of both evaluations and simplification
yields bg. This implies the inverse relation (2.4), with the above values of a,, and
bi. After performing the shift k¥ — k + [, and the substitutions A — A — BI,
C +— C — DI, we get rid of | and eventually obtain (7.7). ]

Next, we give two terminating summations.

Theorem 7.8 Let A, B, and C be indeterminate, and let n be a monnegative
integer. Then there holds

(20+1), < B+ (A-0)A B+ (A+k)?
(C+1), _Z<B+(A—C)(A+k)) <B+A(A+k))

(=n)k (C)k <A_C+%)k <A+C+ﬁ+1)n (7.9)

W (=C—n (A+C+ B +1)  (A+ 22 +1)

k=0

X

Proof: First we specialize the inverse pair of matrices (7.3)/(7.4) by setting A —
AB, C — (C + A)B, D — B. Then we replace B by B~'/? and transfer some
factors from one matrix to the other to obtain that the infinite matrices ( frr)n,kez
and (gr1)r,cz are inverses of each other, where

o= (n) (1)t <B—(A+n)(A+C+n)> (B—(A+k)2>

k B-(A+k(A+0C) B—A(A+ k)
A+C — B (7.10)
x C (C—k)n ( + A+k)n
(C—k) (A—%+1)

and
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; (1" (4- %),
Ikl = ( ) . (7.11)
U (¢ -k+1), (A+C—A%§+1)l
Then (2.2) holds for
(C+1) (A-C -5
ap = ’ ( BA+k)k and b = (20—|— l)l
(—CM(A+C—gﬂ%+1L
by the classical Pfaff-Saalschiitz summation (cf. [16, Eq. (1.7.1)]),
~ (%Y 1y (A) (B); _(C=A)(C= B
; <z> ) e @+ B-Cri-k  (OnC-A=DB) (7.12)

This implies the inverse relation (2.1), with the above values of a; and b;. In the

resulting identity, we reverse order of the summation by performing the substitution

k — n—k. After performing the substitutions A — —A—n, B — —B, we eventually

obtain (7.9). [ |
The following theorem gives a companion identity of (7.9).

Theorem 7.13 Let A, B, and C be indeterminate, and let n be a nonnegative
integer. Then there holds

20)n B+(A-C)A B+ (A+k)?
_E:(B+MeCMA+@><B+AM+kJ

(C)n
_B_ _ A+C+ £ +1
<A+C+A+k+2n k) Atk n
A+C+ 5 +n (A+ﬁ%+0
(= O (4=C+ ).
(L) (=C — 1 + 1), (A+C+%+1)k

k=0

(7.14)

n

X

Proof: Let the inverse matrices (fnx)n,kez and (gri)r,icz be defined as in equa-
tions (7.10)/(7.11). Then (2.2) holds for

Y (A—C—Aiik—k) (O (A—C—%)k
(A—C—ﬁ%) @CM(A+C—ﬁ%+1L

and b = (20)1

by the following terminating 2-balanced sF5 summation,

i (k) 1 (A (B);

—\1 (C(A+B—-C+2—-k),
Ak (C—-A),(C—B-1)

(C-B-1)(C-A+k-1) '

(7.15)

:(1_
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(The summation (7.15) follows easily from (7.12) by contiguous relations.) This
implies the inverse relation (2.1), with the above values of ai, and b;. In the resulting
identity, we reverse order of the summation by performing the substitution k& —
n — k. After performing the substitutions A — —A —n, B — —B, we eventually
obtain (7.14). [ |

We proceed with some summations involving the base q.

Theorem 7.16 Let a, b, and ¢ be indeterminate. Then there holds

%_i(c—(a+l)(a+b))< c— (a+ bg*)? )

(b;9)0 = \c—(a+1)(a+bg¥)) \c— (a+Db)(a+bg")
. (a+bg®) . (a+bg®)b2g"+?t 7.17
x (b 9) (C*“(“erq'“)’q)k ( c—a(a+bg*) ’q)oo bk g* (r17)

a k
(@ 9) (76(_;"(';12;’3)&)00
provided |bg| < 1.

Proof: In the r = 1 case of Theorem A.1 we set d — ¢, c1(t) = a + bg’, and
a; — a + ¢*, and after some elementary manipulations we obtain that the infinite
matrices (fnk)nrez and (gri)r,icz are inverses of each other, where

a *)g*
(1/b; @) n_k (%;q)rﬁk

Jnk = (7.18)
. (a+bg*)bg*+1
(@) n—k (WWI)”?A:
and
= (4 (= (a+bg)(a+d")
— (—1)k (2)(0 (a
g =(=1""q c— (a+bg¥)(a+ q*)
I—k+1 /. (a+bg")g'! . 1
» (q /b7 q)k—l (c—a(a—i—bq"’) bl q)kfl (7 9)
. (a+bg*)bg’ .
(Q7 q)k—l (c—a(a+bq"’) ) q)k_l
Then (2.3) holds for
o k\22 k+1
\ L (a0 (R0 )
an=q"b" and by =q"b (a+bg*)bgF+1 =
(0¢; @)oo (%?@w
by the classical ¢-Gauf summation (cf. [16, Eq. (I1.8)]),
i (a; @)k (b3 @) (g)k _ (¢/a;0)o0 (¢/b39)c0 (7.20)
ab (€ @)oo (¢/ab; q)oo

= (@ k (G 0k

(where |c| < |ab]). This implies the inverse relation (2.4), with the above values of
a, and by. After performing the shift k — k + [, and the substitutions a — aq’,
¢+ cq®, we get rid of I and eventually obtain (7.17). [ ]
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Theorem 7.21 Let a, b, and ¢ be indeterminate. Then there holds
bt +1—(a+0b) bc+a+b ac — (a + bg*)?
b2c/a; @)oo = ¢
(gb°c/a; q) ];) (c +1—(a+ bqk)> (bc +aqk + b) (ac — (a+ b)(a + bg")
] - ) b2 egh+1 )
(mﬂ)k (—ﬁ(aq k’+b)aQ)k (m#)m
. (atbg®)bg .
CHR (W[{H’qg))’q)w

x( bq(a+bqk);Q) (=1)* ¢(3) (%%)k (7.22)

a o0

provided |bg| < 1.

