A FAMILY OF ¢-HYPERGEOMETRIC CONGRUENCES MODULO
THE FOURTH POWER OF A CYCLOTOMIC POLYNOMIAL

VICTOR J. W. GUO AND MICHAEL J. SCHLOSSER

ABSTRACT. We prove a two-parameter family of g-hypergeometric congruences modulo
the fourth power of a cyclotomic polynomial. Crucial ingredients in our proof are George
Andrews’ multiseries extension of the Watson transformation, and a Karlsson—-Minton
type summation for very-well-poised basic hypergeometric series due to George Gasper.
The new family of g-congruences is then used to prove two conjectures posed earlier by
the authors.

1. INTRODUCTION

In 1914, Ramanujan [26] presented a number of fast approximations of 1/7, including

. (1)2 1

k=0
where (a), = a(a+1)---(a+n—1) denotes the rising factorial. In 1997, Van Hamme [31]
proposed 13 interesting p-adic analogues of Ramanujan-type formulas, such as

(p—1)/2 (1)3
> (6k+ 1)k'34k = p(—=1)®*"Y2 (mod p?), (1.2)
k=0

where p > 3 is a prime. Van Hamme’s supercongruence (1.2) was first proved by Long [21].
It should be pointed out that all of the 13 supercongruences have been proved by different
techniques (see [25,29]). For some background on Ramanujan-type supercongruences, the
reader is referred to Zudilin’s paper [33].

In 2016, Long and Ramakrishna [22, Thm. 2] proved the following supercongruence:
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1 —ply| = (mod p%), ifp=1 (mod 6),
(6k+1)(§) - (3) (1.3)
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where I',(x) is the p-adic Gamma function. This result for p = 1 (mod 6) confirms the
(D.2) supercongruence of Van Hamme, which asserts a congruence modulo p?.

During the past few years, many congruences and supercongruences were generalized
to the g-setting by various authors (see, for instance, [4-18,23,24,28,30]). In particular,
the authors [15, Thm. 2.3] proposed the following partial g-analogue of Long and Rama-
krishna’s supercongruence (1.3):

n—l . 316 0 (mod [nl), ifn=1 (mod 3),
S l6k + 1) ((q 1 3))'; ¢ = mod i) o % (1.4)
k=0 59k 0 (mod [n]®,(q)), ifn=2 (mod 3).

Here and throughout the paper, we adopt the standard g-notation (cf. [3]): For an inde-
terminate ¢, let

(a;0)n = (1 —a)(1 —ag)--- (1 —ag"™")
be the g-shifted factorial. For convenience, we compactly write
(a1, @2, am; @)n = (@13 Q)n(@2; @~ + + (A} Q-

Moreover, [n] = [n], = 14+ g+ -+ + ¢"! denotes the g-integer and ®,(q) the n-th
cyclotomic polynomial in ¢, which may be defined as

ouq)= [ (a—¢
1<k<n
ged(n,k)=1
where ( is an n-th primitive root of unity.
The authors [15, Conjectures 12.10 and 12.11] also proposed the following conjectures,
the first one generalizing the g-congruence (1.4) for n =2 (mod 3).

Conjecture 1. Let d > 3 and n be positive integers with n = —1 (mod d). Then

(g; %)

[Qdk + 1]qu(d_2)k =0 (mod [n]@n(q)3),
q%; 4")i

where M = ((d —1)n—1)/d orn — 1.
Conjecture 2. Let d > 3 and n > 1 be integers with n =1 (mod d). Then

I

M
,q 2
> [2dk - 1] —d))qu =0 (mod [n]®,(¢)%),
k=0 Tk

where M = ((d — 1)n+1)/d orn — 1.

Note that Conjecture 1 does not hold for d = 2 while Conjecture 2 is still true for d = 2.
In fact, the first author and Wang [17] proved that

(n—1)/2 . o\4 n? _ N2
. W+ 1 =+ S mod o)
k=0 ’
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for odd n, and the authors [14] showed that

(n+1)/2

S k- 11%q = (3¢ A (mod (l*D.(q))
for odd n > 1.

