A FAMILY OF q-HYPERGEOMETRIC CONGRUENCES MODULO THE FOURTH POWER OF A CYCLOTOMIC POLYNOMIAL

VICTOR J. W. GUO AND MICHAEL J. SCHLOSSER

ABSTRACT. We prove a two-parameter family of q-hypergeometric congruences modulo the fourth power of a cyclotomic polynomial. Crucial ingredients in our proof are George Andrews' multiseries extension of the Watson transformation, and a Karlsson–Minton type summation for very-well-poised basic hypergeometric series due to George Gasper. The new family of q-congruences is then used to prove two conjectures posed earlier by the authors.

1. Introduction

In 1914, Ramanujan [26] presented a number of fast approximations of $1/\pi$, including

$$\sum_{k=0}^{\infty} (6k+1) \frac{(\frac{1}{2})_k^3}{k!^3 4^k} = \frac{4}{\pi},\tag{1.1}$$

where $(a)_n = a(a+1)\cdots(a+n-1)$ denotes the rising factorial. In 1997, Van Hamme [31] proposed 13 interesting p-adic analogues of Ramanujan-type formulas, such as

$$\sum_{k=0}^{(p-1)/2} (6k+1) \frac{(\frac{1}{2})_k^3}{k!^3 4^k} \equiv p(-1)^{(p-1)/2} \pmod{p^4}, \tag{1.2}$$

where p > 3 is a prime. Van Hamme's supercongruence (1.2) was first proved by Long [21]. It should be pointed out that all of the 13 supercongruences have been proved by different techniques (see [25,29]). For some background on Ramanujan-type supercongruences, the reader is referred to Zudilin's paper [33].

In 2016, Long and Ramakrishna [22, Thm. 2] proved the following supercongruence:

$$\sum_{k=0}^{p-1} (6k+1) \frac{(\frac{1}{3})_k^6}{k!^6} \equiv \begin{cases} -p\Gamma_p \left(\frac{1}{3}\right)^9 \pmod{p^6}, & \text{if } p \equiv 1 \pmod{6}, \\ -\frac{10p^4}{27} \Gamma_p \left(\frac{1}{3}\right)^9 \pmod{p^6}, & \text{if } p \equiv 5 \pmod{6}, \end{cases}$$
(1.3)

²⁰¹⁰ Mathematics Subject Classification. Primary 33D15; Secondary 11A07, 11B65.

Key words and phrases. basic hypergeometric series; supercongruences; q-congruences; cyclotomic polynomial; Andrews' transformation, Gasper's summation.

The first author was partially supported by the National Natural Science Foundation of China (grant 11771175).

The second author was partially supported by FWF Austrian Science Fund grant P 32305.

where $\Gamma_p(x)$ is the p-adic Gamma function. This result for $p \equiv 1 \pmod{6}$ confirms the (D.2) supercongruence of Van Hamme, which asserts a congruence modulo p^4 .

During the past few years, many congruences and supercongruences were generalized to the q-setting by various authors (see, for instance, [4–18, 23, 24, 28, 30]). In particular, the authors [15, Thm. 2.3] proposed the following partial q-analogue of Long and Rama-krishna's supercongruence (1.3):

$$\sum_{k=0}^{n-1} [6k+1] \frac{(q;q^3)_k^6}{(q^3;q^3)_k^6} q^{3k} \equiv \begin{cases} 0 \pmod{[n]}, & \text{if } n \equiv 1 \pmod{3}, \\ 0 \pmod{[n]} \Phi_n(q), & \text{if } n \equiv 2 \pmod{3}. \end{cases}$$
 (1.4)

Here and throughout the paper, we adopt the standard q-notation (cf. [3]): For an indeterminate q, let

$$(a;q)_n = (1-a)(1-aq)\cdots(1-aq^{n-1})$$

be the q-shifted factorial. For convenience, we compactly write

$$(a_1, a_2, \dots, a_m; q)_n = (a_1; q)_n (a_2; q)_n \cdots (a_m; q)_n.$$

Moreover, $[n] = [n]_q = 1 + q + \cdots + q^{n-1}$ denotes the *q-integer* and $\Phi_n(q)$ the *n*-th cyclotomic polynomial in q, which may be defined as

$$\Phi_n(q) = \prod_{\substack{1 \leqslant k \leqslant n \\ \gcd(n,k)=1}} (q - \zeta^k),$$

where ζ is an *n*-th primitive root of unity.

The authors [15, Conjectures 12.10 and 12.11] also proposed the following conjectures, the first one generalizing the q-congruence (1.4) for $n \equiv 2 \pmod{3}$.

Conjecture 1. Let $d \ge 3$ and n be positive integers with $n \equiv -1 \pmod{d}$. Then

$$\sum_{k=0}^{M} [2dk+1] \frac{(q;q^d)_k^{2d}}{(q^d;q^d)_k^{2d}} q^{d(d-2)k} \equiv 0 \pmod{[n]} \Phi_n(q)^3,$$

where M = ((d-1)n - 1)/d or n - 1.