Proof: In the r = 1 case of Theorem A.1 we set d — ac, ¢1(t) = a + bq?, and
a; — ¢+ ¢*, and after some elementary manipulations we obtain that the infinite
matrices (fnk)nkez ond (gri)r,icz are inverses of each other, where

k a
(ﬁﬂ])n . (—ﬁ(a + bq’”);q)n_k

Jrk = _(a+bq’“)bq’“+1 . (7.23)

(€ @)n—r (m q) ek

and

! ! !
g = (—1)5 q(kz—z) c+¢ —a—bg be + a + bg
c+ gk —a—bgk ) \bc+ a+ bgk

141
(Fr=ia), (~E(a+bd)g "), (7.24)

. a+bg¥)bgt .
(@01 (=t iyia),

Then (2.3) holds for

k+1

o= () wa e (22 (setgsa) _ (~2a+ba) _

‘ (%ua)., ().,

by the classical ¢g-Gaufl summation (7.20). This implies the inverse relation (2.4),

with the above values of a, and b;. After performing the shift £ — k + [, and

the substitutions a — ag', ¢ — cq!, we get rid of I and eventually obtain (7.22).
|

The following two theorems provide companion identities of (7.22).

Theorem 7.25 Let a, b, and ¢ be indeterminate. Then there holds
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(b%c/a; Q) _ i bc+a+b ac — (a + bg*)?
1+b P bc+agF+b ac—(a+b)(a+bq')

. 1
(a+bgkfc7q)k (_E(
X

(a(a+bq *C)’q)
(4 )k (a((caJr(Zing))’ )
¢

(i) (%)

Proof: Let the inverse matrices (fnk)n,kez and (gri)r,icz be defined as in equa-
tions (7.23)/(7.24). Then (2.3) holds for

(7.26)

provided |b] < 1.

an = (ﬁ)n(a—cﬂb—nqn)

a

and

2c\* arigia) _ (—%(a+ba")iq
bk:(bac) (a—0+(b—1)qk)(1+b)((+bq ) ) ( )°°.

- a+ba* Vbah+1
(%5:0)., (Seiimyia)

Namely, we use

(a—c+0-1)q") . (a—01—q"F
(a—c+(b—1)q’“)_q (a—c+ (b—1)q")

to split >, - frnkar into two sums, both of which can be evaluated by means of the
classical g-Gaufl summation (7.20). Addition of both evaluations and simplification
yields b. This implies the inverse relation (2.4), with the above values of a, and
bp. After performing the shift k¥ — %k + [, and the substitutions a — a¢!, ¢ — c¢’,
we get rid of | and eventually obtain (7.26). ]

Theorem 7.27 Let a, b, and ¢ be indeterminate. Then there holds

0 +1-(a+b) ac — (a + bg")? c—a
b2 1) o0 = ¢
(b c/a;q) kzz()<c+1—(a+bqk)) (ac—(a+b)(a+bq’“) c— (a+ bg*)
_ 2 k1
(ﬁ;Q)k (=L (aq™* +b); ) (_a(z—l—bq —c)’q)
X
. (a+bg*)b
(4 9k (Wli—l)qg)) q)

<(-Dartria) 0fe) (”—)k (7.25)

provided |b] < 1.

Proof: Let the inverse matrices (fnk)n,kez and (gri)r,icz be defined as in equa-
tions (7.23)/(7.24). Then (2.3) holds for
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2\ M
an = (%) (bc + a + bg™)

and

2 b+l )
(c—a) (WW)OO (—%(a—}—bq’”);q)oo

- R 2 atbg")ba"tl,
(c—(a+bgh)  (Leiq) (%’q)m

b2c\”
by, = (7) (be + a + bg")

Namely, we use

(be + a + bg™) nei . (be+a)(l—qmF)

(b + a + bg*) ¢ (bc + a + bg")

to split ), <, frkan into two sums, both of which can be evaluated by means of the
classical g¢-Gaufl summation (7.20). Addition of both evaluations and simplification
yields by. This implies the inverse relation (2.4), with the above values of a,, and
bi. After performing the shift k — k 4 I, and the substitutions a — agq', ¢ — c¢’,
we get rid of | and eventually obtain (7.28). ]

Next, we provide some terminating basic summations.
Theorem 7.29 Let a, b, and ¢ be indeterminate, and let n be a nonnegative inte-
ger. Then there holds

n

(qa/b20;q)n=2< c+1-(a+b) )( bc+a+b )

P c+1—(a+bg=%)) \bc+a+bg=*
( ac — (a + bg*)? ) (#L(a+bg~" —c);q), (_ aq -q) (7.30)
_ 7;‘7 c—(a —k 7;‘: ) .
ac — (a + b)(a + bg—*) (aq b(((HJZZq_k’;) : q)n bla+bg*)"")
(™ Qk(@+bg* — g (—(a+bg%);q), &
(@ )k (—2(a+bg*)g ;5 4q), (F(a+bg " —¢)q),

Proof: From the inverse pair (7.23)/(7.24) we easily obtain, by transferring some
factors, that the infinite matrices (fnk)n,kez and (gri)r,ez are inverses of each
other, where

fnk=(—1)kq('§)[Z]q(c"‘qn—a—bq")( ac — (a + bg*)? )

c+q"—a—"bg* ) \ac— (a+ bg*)(a + bgn)

5 ( b+ a+ bg" ) <—l(a+bqk‘)q1k-q> (#q)n (7.31)
be + agnF + b be ) (u(fit]k_giqbl;)’")) : q)
and
( b£a+b—qk)k ; CI)
g = (—1)! gla) ki [k sle—tatba) s (7.32)

P (ﬁ;q)l (—3(a+bg*)g'*3q),
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Then (2.2) holds for

ap =

_ aq . b2c .
b(a+bg*)? q k a(a+bg*—c)? q & aq
and b = (— ; q)

q . __be . b%c’ "/
a+bqk_c7 q A a_;’_bqk: 9 q b

by the classical ¢-Pfaff-Saalschiitz summation (cf. [16, Eq. (I1.12)]),

k
O | E (a; @)i (b; ) -k _ (¢/a; @k (c/b; )k
208 [ ot o c/abge )

This implies the inverse relation (2.1), with the above values of a; and b;. In the re-
sulting identity, we reverse order of the summations by performing the substitution
k — n — k. After performing the substitutions a +— ag™, ¢ — cq™, we eventually
obtain (7.30). [ |

Theorem 7.34 Let a, b, and ¢ be indeterminate, and let n be a nonnegative inte-
ger. Then there holds

(PGd)n b+ (a—c)(a—1) b+ (a—q*)?
(qu;qq)n a ,; <b+ (G—C)(a—q"”)) <b+ (a— 1)(3—61"”))
(@™ )k (¢ Q) (7%5232;);@]6 (cqibj}';(f;_"{)k) ; q)n . (7.35)