The last two g-congruences are quite special, as they are rare examples of ¢-hyper-
geometric congruences that were rigorously shown to hold modulo a high (fourth and
even fifth) power of a cyclotomic polynomial. The main purpose of this paper is to
add a complete two-parameter family of g-hypergeometric congruences to the list of such
g-congruences (see Theorem 1).

We shall also prove that Conjectures 1 and 2 are true. Our proof relies on the following
result:

Theorem 1. Let d,r,n be integers satisfying d > 3, r < d — 2 (in particular, v may be

negative), and n > d — r, such that d and r are coprime, and n = —r (mod d). Then
— (4" s 4
k=0 11k

This result is similar in nature to the two-parameter result in [8, Thm. 1.1] which,
however, only concerned a g-congruence modulo ®,,(¢)?.

Note that the g-congruence (1.5) is still true when the sum is over k from 0 to ((d —
1)n —r)/d, since (¢";¢)r/(q¢% ¢ = 0 (mod ®,(q)) for ((d—1)n —7r)/d <k <n-—1.
(Also, we must have ((d —1)n —r)/d < n—1since n > d — r.) Thus, Theorem 1 implies
that Conjectures 1 and 2 hold modulo @,,(q)*.

To prove that Conjectures 1 and 2 also hold modulo [n] (which in conjunction with
Theorem 1 would fully establish the validity of the conjectures), we need to prove the
following result.

Theorem 2. Let d > 3 and n be positive integers with ged(d,n) = 1. Then
— (¢; qd)id d(d—2)k
[2dk + 1]Wq @2k = (mod ®,(q)), (1.6)
k=0 1k
and
n-l —1. d\2d
q 4
> [2dk — 1]qu2’f — 0 (mod @(q)). (1.7)
k=0 11k

We shall prove Theorem 1 in Section 2 by making a careful use of Andrews’ multiseries
generalization (2.2) of the Watson transformation [1, Theorem 4], combined with a special
case of Gasper’s very-well-poised Karlsson-Minton type summation [2, Eq. (5.13)]. We
point out that Andrews’ transformation plays an important role in combinatorics and
number theory. For example, this transformation was utilized by Zudilin [32] to solve
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a problem of Asmus Schmidt. It was used by Krattenthaler and Rivoal [20] to provide
an alternative proof of a result by Zudilin that relates a very-well-poised hypergeometric
series with a Vasilenko—Vasilev-type multiple integral, the latter serving as a tool in the
study of the arithmetic behaviour of values of the Riemann zeta function at integers.
Andrews’ transformation was also used by the first author, Jouhet and Zeng [11] to prove
some g-congruences involving g-binomial coefficients. The couple Hessami Pilehrood [19]
used this transformation to give a short proof of a theorem of Zagier. Recently, the
present authors [13,16] applied Andrews’ transformation to establish some g-congruences
for truncated basic hypergeometric series. We shall prove Theorem 2 in Section 3. The
proof of Conjectures 1 and 2 will be given in Section 4. We conclude this short paper
by Section 5, where we state an open problem involving a ¢-hypergeometric congruence
modulo the fifth power of a cyclotomic polynomial.

2. PrROOF OF THEOREM 1

We first give a simple g-congruence modulo ®,(q)?, which was already used in [16].
Lemma 1. Let o, v be integers and n a positive integer. Then
(@ g g = (¢34 (mod P,(q)?). (2.1)
Proof. For any integer j, it is easy to check that
(1 — gon—dd=r)(1 — gantdi=d+ry 4 (] _ gdi—d+r)2gan—ditd—r _ (] _ jony2
and 1 — ¢** =0 (mod ®,(q)), and so
(1 — qon—ditd=ry(1 — gantdimdiry = (1 _ gdi—d+r)2gan—ditd=r  (n0d @, (q)?).
The proof then follows easily from the above g-congruence. 0J

We will make use of a powerful transformation formula due to Andrews [1, Theorem 4],
which can be stated as follows:

Z (av(J\/_v _Q\/a, blvcla s 7bmacm7q7N;q)k < amqm+N )k

— (¢.Va,—Va,aq/by,aq/cy, ... aq /by, aq/cm, agN T @)k \bicy - - bnCm

_ (CLC],CLQ/mem;Q)N Z (aq/blcl;q)jl..'(a’q/bm—lcm—l;q>jmfl
(aq/bm, aq/cm; q)N (0)j0 (@5 Q) oy

J1yesjm—120

(aq/bi,aq/c1;q)j, - - (aq/bm—1,09/Cr—1; Q) jy+tjms
(@ N3 @bty (ag)im—t D gt tin

- - - . 2.2
X Gemd 105 D11y B2V~ oyt %)
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This transformation actually constitutes a multiseries generalization of Watson’s g¢r
transformation formula (see [3, Appendix (III.18)]) which we state here in standard no-
tation for basic hypergeometric series [3, Section 1]:

1 1
a, qa§7 _qa§7 ba ¢, d7 €, qin a2qn+2:|

81 az, —az, aq/b, aq/c, aq/d, agqle, aq™ " Thede

<GQ7 (IQ/de, q>n aq/bc d e q—n
- ajc, de ) : 2.3
(ag/d,aq/e;q)n ¢ aq/b, aq/c, deq " /a 4, 4 (2.3)

Next, we recall the following very-well-poised Karlsson—Minton type summation by
Gasper [2, Eq. (5.13)] (see also [3, Ex. 2.33 (i)]).

i (aa Q\/a, _Q\/av ba a/b7 d7 €1, aqn1+1/617 <oy Cmy aqnerl/em; q)k’ qlil/ g
)

“—~ (¢;va,—v/a,aq/b,bq,aq/d,aq/e1,e1q™™, ..., aq/em, emq "™ Q)1 \ d

_ (q,aq,aq/bd,bq/d; q) H (ag/bej, ba/ej; q)n,
 (bg, aq/b,aq/d,q/d; ¢)o o (agfej /e @,

where ny, ..., n,, are nonnegative integers, v = ny + - - - + n,,, and |¢'~"/d| < 1 when the
series does not terminate. For an elliptic extension of the terminating d = ¢ case of
(2.4), see [27, Eq. (1.7)].

In particular, we note that for d = bq the right-hand side of (2.4) vanishes. Putting in
addition b = ¢~ we obtain the following terminating summation:

, (24)

N ny 41 N +1 —N.
a, q , —gq\/a, €1, aq i 67"-7em7aqm €m,q 4 —v

— (q,Va,—Va,aq/er,erq™™, ..., aq/em, emq~"m, agN s )
valid for N > v =mny + -+ 4+ n,,.

By suitably combining (2.2) with (2.5), we obtain the following multiseries summation
formula:

Lemma 2. Let m > 2. Let q, a and ey, ..., ent1 be arbitrary parameters with e, 1 = e,
and let ny, ..., ny, and N be nonnegative integers such that N > ny + -+ n,,. Then

> (e1q7™ Je2;q)j, - (€m—1q” " [em; q)j,,
(@D (6 Q) s

0=
J1seesJm—120
(aqnﬁl/@m €3; Q)j1 e (aqn’"ﬂ/@m, €m+1; Cl)j1+~~+jm71
(e1g™™ . aq/e2;q)jy - - (Em—147""", aq/€m; @) jy 4t iy
(q—N; Q)j1+~~~+jm71 (aq)jm_2+---+(m*2)j1 qj1+---+jm—1
(elqnm_N+1/em; q)]l++]m71 (aqn2+163/€2)j1 e (aqnmfl“!‘lem/em_l)j1+"'+jmf2 '

Proof. By specializing the parameters in the multisum transformation (2.2) by b; —
aq™ /e, ¢; — ey, for 1 < i < m (where e,41 = e1), and dividing both sides of

(2.6)
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the identity by the prefactor of the multisum, we obtain that the series on the right-hand
side of (2.6) equals
(emq "™, aq/e1;q)n
(aq, emg " [e1;9)N
N _
« Z (CL, q\/_7 _q\/aa €1, a’qnlJrl/el? <oy Emy aqnm+1/€m7 q Na Q)k (N—-v)k
(¢, Va, —va,aq/er,e1qg™™, ... aq/em, emg="m, agN 1 q)y,

)

k=0
with v = ny + --- + n,,. Now the last sum vanishes by the special case of Gasper’s
summation stated in (2.5). O

We collected enough ingredients and are ready to prove Theorem 1.