Conjecture 2. Let $d \ge 3$ and n > 1 be integers with $n \equiv 1 \pmod{d}$. Then

$$\sum_{k=0}^{M} [2dk - 1] \frac{(q^{-1}; q^d)_k^{2d}}{(q^d; q^d)_k^{2d}} q^{d^2k} \equiv 0 \pmod{[n]} \Phi_n(q)^3,$$

where M = ((d-1)n + 1)/d or n - 1.

Note that Conjecture 1 does not hold for d = 2 while Conjecture 2 is still true for d = 2. In fact, the first author and Wang [17] proved that

$$\sum_{k=0}^{(n-1)/2} [4k+1] \frac{(q;q^2)_k^4}{(q^2;q^2)_k^4} \equiv q^{(1-n)/2}[n] + \frac{(n^2-1)(1-q)^2}{24} q^{(1-n)/2}[n]^3 \pmod{[n]\Phi_n(q)^3}$$

for odd n, and the authors [14] showed that

$$\sum_{k=0}^{(n+1)/2} [4k-1] \frac{(q^{-1};q^2)_k^4}{(q^2;q^2)_k^4} q^{4k} \equiv -(1+3q+q^2)[n]^4 \pmod{[n]^4 \Phi_n(q)}$$

for odd n > 1.

The last two q-congruences are quite special, as they are rare examples of q-hypergeometric congruences that were rigorously shown to hold modulo a high (fourth and even fifth) power of a cyclotomic polynomial. The main purpose of this paper is to add a complete two-parameter family of q-hypergeometric congruences to the list of such q-congruences (see Theorem 1).

We shall also prove that Conjectures 1 and 2 are true. Our proof relies on the following result:

Theorem 1. Let d, r, n be integers satisfying $d \ge 3$, $r \le d - 2$ (in particular, r may be negative), and $n \ge d - r$, such that d and r are coprime, and $n \equiv -r \pmod{d}$. Then

$$\sum_{k=0}^{n-1} [2dk+r] \frac{(q^r; q^d)_k^{2d}}{(q^d; q^d)_k^{2d}} q^{d(d-1-r)k} \equiv 0 \pmod{\Phi_n(q)^4}.$$
(1.5)

This result is similar in nature to the two-parameter result in [8, Thm. 1.1] which, however, only concerned a q-congruence modulo $\Phi_n(q)^2$.

Note that the q-congruence (1.5) is still true when the sum is over k from 0 to ((d-1)n-r)/d, since $(q^r;q^d)_k/(q^d;q^d)_k \equiv 0 \pmod{\Phi_n(q)}$ for $((d-1)n-r)/d < k \leq n-1$. (Also, we must have $((d-1)n-r)/d \leq n-1$ since $n \geq d-r$.) Thus, Theorem 1 implies that Conjectures 1 and 2 hold modulo $\Phi_n(q)^4$.

To prove that Conjectures 1 and 2 also hold modulo [n] (which in conjunction with Theorem 1 would fully establish the validity of the conjectures), we need to prove the following result.

Theorem 2. Let $d \ge 3$ and n be positive integers with gcd(d, n) = 1. Then

$$\sum_{k=0}^{n-1} [2dk+1] \frac{(q;q^d)_k^{2d}}{(q^d;q^d)_k^{2d}} q^{d(d-2)k} \equiv 0 \pmod{\Phi_n(q)}, \tag{1.6}$$

and

$$\sum_{k=0}^{n-1} [2dk - 1] \frac{(q^{-1}; q^d)_k^{2d}}{(q^d; q^d)_k^{2d}} q^{d^2k} \equiv 0 \pmod{\Phi_n(q)}.$$
(1.7)

We shall prove Theorem 1 in Section 2 by making a careful use of Andrews' multiseries generalization (2.2) of the Watson transformation [1, Theorem 4], combined with a special case of Gasper's very-well-poised Karlsson-Minton type summation [2, Eq. (5.13)]. We point out that Andrews' transformation plays an important role in combinatorics and number theory. For example, this transformation was utilized by Zudilin [32] to solve

a problem of Asmus Schmidt. It was used by Krattenthaler and Rivoal [20] to provide an alternative proof of a result by Zudilin that relates a very-well-poised hypergeometric series with a Vasilenko-Vasilev-type multiple integral, the latter serving as a tool in the study of the arithmetic behaviour of values of the Riemann zeta function at integers. Andrews' transformation was also used by the first author, Jouhet and Zeng [11] to prove some q-congruences involving q-binomial coefficients. The couple Hessami Pilehrood [19] used this transformation to give a short proof of a theorem of Zagier. Recently, the present authors [13,16] applied Andrews' transformation to establish some q-congruences for truncated basic hypergeometric series. We shall prove Theorem 2 in Section 3. The proof of Conjectures 1 and 2 will be given in Section 4. We conclude this short paper by Section 5, where we state an open problem involving a q-hypergeometric congruence modulo the fifth power of a cyclotomic polynomial.

2. Proof of Theorem 1

We first give a simple q-congruence modulo $\Phi_n(q)^2$, which was already used in [16].