—q—k —q~F
(@) (/¢ ) (cq%;q)k (q%;q)n

X

Proof: From the inverse pair (7.18)/(7.19) we easily obtain, by performing the
substitutions a — —a/c, b — 1/c, ¢ = —b/c?, and by transferring some factors,
that the infinite matrices (fnk)n,kez and (gri)k,icz are inverses of each other, where

b+(a—cq")(a—q") b+ (a—qb)?
e = [ZL ( ’;:CEG —CZ)(GG— qg) ) <b+(:—zn)(qa—q’”’)>
(C%; q)n (7.36)

x (1/c; @)k (6 @Q)n—r (

=)

and

! k (b_,_(Z(_aq_kq)_k) > Q>
gkl = (—1)lq(2)_kl+l [ L (7.37)

a— k ’
l]q (cg"*;q) (cq%;q)l
Then (2.2) holds for
a—q®
(cq; )k (W;q)k

a—a*
(1/c; @ (cq%;q)k

ai = and b= (02(1; )
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by the classical ¢-Pfaff-Saalschiitz summation (7.33). This implies the inverse re-
lation (2.1), with the above values of a; and b;. In the resulting identity, we
reverse order of the summation by performing the substitution & +— n — k. After
performing the substitutions a — ag™, b — bg*", we eventually obtain (7.35).
|

The following theorem gives a companion identity of (7.35).

Theorem 7.38 Let a, b, and ¢ be indeterminate, and let n be a nonnegative inte-
ger. Then there holds

[ b+(a—c)a—1) b+ (a—qF)?
)n ;(bJr (a—c)(a qk)) <b+(a—1)(Z—Q"“)>
y (bc (a—g"(ac—g " +c(g* —q‘")))
bc+ (a — g *)(ac —qg™™)
s Gon ((FEt), (o),

q
a(a k a(a—g~F
(@0 (@ /e ) (ca8iia)  (oHetshia)

(7.39)

X

Proof: Let the inverse matrices ( fnk)n,kez and (gri)r,1ez be defined as in equations
(7.36)/(7.37). Then (2.2) holds for

(1 - S )) (& e (C(b"(‘z?‘fi)q_k));q)k
(1 - M) (1/e;q)n (cq%;q)k

by the following terminating 2-balanced s¢= summation,

k
ENRONR: (@B 1oy
2(-D'a [l]q (e )t (abg?~F /e q)r (7.40)
_ (1 __(-ad-q") ) (¢/a; )k (¢/bg; )
(1 —¢/bg)(1 —aq'=*/c) ] (c;q)x (c/abg; @)k -

(The summation (7.40) follows easily from (7.33) by contiguous relations.) This
implies the inverse relation (2.1), with the above values of ai and b;. In the resulting
identity, we reverse order of the summation by performing the substitution k& —
n — k. After performing the substitutions a — aq™, b — bg?", we eventually obtain
(7.39). [ |

ar = and b = (% q)

Finally, we give some multiple series expansions.

Remark 7.41. We have associated the multidimensional summations in the previous
sections with the root system A, due to the factor

I @i-w) (7.42)

1<i<j<r
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occurring in the summand of the series where y; = x;¢%, or y; = X; + k;, for
i=1,...,r. (Concerning our terminating multidimensional summations this factor
is hidden in the “A, g¢-binomial coefficient” (B.4).) The multiple series in this
section belong to a different type though. We may associate them to the root
system D,.. This is because we can make out the factor

T [t =)@ =) (7.43)

1<i<j<r

in the respective summands of the series where y; = (bx;¢* — 1) in Theorems 7.44
and 7.46, and where y; = (A; + Bk;) in Theorem 7.48, for i = 1,...,r. A reason
for naming these series as A, or D, series is that (7.42) and (7.43) are basically
the product sides of the Weyl denominator formula for the respective root systems,
see [4], [43]. For multiple basic hypergeometric series associated to D, see [4], [6],
[42].

The series appearing in the following three theorems all converge absolutely in
value, provided specific conditions hold. We investigate their convergence in Ap-
pendix C.

Theorem 7.44 Let a, b, and 1, ...,z be indeterminate. Then there holds
oo 1 _ %qki_kj
(ag; @)oo = Z ( H (11795_1
E1yeonke=0 \1<i<j<r T
— (bxjqhi — Zghi=h)
x H ( 1 _j (bx; — ’I_J)
1<i<j<r Ti—
y H( bz — 1 ) H 1 —a(big" — 1) [Tj=, (br;g" —1)
o \bzigh =1/ 22 1+ allj_, (bxjqk — 1)

bl’ — Zig—k -~ Ti .
z; 4 J=1 564),
briq :q abw;q'Thi . q
r 14a H] 1(bzjq ]_1)’ ki 1+”’H] 1(bz]q i-1)’ 0
=1 abz [15_4 (bz;q"i —1) .
1+a[T5-, (bzjq"i —1)’ q
o

x (aq [Tj_y (bzig® —1);q)  (-1)'™ g3+ a|k|>

3,j=1

provided |ag| < 1.

Proof: Let the multidimensional inverse matrices (fak)n,kezr and (gui)k,iez- be
defined as in (A.27)/(A.28). Then (2.3) holds for

an=a" g ] (1 _ ﬁqm_nj)
T4

1<i<j<r
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and

ZT; .
bk = alkl q‘k‘ H <1 i x_z‘qkl ;”J)

1<i<j<r

< abav, 1+k; .q)
% (aqHz 1(bxzq oo H 1+a TT5_, (bzjq% —1)” o
(a% Q)oo abzig!thi TT5_ " (bzjiq"i —1) )
1+a HJ l(bz‘Jq i —1) ’ -

by the A, ¢-Gaufl summation (B.24) in Theorem B.23. This implies the inverse
relation (2.4), with the above values of a, and byx. After performing the shifts

ki~ k;+1;,i=1,...,r, and the substitutions z; — z;q7%, i =1,...,r, we get rid
of the l;’s and eventually obtain (7.45). [ |
Theorem 7.46 Let z, b, and x1,...,x, be indeterminate. Then there holds
i 1— Sighi=h

CTNEDY ( 11 <1_7_)

E1yeenkr=0 \1<i<j<r z;

« H ( (bqu qu k)) . ( bx; — 1 )

— ki
1<i<j<r 1~ (baj — w) i=1 bxiq 1

| . (7.47)
Cmi—m) \ o (bei- ZaMig)
X H ( ._E_z.q]k}j)> H ) e

1,j=1 1,7=1 (qu7Q)k

i

provided |z| < 1.