Proof of Theorem 1. The left-hand side of (1.5) can be written as the following multiple
of a terminating o4, 4¢24.3 series:

 ((d=n—r)/d . L
Z (q’qd+27_qd+27q7"'7Q7q

p (¢, q2,—q2, ¢% ..., q% g =@ Dn, gd+(d=1n; gd),

r

1—g¢q
I—gq

I g @I gD a1

Here, the ¢",...,q¢" in the numerator refers to 2d — 1 instances of ¢", and similarly, the
¢®,...,q¢% in the denominator to 2d — 1 instances of ¢¢. Now, by the m = d case of
Andrews’ transformation (2.2), we can write the above expression as

(1= ") (g™, ¢4 M) (a-1yn-r)/a Z (@ 5qN5 - @700
(T =) (g% ¢~ g% a-1yn-r)ya (¢4 q%); - (% a%) s,

J1yeJa—120

7 q a5 (@) jrtgan (@ @I g

(g%, q%q%)j, - (a4, % q%) jivtjus
(qT_(d_l)n, qd>]l++]d—1 q(d+r)(]d72++(d_2)]l)qd(]1++]d71)

dtr. d 2rj 2r(j1+-+jd_
(q +r g )j1+"‘+]’d71 @it .q r(j1+-+ii—2)

It is easy to see that the g-shifted factorial (qd“; qd)((d_l)n_T) /q contains the factor 1 —

¢'4~Y" which is a multiple of 1—¢". Similarly, the g-shifted factorial (¢~ @~1"; ¢%) (4—1yn—r) Jd
contains the factor 1—¢~(*~Y" (again being a multiple of 1—¢") since ((d—1)n—7)/d > 1
holds due to the conditions d > 3, »r < d — 2, and n > d — r. This means that
the ¢-factorial (qd+r,q*(d*1)”; qd)((d,l)n,r)/d in the numerator of the fraction before the
multisummation is divisible by ®,(q)?>. Moreover, it is easily seen that the g-factorial
(g%, ¢" ==Y ¢%) (4—1yn—r)a in the denominator is coprime with ®,,(q).

Note that the non-zero terms in the multisummation in (2.7) are those indexed by
(J1,- -+, Ja—1) that satisfy j; + -+ + ja—1 < ((d = 1)n — r)/d because of the appearance of
the factor (¢g"—(@-1m, q%)j,+-+j,, in the numerator. None of the factors appearing in the
denominator of the multisummation of (2.7) contain a factor of the form 1 — ¢*" (and

are therefore coprime with ®,(q)), except for (¢**";¢%); +..+j,_, When ji + -+ + jag_1 =

L

X (2.7)



A FAMILY OF ¢-HYPERGEOMETRIC CONGRUENCES MODULO &, (q)* 7

((d—1)n —17)/d. (In this case, the factor 1 — ¢{4=1" appears in the numerator.) Writing
n =ad —r (with a > 1), we have j; +---+ js_1 = a(d — 1) — r. Since r < d — 2, there
must be an ¢ with j; > a. Then (¢¢";¢%);, contains the factor 1 — g?~"+dl=1 =1 — g»
which is a multiple of ®,,(¢). So the denominator of the reduced form of the multisum in
(2.7) is coprime with ®,,(¢). What remains is to show that the multisum in (2.7), without
the prefactor, is divisible by ®,(¢)?, i.e. vanishes modulo ®,(q).

By repeated applications of Lemma 1, the mulitsum in (2.7), without the prefactor, is
modulo ®,,(¢)? congruent to

> (@M (@ Y

(g% q%); -+ (q%q%)j,.,

J1se-Jd—120

r—(d-2)n r+(d—2)n. d—1)n.