Lemma 1. Let α , r be integers and n a positive integer. Then

$$(q^{r-\alpha n}, q^{r+\alpha n}; q^d)_k \equiv (q^r; q^d)_k^2 \pmod{\Phi_n(q)^2}.$$
 (2.1)

Proof. For any integer j, it is easy to check that

$$(1 - q^{\alpha n - dj + d - r})(1 - q^{\alpha n + dj - d + r}) + (1 - q^{dj - d + r})^2 q^{\alpha n - dj + d - r} = (1 - q^{\alpha n})^2$$

and $1 - q^{\alpha n} \equiv 0 \pmod{\Phi_n(q)}$, and so

$$(1 - q^{\alpha n - dj + d - r})(1 - q^{\alpha n + dj - d + r}) \equiv -(1 - q^{dj - d + r})^2 q^{\alpha n - dj + d - r} \pmod{\Phi_n(q)^2}.$$

The proof then follows easily from the above q-congruence.

We will make use of a powerful transformation formula due to Andrews [1, Theorem 4], which can be stated as follows:

$$\sum_{k\geqslant 0} \frac{(a, q\sqrt{a}, -q\sqrt{a}, b_1, c_1, \dots, b_m, c_m, q^{-N}; q)_k}{(q, \sqrt{a}, -\sqrt{a}, aq/b_1, aq/c_1, \dots, aq/b_m, aq/c_m, aq^{N+1}; q)_k} \left(\frac{a^m q^{m+N}}{b_1 c_1 \cdots b_m c_m}\right)^k \\
= \frac{(aq, aq/b_m c_m; q)_N}{(aq/b_m, aq/c_m; q)_N} \sum_{j_1, \dots, j_{m-1}\geqslant 0} \frac{(aq/b_1 c_1; q)_{j_1} \cdots (aq/b_{m-1} c_{m-1}; q)_{j_{m-1}}}{(q; q)_{j_1} \cdots (q; q)_{j_{m-1}}} \\
\times \frac{(b_2, c_2; q)_{j_1} \dots (b_m, c_m; q)_{j_1 + \dots + j_{m-1}}}{(aq/b_1, aq/c_1; q)_{j_1} \dots (aq/b_{m-1}, aq/c_{m-1}; q)_{j_1 + \dots + j_{m-1}}} \\
\times \frac{(q^{-N}; q)_{j_1 + \dots + j_{m-1}}}{(b_m c_m q^{-N}/a; q)_{j_1 + \dots + j_{m-1}}} \frac{(aq)^{j_{m-2} + \dots + (m-2)j_1} q^{j_1 + \dots + j_{m-1}}}{(b_2 c_2)^{j_1} \cdots (b_{m-1} c_{m-1})^{j_1 + \dots + j_{m-2}}}. \tag{2.2}$$

This transformation actually constitutes a multiseries generalization of Watson's $_8\phi_7$ transformation formula (see [3, Appendix (III.18)]) which we state here in standard notation for basic hypergeometric series [3, Section 1]:

Next, we recall the following very-well-poised Karlsson–Minton type summation by Gasper [2, Eq. (5.13)] (see also [3, Ex. 2.33 (i)]).

$$\sum_{k=0}^{\infty} \frac{(a, q\sqrt{a}, -q\sqrt{a}, b, a/b, d, e_1, aq^{n_1+1}/e_1, \dots, e_m, aq^{n_m+1}/e_m; q)_k}{(q, \sqrt{a}, -\sqrt{a}, aq/b, bq, aq/d, aq/e_1, e_1q^{-n_1}, \dots, aq/e_m, e_mq^{-n_m}; q)_k} \left(\frac{q^{1-\nu}}{d}\right)^k$$

$$= \frac{(q, aq, aq/bd, bq/d; q)_{\infty}}{(bq, aq/b, aq/d, q/d; q)_{\infty}} \prod_{j=1}^{m} \frac{(aq/be_j, bq/e_j; q)_{n_j}}{(aq/e_j, q/e_j; q)_{n_j}}, \quad (2.4)$$

where n_1, \ldots, n_m are nonnegative integers, $\nu = n_1 + \cdots + n_m$, and $|q^{1-\nu}/d| < 1$ when the series does not terminate. For an elliptic extension of the terminating $d = q^{-\nu}$ case of (2.4), see [27, Eq. (1.7)].

In particular, we note that for d = bq the right-hand side of (2.4) vanishes. Putting in addition $b = q^{-N}$ we obtain the following terminating summation:

$$\sum_{k=0}^{N} \frac{(a, q\sqrt{a}, -q\sqrt{a}, e_1, aq^{n_1+1}/e_1, \dots, e_m, aq^{n_m+1}/e_m, q^{-N}; q)_k}{(q, \sqrt{a}, -\sqrt{a}, aq/e_1, e_1q^{-n_1}, \dots, aq/e_m, e_mq^{-n_m}, aq^{N+1}; q)_k} q^{(N-\nu)k} = 0,$$
 (2.5)

valid for $N > \nu = n_1 + \cdots + n_m$.