Proof: Let the multidimensional inverse matrices fhx and gk be defined as in
(A.30)/(A.31). Then (2.3) holds for

an=2"" ] <1 - %qm"’)
J

1<i<j<r

and

T ki .
o = Gz 0zig™ = 130) 11 (1 - ﬁqk"_h)

(ZHI)OO 1<i<j<r T

by the A, nonterminating g-binomial theorem (B.30) in Theorem B.29. This implies
the inverse relation (2.4), with the above values of a,, and bx. After performing the
shifts k; — k; +1;, 5= 1,...,r, and the substitutions z; — z;¢ %, i=1,...,r, we
get rid of the /;’s and eventually obtain (7.47). [ |
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Theorem 7.48 Let Ay ..., A,, B, and C be indeterminate. Then there holds

> Ai+Bki—Aj—Bk'j
1= Z ( H ( A _ A, )
k1yeenkr=0 \1<i<j<r ¢ J

« H (1—(Ai+Bki)(Aj+Bkj)>

11 1-A4;A;
1<z<g<r
xf[ < ) f[ 1—-C(A; + Bk;) H;:1(Aj + Bk;)
i A; +Bk 1-CA; H;:1(Aj +Bkj)

Y r (% - i),
< I1 ( ) II

_q) K
—A(4, +Bkj) (%_%H) (=1 (7.49)

1,J= 1,j=1

f[ (% — S TI=1(A; + Bkj) + l)k_ F(% ~ BOTES (755 “)
. ;

=

i=1 F(B(AH—BI@,) BCTI;- 11(Aj+Bkj) + 1)
- G i (A +B’9) m
1 T
5 - 1(A+Bk) — 2in (5 ki) + )
g i=1(Ai + Bki) = gor—airemy “)

provided C [[(A; + Bkj) £ 1 fori=1,...,r and k; = 0,1,2,... (j = 1,...,r,
J#i
Jj#1),or, if CI[1(Aj + Bk;) =1 forani =1,...,r and a k; = 0,1,2,...
J#1

G=1,...r, j£i), then Y R(&)<2.
1<j<r, j#i

Proof: Let the multidimensional inverse matrices fhx and gx) be defined as in
(A.33)/(A.34). Then (2.3) holds for
an = H (Az + Bni — Ag — BTLJ)

1<i<j<r

and

r T ﬁ+ki_++l
b = H (Az'+Bki—A]-—Bk)H (B BOTT,_, (A, +BF;) )

1<i<j<r

i=1 F(B(A TBk) ~ BC n;‘zll(AjJerj) + 1)
r 1% ITi= (Ai 1+ Bki) — 5¢ 1‘£‘;‘=1(Ai+3ki)
T T i
+5 Zi:l (4 +Bk:) — Ei:1(# +ki)+1

X
C ____
r (E [Tie1 (A + Bks) = o assm + 1)

by the A, Gaufl summation (B.27) in Theorem B.26. This implies the inverse
relation (2.4), with the above values of a, and bx. After performing the shifts
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ki—k; +1;,1=1,...,r, and the substitutions A; — A, — Bl;, i =1,...,r, we get
rid of the [;’s and eventually obtain (7.49). ]

Appendix A

Multidimensional matrix inversions

In this appendix we state our multidimensional matrix inversions from [42] and
specialize them as they are needed for deriving the identities in this article.

The following multidimensional matrix inverse appeared as Theorem 3.1 in [42].
There it was utilized in the derivation of several new summation theorems for basic
hypergeometric series associated to the root systems of type A, and D.,.

Theorem A.1 Let (at)icz, (ci(t:))t,ez, © = 1,...,7, be arbitrary sequences, d
arbitrary, such that none of the denominators in (A.2) or (A.3) vanish. Then the
multidimensional matrices (fax)nkezr and (gx1)x,1ezr are inverses of each other,
where

[n|—1 r |n|—
(ae — d/ [Tj=y ci(k;)) I H (at—cz( ki)
fake = L (A.2)
I II (a(t)—d/ITj= ci(k;) H I (eilt) = (k)
i=1t;=k;+1 1,7=1t;=k;+1
and
- (eill) = ¢i(ly).
- 151‘119 (ci(ks) = cj(ks))
d—ap [T cily) 7 (ap —ai(ls)
d—a 7?_1 Cj kj o —ci(k;
( lkl\k\ [ ci(k))) i (a — ¢ T ))lkl (A3)
II (a—d/Tj=yci(ks) (ar — ci(ki))
t=[1]+1 i=1 t=[1|+1 .
T T ()~ 4/ Ty ek T TT (et = (0

The following multidimensional matrix inversion is used in Section 3 for deriving
nonterminating g-Abel identities.

Proposition A.4 Leta, b, and x1, . ..,z, be indeterminate, and suppose that none
of the denominators in (A.5) or (A.6) vanish. Then the multidimensional matri-
ces the multidimensional matrices (fuk)n,kezr and (gu1)k1cz+ are inverses of each
other, where

Fare = (=1)lmi =1 (75T ﬁ(aerxqu“)lnl . H (mz bk ’”7(1)_1 (A.5)

i=1 ij=1 \Td ni—k;
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and
- K==t y7 (% -
gr1 = H(a +briq") (a+ brig™) H (jq1+li_lj;Q> - (A.6)
=1 1,5=1 J ki—1;
Proof: In Theorem A.1 we set a; — —a and ¢;(t;) — bx;q' fori=1,...,r. After

some elementary manipulations (like transferring some factors from one matrix
to the other), which include Lemma B.1, we let d — 0 and obtain the inverse
pair (A.5)/(A.6). [ |

In Proposition A.4, if we interchange a and b and transfer some factors from one
matrix to the other we obtain the equivalent Proposition A.7. In this form the
inverse matrices are used in Section 4 for deriving terminating ¢g-Abel summations.

Proposition A.7 Leta, b, and x1,...,x, be indeterminate, and suppose that none
of the denominators in (A.8) or (A.9) vanish. Then the multidimensional matrices
(fak)n,kezr and (1), ez are inverses of each other, where

Fate = (1)Kl g("2™) ﬁ (azig™ +1) (azig™ +b) "7

i=1

r Zigiq (A-8)
J ni
ij=1 (i—jq;q)ki (;—;’.q“f’“"“;q)nﬁki
Zi .
T 1 f[ (sza Q)k

gia = (~D)" I (awig™ +8) " : . (a9
N 21;[1 ij=1 (ﬁ—jq;q)ll (ﬁ—;’.ql“i*lf;q)

X

and

ki—1;

By another specialization of Theorem A.1, we deduce the following multidimen-
sional matrix inversion which is also used in Section 3 for deriving nonterminating
g-Abel identities.