((] v dq ) qd)jl s (qrina qr+n; qd)j1+“'+jd_2 (qTa qd+( ) qd)j1+~~'+jd_1
(qrHd=tn, ga=ta=msgd); (g2, g2 g ) i o (@ 4 G g

(qr—(d—l)n; qd)j1+--~+j,171 q(d+r)(jd—2+“'+(d_2)j1)qd(jl+"'+jd—1)

X

X

d+r. 4d) . . 2rj1 . .. g2r(J1+-+ja—
(q +"', q )]1+"'+]d—1 q TJ1 q 7"(]1"" +Jd 2)

However, this sum vanishes due to the m = d, ¢ — ¢, a — ¢, e; — ¢¢T@ D" ¢
graitn py =0, n = (n+r—d)jd, 2 <i<d N = ((d-1)n—r)/d, case of
Lemma 2. 0

3. PROOF OF THEOREM 2

We first give the following result, which is a generalization of [15, Lemma 3.1].

Lemma 3. Let d, m and n be positive integers with m < n— 1 and dm = —1 (mod n).
Then, for 0 < k < m, we have

(aq; ¢Y)m—r _ meor QG IVe iame _
(qd/a.qd) k‘ = (_a % <qd/a. qd)k (dmd2)/2+ (@0 (mod (I)n(Q))'
b) m— )

Proof. In view of ¢" =1 (mod ®,(q)), we have

(aq;q")m _ (1 —aq)(1 —ag™") - (1 — ag™ ")
(¢%/a;q)m (1 —q?/a)(1 —q*/a)--- (1 —q%/a)
(1 —aq)(1 —ag™")--- (1 — ag™ ")
(1 —qd=dm=1/a)(1 — g>*=4m=1/a)--- (1 — ¢~ /a)

(—a)mqm = HA2 (mod @,(q)). (3.1)
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Furthermore, modulo ®,,(¢q), we get
(ag; qd)mik _ (ag; qd>m (1— qdm—dk+d/a)(1 _ qdm—dk+2d/a) c(1— qdm/a)
@ a; ) mr  (q2/a; g% (1 — agim—dh1) (1 — qgdm—dhtdily. . (1 — qgdm—dtl)
(ag; ¢")m (1= ¢*~*'/a)(1 = ¢*"*/a)--- (1 = ¢""/a)
(¢//a;qM)m (1= ag=®)(1 —ag®®*)--- (1 —aqg™)
_ (aq; qD)m  (aq; q")k a—qu(d—l)k
(q%/a; q")m (/) a; q%)x ’
which together with (3.1) establishes the assertion. O

Similarly, we have the following ¢-congruence.

Lemma 4. Let d, m and n be positive integers with m < n—1 and dm = 1 (mod n).
Then, for 0 < k < m, we have

(950 ok (-2 (0950 mam-a-2/2 @0k (104 @, (g))
(q/a; ") m—r (a7 o

The proof of Lemma 4 is completely analogous to that of Lemma 3 and thus omitted.

Proof of Theorem 2. Since ged(d,n) = 1, there exists a positive integer m < n — 1 such
that dm = —1 (mod n). By the a = 1 case of Lemma 3 one sees that, for 0 < k < m, the

k-th and (m — k)-th terms on the left-hand side of (1.6) cancel each other modulo ®,,(q),
ie.,

. d\2d . d\2d
[2d(m _ k) + 1] (q7q )m—k qd(d—Q)(m—k) = —[Qdk‘ + 1] (q7q )k d(d—2)k (mod (I)n(q))

q
(a4 )2, (¢4 g1}
This proves that
. (¢; qd)%d d(d—2)k — d
> l2dk + 1]Wq =0 (mod ®,(q)). (3.2)
k=0 q 7q k
Moreover, since dm = —1 (mod n), the expression (q; ¢%); contains a factor of the form

1 —¢*" for m < k < n—1, and is therefore congruent to 0 modulo ®,(g). At the same
time the expression (¢%; ¢%) is relatively prime to ®,(q) for m < k < n — 1. Therefore,
each summand in (1.6) with & in the range m < k < n — 1 is congruent to 0 modulo
®,,(¢q). This together with (3.2) establishes the g-congruence (1.6).

