L^2 Geometry of the Symplectomorphism Group

James Benn

University of Notre Dame

Workshop on Infinite Dimensional Geometry, Vienna 2015
The Exponential Map on $\mathcal{D}_0^s(M)$

1. Introduction
2. Fredholm Properties of the Exponential Map

Conjugate Points

1. Existence of Conjugate Points
2. Multiplicity of Conjugate Points
Outline

1. The Exponential Map on $D^s_\omega(M)$
 - Introduction
 - Fredholm Properties of the Exponential Map

2. Conjugate Points
 - Existence of Conjugate Points
 - Multiplicity of Conjugate Points
M is a closed, orientable Symplectic manifold of dimension $2n$, with Symplectic form ω, Riemannian metric g and almost complex structure J satisfying

\[J^2 = -I \]

\[g(J\cdot, J\cdot) = g(\cdot, \cdot) \]

\[g(\cdot, J\cdot) = \omega(\cdot, \cdot) \]
Let \mathcal{D}_ω^s denote the group of all Sobolev H^s diffeomorphisms of M preserving the Symplectic form ω.

If $s > n + 1$ then \mathcal{D}_ω^s becomes an infinite dimensional manifold whose tangent space at the identity is given by

$$T_e \mathcal{D}_\omega^s = \{ J\nabla F + h : F \in H_0^{s+1}(M), h \text{ harmonic} \}.$$

Using right translations, the L^2 inner product on vector fields

$$(u \circ \eta, v \circ \eta)_{L^2} = \int_M g(u, v) \circ \eta \, d\mu$$

defines a right-invariant metric on the group, which induces a smooth right invariant Levi-Civita connection and curvature tensor.
The Geodesic Equation on D^s_ω

- A curve $\eta(t)$ in D^s_ω is a geodesic of the L^2 metric if and only if the vector field $v = \dot{\eta}(t) \circ \eta^{-1}(t)$ satisfies the Symplectic Euler equations on M

$$\partial_t v + \nabla_v v = \omega^\# \delta \nabla^{-1} d \omega^\flat (\nabla_v v)$$

$$\mathcal{L}_v \omega = 0, \quad v(0) = v_o$$

- When M is two dimensional the Symplectic Euler Equations coincide with the 2D Euler equations of incompressible hydrodynamics
The Exponential Map on $\mathcal{D}_\omega^s(M)$
Conjugate Points

Introduction
Fredholm Properties of the Exponential Map

Global Existence of Geodesics

Theorem

[Ebin 2012] Solutions to the geodesic equation of the L^2 metric on $\mathcal{D}_\omega^s(M)$ are unique and exist for all time.

Consequently, the L^2 metric admits an exponential map which is defined on the whole tangent space $T_e \mathcal{D}_\omega^s$

$$\exp_e : T_e \mathcal{D}_\omega^s \to \mathcal{D}_\omega^s$$

$$v_o \mapsto \exp_e(tv_o) = \eta(t)$$

where $\eta(t)$ is a geodesic of the L^2 metric issuing from the identity in the direction v_o.
Outline

1. The Exponential Map on $D^s_\omega(M)$
 - Introduction
 - Fredholm Properties of the Exponential Map

2. Conjugate Points
 - Existence of Conjugate Points
 - Multiplicity of Conjugate Points
Conjugate Points

Definition

Let \(\eta(t) \) be a geodesic of the \(L^2 \) metric in \(\mathcal{D}_\omega^s \) with initial velocity \(v_\circ \). A point \(\eta(t^*) \) \((t^* > 0) \) is conjugate to the point \(\eta(0) \) if the linear map \(D\exp(t^*v_\circ) \) fails to be an isomorphism.

- In contrast with finite dimensional geometry a linear map between infinite dimensional spaces, with empty kernel, may not be an isomorphism.
- Following Grosman [Gro], \(\eta(t^*) \) is *monoconjugate* to \(\eta(0) = e \) if \(D\exp(t^*v_\circ) \) fails to be injective and *epiconjugate* if \(D\exp(t^*v_\circ) \) fails to be surjective.
The Exponential Map on $\mathcal{D}_\mu(M)$
Conjugate Points

Introduction
Fredholm Properties of the Exponential Map

Singularities of \exp_e

- In Ebin-Misiolek-Preston ([E-M-P]), singularities of the exponential map (i.e. conjugate points) were studied in the context of the Euler equations of Hydrodynamics. Their results were

Theorem

For M^2 a compact two-dimensional manifold without boundary, the exponential map of the L^2 metric on $\mathcal{D}_\mu(M^2)$ is a non-linear Fredholm map of index zero.