By suitably combining (2.2) with (2.5), we obtain the following multiseries summation formula:

Lemma 2. Let $m \ge 2$. Let q, a and e_1, \ldots, e_{m+1} be arbitrary parameters with $e_{m+1} = e_1$, and let n_1, \ldots, n_m and N be nonnegative integers such that $N > n_1 + \cdots + n_m$. Then

$$0 = \sum_{j_{1},\dots,j_{m-1}\geqslant 0} \frac{(e_{1}q^{-n_{1}}/e_{2};q)_{j_{1}}\cdots(e_{m-1}q^{-n_{m-1}}/e_{m};q)_{j_{m-1}}}{(q;q)_{j_{1}}\cdots(q;q)_{j_{m-1}}} \times \frac{(aq^{n_{2}+1}/e_{2},e_{3};q)_{j_{1}}\dots(aq^{n_{m}+1}/e_{m},e_{m+1};q)_{j_{1}+\dots+j_{m-1}}}{(e_{1}q^{-n_{1}},aq/e_{2};q)_{j_{1}}\dots(e_{m-1}q^{-n_{m-1}},aq/e_{m};q)_{j_{1}+\dots+j_{m-1}}} \times \frac{(q^{-N};q)_{j_{1}+\dots+j_{m-1}}}{(e_{1}q^{n_{m}-N+1}/e_{m};q)_{j_{1}+\dots+j_{m-1}}} \frac{(aq)^{j_{m-2}+\dots+(m-2)j_{1}}q^{j_{1}+\dots+j_{m-1}}}{(aq^{n_{2}+1}e_{3}/e_{2})^{j_{1}}\cdots(aq^{n_{m-1}+1}e_{m}/e_{m-1})^{j_{1}+\dots+j_{m-2}}}.$$
 (2.6)

Proof. By specializing the parameters in the multisum transformation (2.2) by $b_i \mapsto aq^{n_i+1}/e_i$, $c_i \mapsto e_{i+1}$, for $1 \le i \le m$ (where $e_{m+1} = e_1$), and dividing both sides of

the identity by the prefactor of the multisum, we obtain that the series on the right-hand side of (2.6) equals

$$\frac{(e_m q^{-n_m}, aq/e_1; q)_N}{(aq, e_m q^{-n_m}/e_1; q)_N} \times \sum_{k=0}^N \frac{(a, q\sqrt{a}, -q\sqrt{a}, e_1, aq^{n_1+1}/e_1, \dots, e_m, aq^{n_m+1}/e_m, q^{-N}; q)_k}{(q, \sqrt{a}, -\sqrt{a}, aq/e_1, e_1q^{-n_1}, \dots, aq/e_m, e_mq^{-n_m}, aq^{N+1}; q)_k} q^{(N-\nu)k},$$

with $\nu = n_1 + \cdots + n_m$. Now the last sum vanishes by the special case of Gasper's summation stated in (2.5).

We collected enough ingredients and are ready to prove Theorem 1.

Proof of Theorem 1. The left-hand side of (1.5) can be written as the following multiple of a terminating $_{2d+4}\phi_{2d+3}$ series:

$$\frac{1-q^r}{1-q} \sum_{k=0}^{((d-1)n-r)/d} \frac{(q^r, q^{d+\frac{r}{2}}, -q^{d+\frac{r}{2}}, q^r, \dots, q^r, q^{d+(d-1)n}, q^{r-(d-1)n}; q^d)_k}{(q^d, q^{\frac{r}{2}}, -q^{\frac{r}{2}}, q^d, \dots, q^d, q^{r-(d-1)n}, q^{d+(d-1)n}; q^d)_k} q^{d(d-1-r)k}.$$

Here, the q^r, \ldots, q^r in the numerator refers to 2d-1 instances of q^r , and similarly, the q^d, \ldots, q^d in the denominator to 2d-1 instances of q^d . Now, by the m=d case of Andrews' transformation (2.2), we can write the above expression as

$$\frac{(1-q^r)(q^{d+r}, q^{-(d-1)n}; q^d)_{((d-1)n-r)/d}}{(1-q)(q^d, q^{r-(d-1)n}; q^d)_{((d-1)n-r)/d}} \sum_{j_1, \dots, j_{d-1} \geqslant 0} \frac{(q^{d-r}; q^d)_{j_1} \cdots (q^{d-r}; q^d)_{j_{d-1}}}{(q^d; q^d)_{j_1} \cdots (q^d; q^d)_{j_{d-1}}}
\times \frac{(q^r, q^r; q^d)_{j_1} \cdots (q^r, q^r; q^d)_{j_1 + \dots + j_{d-2}} (q^r, q^{d+(d-1)n}; q^d)_{j_1 + \dots + j_{d-1}}}{(q^d, q^d; q^d)_{j_1} \cdots (q^d, q^d; q^d)_{j_1 + \dots + j_{d-1}}}
\times \frac{(q^{r-(d-1)n}; q^d)_{j_1 + \dots + j_{d-1}}}{(q^{d+r}; q^d)_{j_1 + \dots + j_{d-1}}} \frac{q^{(d+r)(j_{d-2} + \dots + (d-2)j_1)} q^{d(j_1 + \dots + j_{d-1})}}{q^{2rj_1} \cdots q^{2r(j_1 + \dots + j_{d-2})}}.$$
(2.7)

It is easy to see that the q-shifted factorial $(q^{d+r};q^d)_{((d-1)n-r)/d}$ contains the factor $1-q^{(d-1)n}$ which is a multiple of $1-q^n$. Similarly, the q-shifted factorial $(q^{-(d-1)n};q^d)_{((d-1)n-r)/d}$ contains the factor $1-q^{-(d-1)n}$ (again being a multiple of $1-q^n$) since $((d-1)n-r)/d \ge 1$ holds due to the conditions $d \ge 3$, $r \le d-2$, and $n \ge d-r$. This means that the q-factorial $(q^{d+r},q^{-(d-1)n};q^d)_{((d-1)n-r)/d}$ in the numerator of the fraction before the multisummation is divisible by $\Phi_n(q)^2$. Moreover, it is easily seen that the q-factorial $(q^d,q^{r-(d-1)n};q^d)_{((d-1)n-r)/d}$ in the denominator is coprime with $\Phi_n(q)$.