Proposition A.10 Let a, b, and x1,...,x, be indeterminate, and suppose that
none of the denominators in (A.11) or (A.12) vanish. Then the multidimensional
matrices (fok)nkezr and (gul)k1ezr are inverses of each other, where

fox = (_1)|nHk\ q(lnlg‘kl) (a + bqlkl) Inl =kl ﬁ (ﬁqlﬂcikj;q) o (A.11)

i,j=1 T ni—ki
and
k-1 L ; -t
gia = (a+bg") (a+bg™) I1 (%qm"“ ; q) : (A.12)
i,j=1 J ki—l
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Proof: In Theorem A.l we set a; — —d/a ]_[;:1 x; and ¢;(t;) — bY/"x;q% for
1 =1,...,r. After some elementary manipulations, which include Lemma B.1, we
let d — 0 and obtain the inverse pair (A.11)/(A.12). [ |

In Proposition A.10, if we interchange a and b and transfer some factors from one
matrix to the other we obtain the equivalent Proposition A.13. In this form the
inverse matrices are used in Section 4 for deriving terminating g-Abel summations.

Proposition A.13 Let a, b, and x1,...,x, be indeterminate, and suppose that
none of the denominators in (A.14) or (A.15) vanish. Then the multidimensional
matrices (fak)n,kez and (gui)k,1cz- are inverses of each other, where

fake = (=1)% g("=") (aq'“‘ + b) (aq'k' + b>|n|71
- (%q; q) o (A.14)

ij=1 (i—;’.q;q)k_ (i—jq“r’“"“f;q)

ni—k,-

and

. f[ (%q; q)’“ . (A.15)

ga = (=) (GQM + b)_ . _
ij=1 (i—;q;q)l_ (i—;ql“i‘”;q)

ki—li
By the following specialization of Theorem A.1, we deduce a multidimensional

matrix inversion which is used in Section 5 for deriving nonterminating ¢-Rothe
identities.

Proposition A.16 Let a, b, and x1,...,x, be indeterminate, and suppose that

none of the denominators in (A.17) or (A.18) wanish. Then the multidimensional
matrices (fok)n,kezr ond (gu1)k1ez- are inverses of each other, where

Fae = (—1)lnl=1kl (™5™ (a+bq|k|)‘“'*““ (%;q)
nl =[x

a+ bg'¥
T 2 —1 (A17)
x 11 (—’q”’“’“";q)
ij=1 \Ti ni—k;
and
n_
_ (el ()= (g (@t bg® —g™) g
gki1 ( 1) q (a-{—bq\k\ —q|k|) (aq +b7q)\k\—\l\
-1 (A.18)

T
Ti 41—l
I E
x.] ki—1;
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Proof: In Theorem A.1 we set a; — d/(¢" — a) [Tj_, z; and c;(t;) = b7 x;qt for
it =1,...,r. After some elementary manipulations, which include Lemma B.1, we

let d — 0 and obtain the inverse pair (A.17)/(A.18). [ |

In Proposition A.16, if we interchange a and b and transfer some factors from one
matrix to the other we obtain the equivalent Proposition A.19. In this form the
inverse matrices are used in Section 6 for deriving terminating ¢-Rothe summations.

Proposition A.19 Let a, b, and x1,...,%, be indeterminate, and suppose that
none of the denominators in (A.20) or (A.21) vanish. Then the multidimensional
matrices (fuk)nkezr and (gu1)k ez~ are inverses of each other, where

foe= (1)) G (i) (wa)”
In|

b+ ag® —gn) \(ag® +b)"?
r (’”—".q; q) (A.20)

X
ij=1 (ﬁ—jq;q)k_ (;”—;ﬁql’”“"“;q)

n; —k;

and

(1) (ag +8) " (%q;q)ki (A1)

g1 = p - Ti Ali—1;
(W;Q)m i,j=1 (x_;q;q)z,- (z—;q ' J;Q>ki_li

Remark A.22. In this Appendix, we have deduced the preceding Propositions from
Theorem A.1. However, it should be mentioned that they also could have been
derived from Bhatnagar and Milne’s multidimensional matrix inversion [5, Theo-
rem 3.48] (which is contained in Theorem A.1 as a special case).

The following multidimensional matrix inverse appeared as Theorem 4.1 in [42].

Theorem A.23 Let (¢;(t;))t;ez, @ = 1,...,r, be arbitrary sequences, d arbitrary,
such that none of the denominators in (A.24) or (A.25) vanish. Then the multidi-
mensional matrices (fax)n,kezr and (gu1)k1ezr are inverses of each other, where

o0 det)/ T esth)) T (= ealees ()
fa =[] 252 ] = (A.24)
=1 [ (ci(ti) —d/ =y cj(ky)) id=t  TI (ci(ts) —c;(ky))
ti=k;+1 ti=k;+1

and



ti=l; ti=l;

No applications of the above multidimensional matrix inversion were given in [42].
Here, this is made up for, as from the following specializations of Theorem A.23 we
derive certain new multiple series expansions in Section 7.

Proposition A.26 Let a, b, and x1,...,%, be indeterminate, and suppose that
none of the denominators in (A.27) or (A.28) wanish. Then the multidimensional
matrices (fak)n,kezr and (gui)k,1cz- are inverses of each other, where

( bzlq i . q)

r 0

Fare = Xt () (ni—ki) H Ltalljoy (ayd -2 )

B : abz;qttki IT; - (bz]q i-1)
1+aHJ 1(b:1:]q i —1) yd R

r (bx qr q’c —k;. q)
x n;—k;

L Ti J14+ki—k;j.
7,j=1 (Eq + ]7q>

(A.27)

n; —k;

and

k| —|1 bz; B el
gia = (~1)=1 ("5 11 ( ((bm qq’ - —3’9 _k)))

1<i<j<r

basq T2 q)
X H (bzigh —1) 1 \1Fallimeid -1’2 )
=1 b:czq @ —1 1 (abziq i 1(bac]-q W-1) ) (A28)
ki—l

1+a [T5= 1(b:chk1' -1)

1+1; i L4+l —kj.
r (bxiq+ — Zight qu)
x 7 ki—li

s Ti 14115
1,,]:1 (I;q +1; 7 q)

ki—Li

Proof: In Theorem A.23 we set d — 1/a and c¢;(t;) — bxiqti —1fori=1,...,r
After some elementary manipulations, which include Lemma B.1, we obtain the
inverse pair (A.27)/(A.28). [ |
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Proposition A.29 Letb, and x1,...,z, be indeterminate, and suppose that none
of the demominators in (A.30) or (A.31) vanish. Then the multidimensional matri-
ces (fak)nkezr and (g1)k,1ez- are inverses of each other, where

fak = gZim (7D(i—ki) H

L Zi 41 5
4,j=1 (qu +ki—kj. q)

ni ki (A.30)

n; —k;

and

_ 1-— (bxzq Ez ql —l )
— (1) kI=1 (5
g1 = (1) q H 1— (baigh — Fqki—kj)