For M^3 a compact three dimensional manifold, the exponential map of the L^2 metric is NOT a Fredholm map of index zero on $\mathcal{D}_\mu(M^3)$.

- In three dimensions mono conjugate points accumulate and converge to an epiconjugate point; Preston ([P2]) has shown that this is a typical pathology.
The Exponential Map on $\mathcal{D}_{\omega}^s(M)$

Theorem

[B, 2014] Let M be a closed, orientable Symplectic manifold of dimension $2n$. Then, the L^2 exponential map on $\mathcal{D}_{\omega}^s(M)$ is a non-linear Fredholm map of index zero.

Corollary

Monoconjugate and epiconjugate points coincide in $\mathcal{D}_{\omega}^s(M)$, are isolated and of finite multiplicity along finite geodesic segments.
Proof Sketch

The Jacobi equation along \(\eta(t) = \exp_e(tu_0) \in D^s_\omega \) is given by

\[
\frac{D^2}{dt^2} J + R^\omega(J, \dot{\eta})\dot{\eta} = 0
\] (1)

with initial conditions

\[
J(0) = u_0, \quad J'(0) = w_0,
\] (2)

where \(R^\omega \) is the smooth, right-invariant Riemann curvature tensor of the \(L^2 \) metric.

James Benn

L^2 Geometry of the Symplectomorphism Group
If J is the Jacobi field along η with initial conditions

\[J(0) = 0, \quad J'(0) = w_0, \]

then

\[\Phi(t)w_0 := D \exp_e(tu_0)tw_0 = J(t) \]

defines a family of bounded linear operators from $T_e \mathcal{D}^s_\omega$ to $T_{\eta(t)} \mathcal{D}^s_\omega$.
Using the Jacobi equation we find that

\[\Phi(t) = D\eta(t) \cdot \left[\int_0^t \text{Ad}_{\eta^{-1}(s)} \text{Ad}_{\eta^{-1}(s)}^* \, ds \right. \]

\[\left. - \int_0^t \text{Ad}_{\eta^{-1}(s)} \text{Ad}_{\eta^{-1}(s)}^* K_{\nu_o} dR_{\eta^{-1}(s)} \Phi(s) \, ds \right] \]

where \(\text{Ad}_\eta X = D\eta \cdot X \circ \eta^{-1}\) is the usual push-forward of vector fields, \(\text{Ad}_\eta^*\) its formal \(L^2\) adjoint, \(K_{\nu_o}(w) = \text{ad}_w^* \nu_o\) with \(\text{ad}_w^*\) the formal \(L^2\) adjoint of \(-\mathcal{L}_w\) - the usual Lie derivative, and \(dR_{\eta^{-1}(t)}\) the differential of composition on the right with \(\eta^{-1}(t)\).
Proof Sketch

- In brief, invertibility of $\Omega(t) = \int_0^t \text{Ad}_{\eta^{-1}(s)}\text{Ad}_{\eta^{-1}(s)}^* \, ds$ on $T_e D_s^\omega$, follows from the estimates

 $$C(t) \|w_0\|_{L^2} \leq \|\Omega(t)w_0\|_{L^2}$$

 and

 $$C(t) \|w_0\|_{H^s} \leq \|\Omega(t)w_0\|_{H^s} + K \|w_0\|_{H^{s-1}}.$$

- To see that K_{v_0} is compact, we compute it explicitly and find that for any $w \in T_e D_s^\omega$

 $$K_{v_0} w = \text{ad}_w^* v_0 = J\nabla \triangle^{-1} g(w, \nabla \star (dg^b(v_0) \wedge \omega^{n-1})).$$
Outline

1. The Exponential Map on $\mathcal{D}^s_\omega(M)$
 - Introduction
 - Fredholm Properties of the Exponential Map

2. Conjugate Points
 - Existence of Conjugate Points
 - Multiplicity of Conjugate Points
The Isometry Subgroup

- Let M be a closed Symplectic manifold with Symplectic form and Riemannian metric g. The isometry group, denoted by $Iso(M)$, consists of those diffeomorphisms satisfying

$$\eta^*g = g.$$

- Every isometry of M is contained in D_ω.