Note that the non-zero terms in the multisummation in (2.7) are those indexed by (j_1, \ldots, j_{d-1}) that satisfy $j_1 + \cdots + j_{d-1} \leq ((d-1)n-r)/d$ because of the appearance of the factor $(q^{r-(d-1)n}; q^d)_{j_1+\cdots+j_{d-1}}$ in the numerator. None of the factors appearing in the denominator of the multisummation of (2.7) contain a factor of the form $1 - q^{\alpha n}$ (and are therefore coprime with $\Phi_n(q)$), except for $(q^{d+r}; q^d)_{j_1+\cdots+j_{d-1}}$ when $j_1 + \cdots + j_{d-1} = q^{d-1}$

((d-1)n-r)/d. (In this case, the factor $1-q^{(d-1)n}$ appears in the numerator.) Writing n=ad-r (with $a \ge 1$), we have $j_1+\cdots+j_{d-1}=a(d-1)-r$. Since $r \le d-2$, there must be an i with $j_i \ge a$. Then $(q^{d-r};q^d)_{j_i}$ contains the factor $1-q^{d-r+d(a-1)}=1-q^n$ which is a multiple of $\Phi_n(q)$. So the denominator of the reduced form of the multisum in (2.7) is coprime with $\Phi_n(q)$. What remains is to show that the multisum in (2.7), without the prefactor, is divisible by $\Phi_n(q)^2$, i.e. vanishes modulo $\Phi_n(q)^2$.

By repeated applications of Lemma 1, the mulitsum in (2.7), without the prefactor, is modulo $\Phi_n(q)^2$ congruent to

$$\sum_{j_1,\dots,j_{d-1}\geqslant 0} \frac{(q^{d-r};q^d)_{j_1}\cdots(q^{d-r};q^d)_{j_{d-1}}}{(q^d;q^d)_{j_1}\cdots(q^d;q^d)_{j_{d-1}}}$$

$$\times \frac{(q^{r-(d-2)n},q^{r+(d-2)n};q^d)_{j_1}\dots(q^{r-n},q^{r+n};q^d)_{j_1+\dots+j_{d-2}}(q^r,q^{d+(d-1)n};q^d)_{j_1+\dots+j_{d-1}}}{(q^{d+(d-1)n},q^{d-(d-1)n};q^d)_{j_1}\dots(q^{d+2n},q^{d-2n};q^d)_{j_1+\dots+j_{d-2}}(q^{d+n},q^{d-n};q^d)_{j_1+\dots+j_{d-1}}}$$

$$\times \frac{(q^{r-(d-1)n};q^d)_{j_1+\dots+j_{d-1}}}{(q^{d+r};q^d)_{j_1+\dots+j_{d-1}}} \frac{q^{(d+r)(j_{d-2}+\dots+(d-2)j_1)}q^{d(j_1+\dots+j_{d-1})}}{q^{2rj_1}\cdots q^{2r(j_1+\dots+j_{d-2})}}.$$

However, this sum vanishes due to the $m=d, q\mapsto q^d, a\mapsto q^r, e_1\mapsto q^{d+(d-1)n}, e_i\mapsto q^{r+(d-i+1)n}, n_1=0, n_i\mapsto (n+r-d)/d, 2\leqslant i\leqslant d, N=((d-1)n-r)/d,$ case of Lemma 2.

3. Proof of Theorem 2

We first give the following result, which is a generalization of [15, Lemma 3.1].

Lemma 3. Let d, m and n be positive integers with $m \le n - 1$ and $dm \equiv -1 \pmod{n}$. Then, for $0 \le k \le m$, we have

$$\frac{(aq;q^d)_{m-k}}{(q^d/a;q^d)_{m-k}} \equiv (-a)^{m-2k} \frac{(aq;q^d)_k}{(q^d/a;q^d)_k} q^{m(dm-d+2)/2+(d-1)k} \pmod{\Phi_n(q)}.$$

Proof. In view of $q^n \equiv 1 \pmod{\Phi_n(q)}$, we have

$$\frac{(aq;q^{d})_{m}}{(q^{d}/a;q^{d})_{m}} = \frac{(1-aq)(1-aq^{d+1})\cdots(1-aq^{dm-d+1})}{(1-q^{d}/a)(1-q^{2d}/a)\cdots(1-q^{dm}/a)}$$

$$\equiv \frac{(1-aq)(1-aq^{d+1})\cdots(1-aq^{dm-d+1})}{(1-q^{d-dm-1}/a)(1-q^{2d-dm-1}/a)\cdots(1-q^{-1}/a)}$$

$$= (-a)^{m}q^{m(dm-d+2)/2} \pmod{\Phi_{n}(q)}.$$
(3.1)