1<i<j<r

T (bxinHi - q1+l ) q)k-—l-

Tj

ij=1 (z g il ‘1)

Tj

(A.31)

X

ki—1;

Proof: In Proposition A.26 we set a — 0 and transfer some factors from one
matrix to the other to obtain the inverse pair (A.30)/(A.31). [ |

Proposition A.32 Let Ay,..., A, B, and C be indeterminate, and suppose that
none of the denominators in (A.33) or (A.34) vanish. Then the multidimensional
matrices (fok)n,kezr and (gu1)k1ez- are inverses of each other, where

r <%+ki_%H;:I(Aj_*_Bkj))n_fk.
fnk - H 1 —
(1 + 5 thi— m)n% (A.33)

A; 1
T (_+kl_B(A+Bk:J)) —

i,j=1 (1+ FAki—F -k )m_k

and
_ ].—(Az—}—Blz)(A—f—Bl)
_ (_p) ki1 ( i + B
gia = (=1) 1§g9 1— (A + Bk (A, + Bk))
(A; + BI)) . (1+ L4l — Bl‘[;:l(AjJerj))

% 1;[1 (AZ+Bk:) 1;[1

i—li

o 1 A.34
(B +1; BCH;‘zl(Ari‘B’“J'))kﬁli ( )

A; 1
T <1+§+li_ B(Aj+Bkj))ki—li

o (14 ’+ll—§'—lj)k_il_

X

Proof: In Theorem A.23 we set d — 1/C and ¢;(¢;) = A;+ Bt fori=1,...,r
After some elementary manipulations, which include the ¢ — 1 case of Lemma B.1,
we obtain the inverse pair (A.33)/(A.34). [ |
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Appendix B

Background information
— A, basic hypergeometric summation theorems

Here we state a simplification lemma, a partial fraction decomposition, and the A,
basic hypergeometric summations (mainly taken from Milne [37]) we need in the
proofs of our multiple summation theorems.

Lemma B.1

1- :f_;qki_kj - (%qli_kj;q)ki—li
H 1 — Zighi-i; H zi

Zi
1<i<j<r z; 4 i,j=1 (zj q1+l"7”;Q)k_ .

= (=1)-M qf(“";“') g Siziitki-b)

Remark B.2. Lemma B.1 is equivalent to Lemma 4.3 of [37], which is proved by
some elementary manipulations.

Remark B.3. When reversing order of the summations in the proofs of Sections 4
and 6, we permanently make use of the fact that the “A, g-binomial coefficient”

r (i—jq; q)n_
ij=1 (ﬁ—;’.q;q)k_ (;”—jq“r’“"“f;q)

remains unchanged after performing the substitutions k; — n; — k; and z; —
g ™ /xz;, for i =1,...,r. This can be seen using Lemma B.1.

(B.4)

n; —k;

Throughout this article, we use the following (¢g-analogue of the) partial fraction
decomposition for the derivation of some multidimensional “companion identities”:

P r ﬁ(l—yifci/xj)
IG5 = e = ®9
i=1 ¢ i=1 (1 — tx;) H (1 —z;/z )

-
-

.
<.

(see [35, Appendix]). Partial fraction decompositions have been an essential tool in
the study of multiple (basic) hypergeometric series associated to root systems, see
e.g. [9], [35].

In the remainder of this Appendix we list the A, basic hypergeometric summation
theorems we need for proving the theorems of this article.

Theorem B.6 (An A, g¢o-summation) Leta and z1,...,%, be indeterminate.
Then there holds



47

>0 1-— %qki*kj r . -1
J 1
(a;q)00 = Z H T H (;q;q>
ki,ekr=0 \1<i<j<r j i,5=1 J ) ki (B?)
« (_1)T|k| ¥l gn Tia ()42, (=1 ks Hx;ki—|k|>'

=1

Remark B.8. Theorem B.6 can be obtained from Theorem B.29 by substituting
z — z/[]i_, ai, then letting a; — oo, ...,a, = 0o, and relabelling z  a.

Theorem B.9 (A, terminating g-binomial theorems) Let z1,..., z,, and 2z
be indeterminate, and let ny,...,n, be nonnegative integers. Then there holds

ERINENDY <H n <—1>'k'q<z>zk),

ij=1 (;”—j.q;q)k_ (i—;q”’“"”;q)

n; —k;

(B.10)

r < ﬁ (ﬁ—jq;q>m

; — |\ 14 i . i Aki—k; .
i=1 Oki<ng ,j=1 (sz7q>ki (qu qu)niik_ (B.11)

i

(5 ) oM [T ).
=1

r r ﬂq-q)

z o, (z]- ’ :
<—.q“ "’;q) =) ( n
i—1 \Ti n; 0<k;<n;

- Ti g @i gltki—k;.
i=1,..,7 wi=1 <EJ' & q) ki (mj 4 " q) ni—k; (B-12)
T
x (1)Kl qeg(k)+(";') k| Hxim)’
i=1
where ez(k) is the second elementary symmetric function of {ki,...,kr}.

Remark B.13. The summations (B.10), (B.11), and (B.12) are Theorems 5.44, 5.46,
and 5.48 of [37], respectively (slightly rewritten using Lemma B.1).

Theorem B.14 (A, ;¢1-summations) Let a, ¢, and z1,...,z, be indetermi-
nate. Then there holds

i oki—kj T —1
(c/a;q)o _ > 1- %q ’ Ti
Y Z H 1 TE H 2.0
7 1/00 k1,..0ke=0 \1<i<j<r T;
o B gy T, () + S DR (4)
(¢ Q)\k\

=1
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[e's) Ti o ki—kj r -1
(c/a; @)oo _ l-ga ™ Ti |
(C' q) - Z H 1 — & H ;‘Lq
e Eiyeskr=0 \1<i<j<r zj ij=1 N7 ki (B.16)
X(a; Q)|k| (_1)|k| q(|12<|)+22‘=1(i_1)ki (f)lkl .
(¢ Q)|k| a

Remark B.17. The summation (B.15) can be obtained from Theorem 7.6 of [37] by
letting a; — oo, ..., a, = 0o, and relabelling b — a. The summation (B.16) can be
obtained from Theorem 7.9 of [37] by letting b — oo.