Similarly, we can use Lemma 4 to prove (1.7). The proof of the theorem is complete. [

4. PROOF OF CONJECTURES 1 AND 2

As mentioned in the introduction, we only need to show that Conjectures 1 and 2 are
also true modulo [n]. We first give a detailed proof of the g-congruences modulo [n] in
Conjecture 1.
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Proof of Conjecture 1. We need to show that
(d=1)n—=1)/d

Z [2dk + 1]((5;_(]—(;))?&(‘[2)’“ =0 (mod [n]), (4.1)
and
n—1 2d
Z[Qdk + 1]&1—(];)’“?1q @=2F = (mod [n]). (4.2)

Let ¢ # 1 be an n-th root of unity, not necessarily primitive. Clearly, { is a primitive
root of unity of degree s with s | n and s > 1. Let ¢,(k) denote the k-th term on the
left-hand side of (4.1) or (4.2), i.e

(49 )kd d(d—2)k
c(k) = [2dk + ]—(q ’qd)%dq .
The g-congruences (3.2) and (1.6) with n +— s imply that
s—1
ce(k) =
k=0 k=0

NE
(]

ce(k) =0,

where dm = —1 (mod s) and 1 < m < s — 1. Observing that
cc(ls+ k) cq(ls + k)

=1 =cc(k 4.3
olls) R s W (43)
we have
n—1 n/s—1 s—1 n/s—1 s—1
Z Z cc(ls+ k) Z ce(ls) Z cc(k) =0, (4.4)
k=0 =0 k=0 =0 k=0
and
((d-1)n—1)/d N-1 s—1 m
> ce(l ce(k) +cc(Ns) Y cc(k) =0,
k=0 =0 k:O k=0
where
N — (d—l)n—dm—l‘

ds
(It is easy to check that N is a positive integer.) This means that the sums ), _ > cq(k)

and ) ;" (d Un=1)/d ¢q(k) are both divisible by the cyclotomic polynomial ®4(g). Since this
is true for any divisor s > 1 of n, we deduce that they are divisible by

s|n, s>1
thus establishing the g-congruences (4.1) and (4.2). O

Similarly, we can prove Conjecture 2.
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Proof of Conjecture 2. This time we need to show that

((d—1)n+1)/ (g~ gh)2¢
Z [Qdk 1] 7 ’qq>k k=0 (mod [n]),

and
z_:[Qdk — 1]%&% =0 (mod [n]).

Again, let ¢ be a primitive root of unity of degree s with s | n and s > 1, and let

co(k) = [2dk — 1]qu2k.

(g% q9)7!
Just like before, we have
m s—1
> cclk) =3 e
k=0 k=0

where dm =1 (mod s) and 1 < m < s — 1. Furthermore, we also have (4.3), (4.4), and

((d=1)n+1)/d N—

1 m
co(k) =Y ccls) ch +ce(Ns) Y ec(k) =0,
0 k=0

k=0 (=

where N = (d“;# this time. The rest is exactly the same as in the proof of Conjec-
ture 1 and is omitted here. 0J

5. AN OPEN PROBLEM

Recently, the first author [9, Theorem 5.4] proved that

Z[4k‘ — 1] 2[4k — 1}2%q4k =0 (mod [n]qz(I)n(qz)Z),

where n is odd and M = (n+1)/2 or n—1. We take this opportunity to propose a unified
generalization of [9, Conjectures 6.3 and 6.4], involving a remarkable g-hypergeometric
congruence modulo the fifth power of a cyclotomic polynomial:

Conjecture 3. Let n > 1 be an odd integer. Then

M

>[4k — 1] 2[4k — 1]2%&’“ = (29 +2¢7" = 1)[nfi  (mod [n]p:®n(g?)),

where M = (n+1)/2 orn —1.
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