Furthermore, modulo $\Phi_n(q)$, we get

$$\begin{split} \frac{(aq;q^d)_{m-k}}{(q^d/a;q^d)_{m-k}} &= \frac{(aq;q^d)_m}{(q^d/a;q^d)_m} \frac{(1-q^{dm-dk+d}/a)(1-q^{dm-dk+2d}/a)\cdots(1-q^{dm}/a)}{(1-aq^{dm-dk+1})(1-aq^{dm-dk+d+1})\cdots(1-aq^{dm-dk+1})} \\ &\equiv \frac{(aq;q^d)_m}{(q^d/a;q^d)_m} \frac{(1-q^{d-dk-1}/a)(1-q^{2d-dk-1}/a)\cdots(1-q^{-1}/a)}{(1-aq^{-dk})(1-aq^{d-dk})\cdots(1-aq^{-d})} \\ &= \frac{(aq;q^d)_m}{(q^d/a;q^d)_m} \frac{(aq;q^d)_k}{(q^d/a;q^d)_k} a^{-2k} q^{(d-1)k}, \end{split}$$

which together with (3.1) establishes the assertion.

Similarly, we have the following q-congruence.

Lemma 4. Let d, m and n be positive integers with $m \le n-1$ and $dm \equiv 1 \pmod{n}$. Then, for $0 \le k \le m$, we have

$$\frac{(aq^{-1};q^d)_{m-k}}{(q^d/a;q^d)_{m-k}} \equiv (-a)^{m-2k} \frac{(aq^{-1};q^d)_k}{(q^d/a;q^d)_k} q^{m(dm-d-2)/2+(d+1)k} \pmod{\Phi_n(q)}.$$

The proof of Lemma 4 is completely analogous to that of Lemma 3 and thus omitted.

Proof of Theorem 2. Since $\gcd(d,n)=1$, there exists a positive integer $m\leqslant n-1$ such that $dm\equiv -1\pmod n$. By the a=1 case of Lemma 3 one sees that, for $0\leqslant k\leqslant m$, the k-th and (m-k)-th terms on the left-hand side of (1.6) cancel each other modulo $\Phi_n(q)$, i.e.,

$$[2d(m-k)+1]\frac{(q;q^d)_{m-k}^{2d}}{(q^d;q^d)_{m-k}^{2d}}q^{d(d-2)(m-k)} \equiv -[2dk+1]\frac{(q;q^d)_k^{2d}}{(q^d;q^d)_k^{2d}}q^{d(d-2)k} \pmod{\Phi_n(q)}.$$

This proves that

$$\sum_{k=0}^{m} [2dk+1] \frac{(q;q^d)_k^{2d}}{(q^d;q^d)_k^{2d}} q^{d(d-2)k} \equiv 0 \pmod{\Phi_n(q)}.$$
 (3.2)

Moreover, since $dm \equiv -1 \pmod{n}$, the expression $(q; q^d)_k$ contains a factor of the form $1 - q^{\alpha n}$ for $m < k \le n - 1$, and is therefore congruent to 0 modulo $\Phi_n(q)$. At the same time the expression $(q^d; q^d)_k$ is relatively prime to $\Phi_n(q)$ for $m < k \le n - 1$. Therefore, each summand in (1.6) with k in the range $m < k \le n - 1$ is congruent to 0 modulo $\Phi_n(q)$. This together with (3.2) establishes the q-congruence (1.6).

Similarly, we can use Lemma 4 to prove (1.7). The proof of the theorem is complete. \square

4. Proof of Conjectures 1 and 2

As mentioned in the introduction, we only need to show that Conjectures 1 and 2 are also true modulo [n]. We first give a detailed proof of the q-congruences modulo [n] in Conjecture 1.

Proof of Conjecture 1. We need to show that

$$\sum_{k=0}^{((d-1)n-1)/d} [2dk+1] \frac{(q;q^d)_k^{2d}}{(q^d;q^d)_k^{2d}} q^{d(d-2)k} \equiv 0 \pmod{[n]}, \tag{4.1}$$

and

$$\sum_{k=0}^{n-1} [2dk+1] \frac{(q;q^d)_k^{2d}}{(q^d;q^d)_k^{2d}} q^{d(d-2)k} \equiv 0 \pmod{[n]}. \tag{4.2}$$

Let $\zeta \neq 1$ be an *n*-th root of unity, not necessarily primitive. Clearly, ζ is a primitive root of unity of degree s with $s \mid n$ and s > 1. Let $c_q(k)$ denote the k-th term on the left-hand side of (4.1) or (4.2), i.e.,

$$c_q(k) = [2dk+1] \frac{(q;q^d)_k^{2d}}{(q^d;q^d)_k^{2d}} q^{d(d-2)k}.$$

The q-congruences (3.2) and (1.6) with $n \mapsto s$ imply that

$$\sum_{k=0}^{m} c_{\zeta}(k) = \sum_{k=0}^{s-1} c_{\zeta}(k) = 0,$$

where $dm \equiv -1 \pmod{s}$ and $1 \leqslant m \leqslant s - 1$. Observing that

$$\frac{c_{\zeta}(\ell s + k)}{c_{\zeta}(\ell s)} = \lim_{q \to \zeta} \frac{c_q(\ell s + k)}{c_q(\ell s)} = c_{\zeta}(k), \tag{4.3}$$