Theorem B.18 (A, g-Chu—Vandermonde summations) Let z1,..., z,, a,
and ¢ be indeterminate, and let ny,...,n, be nonnegative integers. Then there
holds

Ti e
[T (czi/a; @)n, _ Z H (wj q; (J)ni
(69| 5= (ﬂq;q) (ﬂql—l—ki—kj;q)
’ i ki \TI ni—ki (B.lg)

§ ITi—, (iqlkliki;q)ki (_1)|kl gzi=1 (%) (E)lkl ﬁxki>’

(6 Q)| a

=1

[Tzt (a;i g q) s . (i—;’_q; q) ni
(¢;Q)n| > <H ' ;

— \ .=~ Zi . Zi g14+-ki—kj.
ggizgjbvf wi=1 (zj @ q) ki (xj e " q) n; —k; (B20)

o Lz (@26 Dk gy a0 (%) (g)"" Hx—k)

7

(C; Q)|k| a i=1
where e (k) is the second elementary symmetric function of {ki,..., k.},
r (ﬁq;q>
(C/G§Q)|n\ _ Z H T ni
(& Q)| o2\ A2, (ﬂq.q> (ﬂql-‘rki—kj.q)
i1 7 zj k; \Ti ’ ni—k; (B‘21)

(a; ) x| ey oy Ikl
. (c0) x| (=D g(5) (5) )

Remark B.22. The summations (B.19) and (B.20) are Theorems 5.28 and 5.32 of
[37], respectively (slightly rewritten using Lemma B.1). The summation (B.21)
can be obtained from Theorem 7.6 of [37] by letting a; — ¢~ ™, i =1,...,r, and
relabelling b — a.
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Theorem B.23 (An A, q-Gaufl summation) Let z1, ..., Z,, a1, ..., Gr, b,
and ¢ be indeterminate. Then there holds

(c/b;q) oo o (exifais @)oo
(C/b H:;l ag; Q)oo Zl;ll (Cxi; Q)oo

S () e
=0 T

Zi .
1<i<j<r =1 (qu’ Q)k

X ﬁ (bxi;q)ki c . D im1 (i—1)k;
ez Bl @ ! ’

provided |c| < |b[]._, ail.
Remark B.25. The summation (B.24) is Theorem 5.1 of [37].

Theorem B.26 (An A, Gaufl summation) Let Xy, ..., X,, A, ..., A, B,
and C be indeterminate. Then there holds

I'C-B- 21 1A I(C+ X;)
T(C L rc+x - 4)

: f,}o( () e

k1, - 1<i<j<r
11[ (4, + X; — X)) 11[
AL 1+ X -X5) ’
2,7=1 7,:1 ki

provided R(C) > R(B) + Y. R(4;).
Remark B.28. This ¢ — 1 case of Theorem B.23 is equivalent to Theorem 1 of [24].

Theorem B.29 (An A, nonterminating g-binomial theorem) Let aq, ... ,

ar, 2, and x1,...,%, be indeterminate. Then there holds
o0 _ Zi k:ifk'
(2 H:Zl a:;9) o _ Z H 1 ;4 ’ qz;l(ifl)ki
(Z§Q)oo o 1-%
k1,...,kr=0 \1<i<j<r Tj

(B.30)

T (%aj;q)
H g .Z|k|>7
i,j=1 (;”—;q;q)k

i

provided |z| < 1.

Remark B.31. The summation (B.30) is Theorem 1.47 of [34]. It can be obtained
from Theorem B.23 by taking ¢ = bz [],_, a; and then letting b — 0.
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Appendix C

Convergence of the (multiple) (g-)series

In this appendix we discuss and prove the absolute convergence of the nontermi-
nating summations in this article. Similar convergence proofs for multiple (basic)
hypergeometric series are given in [12, Appendix].

First, we consider the convergence of our nonterminating multiple g-series (recall
that we always assume 0 < |g| < 1). To the g-rising factorials of the summand of
the series we apply, if necessary (i.e., if there is an occurrence of a negative power
of ¢ in the parameter), the relation

(@ )k = (¢ */a;q)x (—a)* ¢2) (C.1)

(cf. [16, Eq. (1.3)]), so that we are only left with positive powers of ¢ in the g-
factorials. Then we rewrite all g-factorials using (2.9). Since limg_ o0 (ag*; @)oo =
1, factors of the form ( - ;¢)s will then not influence the convergence of the series.

As an explicit example we consider (5.8) where we apply (C.1) to the factor
(ag~ ™l + b; q)x|- After performing some manipulations we see that the series in
(5.8) converges provided

PN ST S Y 1 i kiok (02
D [(a+bg*) Mg 11 —q <oo. (C2)

E1yeeskr=0 1<i<j<r
We use the Vandermonde determinant expansion
T
S (i1)ks _ T krk 1—4 i—1 (o~ (i) —1)k;
q=i=1 H (1 Py ,) Hx Z sgn(a)on_(i)q ,
1<i<j<r €S, i=1

where S, denotes the symmetric group of order r. Then we interchange summation
in (C.2) and obtain r! multiple sums each corresponding to a permutation o € S,.
Thus we see that the series in (5.8) converges provided

>

ki,...,kr=0

(a + bg™)* |k|Hq (071 (&)= 1)ks
i=1

< 00, (C.3)

for any o € S,. The series on the left hand side of (C.3) is dominated by

H Z ‘ |a| + |b||Q|k kiq(o_l(i)*l)ki

=1 k;=

Therefore we deduce (by d’Alembert’s ratio test, or, equivalently, comparison with
the geometrical series) that the series in (5.8) converges whenever |azq¢’ 1| < 1, for
j=1,...,r, or, equivalently, whenever |az| < 1.