we have

$$\sum_{k=0}^{n-1} c_{\zeta}(k) = \sum_{\ell=0}^{n/s-1} \sum_{k=0}^{s-1} c_{\zeta}(\ell s + k) = \sum_{\ell=0}^{n/s-1} c_{\zeta}(\ell s) \sum_{k=0}^{s-1} c_{\zeta}(k) = 0, \tag{4.4}$$

and

$$\sum_{k=0}^{((d-1)n-1)/d} c_{\zeta}(k) = \sum_{\ell=0}^{N-1} c_{\zeta}(\ell s) \sum_{k=0}^{s-1} c_{\zeta}(k) + c_{\zeta}(N s) \sum_{k=0}^{m} c_{\zeta}(k) = 0,$$

where

$$N = \frac{(d-1)n - dm - 1}{ds}.$$

(It is easy to check that N is a positive integer.) This means that the sums $\sum_{k=0}^{n-1} c_q(k)$ and $\sum_{k=0}^{((d-1)n-1)/d} c_q(k)$ are both divisible by the cyclotomic polynomial $\Phi_s(q)$. Since this is true for any divisor s > 1 of n, we deduce that they are divisible by

$$\prod_{s|n,\,s>1} \Phi_s(q) = [n],$$

thus establishing the q-congruences (4.1) and (4.2).

Similarly, we can prove Conjecture 2.

Proof of Conjecture 2. This time we need to show that

$$\sum_{k=0}^{((d-1)n+1)/d} [2dk-1] \frac{(q^{-1};q^d)_k^{2d}}{(q^d;q^d)_k^{2d}} q^{d^2k} \equiv 0 \pmod{[n]},$$

and

$$\sum_{k=0}^{n-1} [2dk - 1] \frac{(q^{-1}; q^d)_k^{2d}}{(q^d; q^d)_k^{2d}} q^{d^2k} \equiv 0 \pmod{[n]}.$$

Again, let ζ be a primitive root of unity of degree s with $s \mid n$ and s > 1, and let

$$c_q(k) = \left[2dk - 1\right] \frac{(q^{-1}; q^d)_k^{2d}}{(q^d; q^d)_k^{2d}} q^{d^2k}.$$

Just like before, we have

$$\sum_{k=0}^{m} c_{\zeta}(k) = \sum_{k=0}^{s-1} c_{\zeta}(k) = 0,$$

where $dm \equiv 1 \pmod{s}$ and $1 \leqslant m \leqslant s-1$. Furthermore, we also have (4.3), (4.4), and

$$\sum_{k=0}^{((d-1)n+1)/d} c_{\zeta}(k) = \sum_{\ell=0}^{N-1} c_{\zeta}(\ell s) \sum_{k=0}^{s-1} c_{\zeta}(k) + c_{\zeta}(N s) \sum_{k=0}^{m} c_{\zeta}(k) = 0,$$

where $N = \frac{(d-1)n - dm + 1}{ds}$ this time. The rest is exactly the same as in the proof of Conjecture 1 and is omitted here.

5. An open problem

Recently, the first author [9, Theorem 5.4] proved that

$$\sum_{k=0}^{M} [4k-1]_{q^2} [4k-1]^2 \frac{(q^{-2}; q^4)_k^4}{(q^4; q^4)_k^4} q^{4k} \equiv 0 \pmod{[n]_{q^2} \Phi_n(q^2)^2},$$

where n is odd and M = (n+1)/2 or n-1. We take this opportunity to propose a unified generalization of [9, Conjectures 6.3 and 6.4], involving a remarkable q-hypergeometric congruence modulo the fifth power of a cyclotomic polynomial:

Conjecture 3. Let n > 1 be an odd integer. Then

$$\sum_{k=0}^{M} [4k-1]_{q^2} [4k-1]^2 \frac{(q^{-2}; q^4)_k^4}{(q^4; q^4)_k^4} q^{4k} \equiv (2q+2q^{-1}-1)[n]_{q^2}^4 \pmod{[n]_{q^2}^4 \Phi_n(q^2)},$$

where M = (n+1)/2 or n-1.