In some of our series also the factor
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T
|| r k; .
q_(§)+r 1 (%) I I x;’” Ik

i=1

appears in the summand. Consider, for example, the series in (5.6). Here we use
the identity

()5t 5w

i=1 1<i<j<r

("N +r i, (%) e DY) . . s

to replace ¢\ 2 i=1\2) hy ¢~ = for comparison with a dominating mul-
tiple series. In a way similar to as before, we see that the series in (5.6) converges
provided

oo
oy kr.=0

kseeoskr

T
(r=1) -1, | L=
(a + bg <)l Ikl g— 5+ ML H@D) =1k i =K
=1

< 00, (C.4)

for any o € S;.. Now, the series on the left hand side of (C.4) is dominated by

- ad . . . o~ 13— _ =1\ - L.
LI X" |Clal + follgl ¥ sb gl O =55k (7 )

i=1k; =0

b

from which we eventually deduce that the series in (5.6) converges whenever |az| <
q lei_T H;:1 Zj

Next, we check convergence of the multiple ¢-series in (7.45) and (7.47). Due to
symmetry of the summands (observe that some factors are quotients of the form
(7.43)) it suffices to consider convergence in the summation region k1 > ko > ... >
k.. Using some elementary identities from [16, Appendix I] we may rewrite

[T [(1- 20 (- o 2o )| T (1= e 220

X
1<i<j<r J : i,j=1 J

yfori=1,...,r.

as

k|2 3 ki 1 - (bx"qui - %qlwi;q)
q = Hx'g—l H 7 00
i=1 i,j=1 (bxiqki - %qki?q)
J [e%s}
(%qki—k)j : q) (bxiqki _ %qk)i—k]' ; q)
J o'} J [es)

igl i—kj. » i 14k —ka.
1<icj<r (g—Jq ks kj,q) (bwiqum — Ziglth kjvq)
e oo

X

?

and also

- Ti _p.
11 (bxi -—q ’“’;q)
X, k

3,j=1 J

i



as

IS PR ﬁ —
ki il
bxiqFi — ﬁ—] i

ij=1 ;
k; i
(ba:iq ' ;E_;’q) T kil ki
X Rimhi (20 pg,qhi N &
- 74 o iq .
1<i<j<r %7(] ¢ J

bz jq 1727 ik
iRy

Now, if we rewrite all ¢g-factorials in the summand of (7.45) in terms of (2.9) we see
that the series converges in the summation region k; > ... > k, provided

k; k;
K| 3y ik ot N S Y g
Z a™q H (x z;q ) (xj Ziq <oo. (C.5)

ky>...>k.>0 1<i<j<r

The series on the left hand side of (C.5) is dominated by

S |aMgi T I+ pella) )

k1>...>k.>0 j=11<i<j

from which we eventually deduce that the series in (7.45) converges whenever |ag| <
1. (Similarly, the series in (7.47) converges absolutely provided |z| < 1.)

Next, we consider the convergence of our nonterminating (one-dimensional and
multiple) “ordinary” series. First we apply to some of the rising factorials in the
summands of our series the relation

(@ = (1 —k—a) (-1)". (C.6)

(The purpose of this manipulation is to enable the application of (C.8) below.)
Then we rewrite all rising factorials in the summands of our series as quotients of
gamma functions using (2.6). Next we apply Stirling’s formula (cf. [45, Sec. 3.12,

Eq. (3)])

T(z) = 2+ =2 Vor (1 + 0(%)) , .7

valid for |z| — oo, where z is in the complex plane but not on the negative real
axis. A consequence of (C.7) is

et o)

for £k — +00, provided c is not a nonpositive real number, which we conveniently
make use of, if possible.
As an explicit example we consider (7.2), with a one-dimensional series on the

c _ (A+Bk))
D

right hand side. Here we apply (C.6) to the factor (%  before we apply
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(2.6) to all rising factorials in the summand. After some manipulations we obtain
that the series in (7.2) converges if

iF(A_TC 1+ 5k) <— m“‘k)
k=0 P(25%+ (5 —1) k) D1+ k)
(%+§ 20+m§?+ﬁ_2,k)+1+(£—1)k)
" C < 0.
(B+5_B_B(A+Bk)+1+ k)

Using (C.8) and the absolute convergence of Riemann’s zeta function (cf. [45
Sec. 3.14, Eq. (1)]) ¢(s) = > 4ok *® for R(s) > 1 we see that the series in (7.2)
converges provided 2 £ 1 (by comparison with ((2)), or, B = D and %(CTEA) <2
(by comparison with {(3 + A%C)). The convergence of the series in (7.6) can be
shown similar.

Finally, we consider multiple ordinary series. The convergence of the series in
(3.14), (3.15), (5.15), and (5.16), for r > 2, can easily be checked by application of
the multiple power series ratio test [25], [28], for which we omit the details.

Before investigating the convergence of the series in (7.49) we give another illus-
tration of the method by checking the convergence of the multiple Gauf} series in
Theorem B.26. First we convert all rising factorials into quotients of gamma func-
tions by (2.6). Then we use (C.8) and see that that the series in (B.27) converges
absolutely provided

oo

ol Il Xitki-X—k) ijlnkBC<oo. (C.9)

Kk1,.0.0kr=0 [1<2<j< i,7=1

We use the Vandermonde determinant expansion

T

II Ei+ki—X;—k)=> sen(o) [[(zi+ k),

1<i<j<r CES, i=1

where, again, S, denotes the symmetric group of order r. Then we interchange
summation in (C.9) and obtain ! multiple sums each corresponding to a permuation
o € ;. Then we see that the series in (B.27) converges provided

T o
8 B—C—r+Y"_, A;
11> ‘(ﬂfi + ki)W K AR PSS
=1 k; =0
for any o € S,, or equivalently, if

A )+B—C+37_, A
szi—a(ZH —C+327 1 Aj < o0,

=1 k;=0
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from which we deduce that the series in (B.27) converges whenever —j + R(B) —
R(C) + 31—, R(4;) < -1, for j = 1,...,r, or, equivalently, whenever R(C) >
R(B) + 1, R(A,).

Finally, we consider the series in (7.49). The whole machinery can be applied
to prove the absolute convergence of the series in question. We apply (C.6) to

the factors []; ., (% -< "_1(4; + Bkj) + 1)/,:

rising factorials in the summand. We use both asymi:)totics (C.7) and (C.8) (where
applicable). We also use the (orthogonal Vandermonde) determinant expansion

before we apply (2.6) to all

II [(Ai + Bk — A; — Bk;)(1 — (Ai + Bki)(A; + Bk;))]

1<i<j<r
T

= % Z sgn(o) H ((Az + Bki)r—a(i) +(A; + Bki)r-w(i)_z) :

€S, i=1

which we may simply estimate as O([]_, k" ). After a further amount of
calculations we can compare the series with a product of r zeta functions. If
Cll;2i(A; + Bkj) £ Lfori=1,...,rand k; = 0,1,2,... (j = 1,...,7, j # 1),
we use the convergence of ((2). Else, if CH#Z-(Aj +Bkj)=1forani=1,...,r
and a k; = 0,1,2,... (j = 1,...,r, j # 1), then we compare the series with

¢ (3 + % - 2521 %), in which latter case we deduce that the series in (7.49) con-
verges whenever > %(%) <2.
1<j<r, j#i
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