References

- [1] G.E. Andrews, Problems and prospects for basic hypergeometric functions, in: *Theory and Application for Basic Hypergeometric Functions*, R.A. Askey, ed., Math. Res. Center, Univ. Wisconsin, Publ. No. 35, Academic Press, New York, 1975, pp. 191–224.
- [2] G. Gasper, Elementary derivations of summation and transformation formulas for q-series, in Special Functions, q-Series and Related Topics (M.E.H. Ismail, D.R. Masson and M. Rahman, eds.), Amer. Math. Soc., Providence, R.I., Fields Inst. Commun. 14 (1997), 55–70.
- [3] G. Gasper, M. Rahman, *Basic hypergeometric series*, second edition, Encyclopedia of Mathematics and Its Applications **96**, Cambridge University Press, Cambridge, 2004.
- [4] O. Gorodetsky, q-Congruences, with applications to supercongruences and the cyclic sieving phenomenon, Int. J. Number Theory 15 (2019), 1919–1968.
- [5] V.J.W. Guo, A q-analogue of a Ramanujan-type supercongruence involving central binomial coefficients, J. Math. Anal. Appl. 458 (2018), 590–600.
- [6] V.J.W. Guo, A q-analogue of the (I.2) supercongruence of Van Hamme, Int. J. Number Theory 15 (2019), 29–36.
- [7] V.J.W. Guo, A q-analogue of a curious supercongruence of Guillera and Zudilin, J. Difference Equ. Appl. 25 (2019), 342–350.
- [8] V.J.W. Guo, Factors of some truncated basic hypergeometric series, J. Math. Anal. Appl. 476 (2019), 851–859.
- [9] V.J.W. Guo, Common q-analogues of some different supercongruences, Results Math. 74 (2019), Art. 131.
- [10] V.J.W. Guo, Some q-congruences with parameters, Acta Arith. 190 (2019), 381–393.
- [11] V.J.W. Guo, F. Jouhet, and J. Zeng, Factors of alternating sums of products of binomial and q-binomial coefficients, *Acta Arith.* **127** (2007), 17–31.
- [12] V. J. W. Guo, H. Pan and Y. Zhang, The Rodriguez-Villegas type congruences for truncated q-hypergeometric functions, J. Number Theory 174 (2017), 358–368.
- [13] V.J.W. Guo and M.J. Schlosser, Some new q-congruences for truncated basic hypergeometric series, Symmetry 11 (2019), no. 2, Art. 268.
- [14] V.J.W. Guo and M.J. Schlosser, Proof of a basic hypergeometric supercongruence modulo the fifth power of a cyclotomic polynomial, *J. Difference Equ. Appl.* **25**(7) (2019), 921–929.
- [15] V.J.W. Guo and M.J. Schlosser, Some q-supercongruences from transformation formulas for basic hypergeometric series, *Constructive Approx.*, to appear.
- [16] V.J.W. Guo and M.J. Schlosser, Some new q-congruences for truncated basic hypergeometric series: even powers, Results Math. 75 (2020), Art. 1.
- [17] V.J.W. Guo and S.-D. Wang, Some congruences involving fourth powers of central q-binomial coefficients, *Proc. Roy. Soc. Edinburgh Sect. A*, Section A **150** (2020), 1127–1138.
- [18] V.J.W. Guo and W. Zudilin, A q-microscope for supercongruences, Adv. Math. 346 (2019), 329–358.
- [19] Kh. Hessami Pilehrood and T. Hessami Pilehrood, An alternative proof of a theorem of Zagier, J. Math. Anal. Appl. 449 (2017), 168–175.
- [20] C. Krattenthaler and T. Rivoal, An identity of Andrews, multiple integrals, and very-well-poised hypergeometric series, *Ramanujan J.* **13**(1-3) (2007), 203–219.
- [21] L. Long, Hypergeometric evaluation identities and supercongruences, Pacific J. Math. 249 (2011), 405–418.
- [22] L. Long and R. Ramakrishna, Some supercongruences occurring in truncated hypergeometric series, *Adv. Math.* **290** (2016), 773–808.
- [23] H.-X. Ni and H. Pan, On a conjectured q-congruence of Guo and Zeng, Int. J. Number Theory 14 (2018), 1699–1707.

- [24] H.-X. Ni and H. Pan, Some symmetric q-congruences modulo the square of a cyclotomic polynomial, J. Math. Anal. Appl. 481 (2020), Art. 123372.
- [25] R. Osburn and W. Zudilin, On the (K.2) supercongruence of Van Hamme, J. Math. Anal. Appl. 433 (2016), 706–711.
- [26] S. Ramanujan, Modular equations and approximations to π , Quart. J. Math. Oxford Ser. (2) 45 (1914), 350–372.
- [27] H. Rosengren and M.J. Schlosser, On Warnaar's elliptic matrix inversion and Karlsson–Minton-type elliptic hypergeometric series, *J. Comput. Appl. Math.* **178** (2005), 377–391.
- [28] A. Straub, Supercongruences for polynomial analogs of the Apéry numbers, *Proc. Amer. Math. Soc.* **147** (2019), 1023–1036.
- [29] H. Swisher, On the supercongruence conjectures of van Hamme, Res. Math. Sci. (2015) 2:18.
- [30] R. Tauraso, Some q-analogs of congruences for central binomial sums, Colloq. Math. 133 (2013), 133–143.
- [31] L. Van Hamme, Some conjectures concerning partial sums of generalized hypergeometric series, in: p-Adic Functional Analysis (Nijmegen, 1996), Lecture Notes in Pure and Appl. Math. 192, Dekker, New York (1997), 223–236.
- [32] W. Zudilin, On a combinatorial problem of Asmus Schmidt, Electron. J. Combin. 11 (2004), #R22.
- [33] W. Zudilin, Ramanujan-type supercongruences, J. Number Theory 129 (2009), no. 8, 1848–1857.

School of Mathematics and Statistics, Huaiyin Normal University, Huai'an 223300, Jiangsu, People's Republic of China

Email address: jwguo@hytc.edu.cn

FAKULTÄT FÜR MATHEMATIK, UNIVERSITÄT WIEN, OSKAR-MORGENSTERN-PLATZ 1, A-1090 VIENNA, AUSTRIA

Email address: michael.schlosser@univie.ac.at