- Every Killing vector field generates a stationary solution to the Symplectic Euler equations.
Examples of Conjugate points in D^s_ω

Let M be the complex projective plane \mathbb{CP}^2 with the Fubini-Study metric:

$$h_{ij} = h(\partial_i, \bar{\partial}_j) = \frac{(1 + |z|^2)\delta_{ij} - \bar{z}_i z_j}{(1 + |z|^2)^2}$$

where $z = (z_1, z_2, z_3)$ is a point in \mathbb{CP}^2, $|z|^2 = z_1^2 + z_2^2 + z_3^2$. The isometry group of \mathbb{CP}^2 is given by $PU(3)$, the projective unitary group. $PU(3)$ is given by the quotient of the unitary group, $U(3)$, by its center, $U(1)$, embedded as scalars. Thus, in terms of matrices, $PU(3)$ consists of complex 3×3 matrices whose center consists of elements of the form $e^{i\theta}I$. Elements of $PU(3)$ correspond to equivalence classes of unitary matrices, where two matrices A and B are equivalent if $A = e^{i\theta}I \times B$ and we write $A \equiv B$.

James Benn

L^2 Geometry of the Symplectomorphism Group
Consider the following 2-parameter variation of isometries acting on \mathbb{CP}^2

$$\gamma(s,t) =$$

$$\begin{bmatrix}
 i & 0 & 0 \\
 0 & i \cos s & \sin s \\
 0 & \sin s & i \cos s
\end{bmatrix}
\begin{bmatrix}
 i \cos t & \sin t & 0 \\
 \sin t & i \cos t & 0 \\
 0 & 0 & i
\end{bmatrix}
\begin{bmatrix}
 -i & 0 & 0 \\
 0 & -i \cos s & \sin s \\
 0 & \sin s & -i \cos s
\end{bmatrix}$$

Notice that $\gamma(s,0) = il \equiv l$ since il corresponds to a rotation by 90° in each coordinate, i.e. is an element of $U(1)$ embedded as scalars.
Examples of conjugate points in D^S_ω

Compute

$$\dot{\gamma}(s, t) \circ (\gamma(s, t))^{-1} = \begin{bmatrix} 0 & -i \cos s & \sin s \\ -i \cos s & 0 & 0 \\ -\sin s & 0 & 0 \end{bmatrix} = V(s, t)$$

and $V(s, t)$ satisfies the Symplectic Euler equation for each s.

The variation field of the family of geodesics $\gamma(s, t)$ is

$$Y(t) = \frac{d}{ds} (\gamma(s, t))|_{s=0} = \begin{bmatrix} 0 & 0 & i \sin t \\ 0 & 0 & 1 - \cos t \\ -i \sin t & \cos t - 1 & 0 \end{bmatrix}$$

which clearly vanishes for $t = 0$ and $t = 2\pi$. That is, $\gamma(2\pi)$ is conjugate to $e = \gamma(0)$.

James Benn
L^2 Geometry of the Symplectomorphism Group
Conjugate Points on D^s_ω

Theorem

[B, 2014] Conjugate points exist on $D^s_\omega(\mathbb{C}P^n)$ for all $n \geq 2$.
The Exponential Map on $\mathcal{D}_\omega^s(M)$
- Introduction
- Fredholm Properties of the Exponential Map

Conjugate Points
- Existence of Conjugate Points
- Multiplicity of Conjugate Points
Theorem

[B, 2014] Every geodesic of the L^2 metric which lies in $\text{Iso}(M)$ and which is of length greater than πr (for some positive constant r) has conjugate points, all of which have even multiplicity.
Proof Idea

- Restrict the L^2 metric to the finite dimensional subgroup $Iso(M)$ and its finite dimensional Lie (sub) algebra $T_eIso(M) \subset T_eD_\omega$.
- The L^2 metric becomes bi-invariant and the Riemann curvature tensor becomes
 \[
 R(w, u)v = -\frac{1}{4} \operatorname{ad}_v \circ \operatorname{ad}_u w \quad u, v, w \in T_eIso(M) \tag{5}
 \]
- Using (5) we can show that the sectional curvature of the plane σ spanned by any two unit vectors in $T_eIso(M)$ is positive and bounded away from zero.
- The first statement then follows from the classical Theorem of Bonnet and Myers.
Proof Idea

- When $\eta(t)$ consists of isometries, $\text{Ad}_{\eta}(t) = \text{Ad}_{\eta^{-1}}(t)$ and the Jacobi equation reduces to
 \[
 \partial_t (\text{Ad}_{\eta^{-1}}(t)y(t)) = -K_{v_0}(\text{Ad}_{\eta^{-1}}(t)y(t)) + w_0
 \]
 where $y = J \circ \eta^{-1}$, $J(0) = 0$, $J'(0) = w_0$.

- The operator K_{v_0} is skew self-adjoint in the L^2 metric and compact.

- Thus we have a complete orthonormal basis of $T_e \mathcal{D}^0_\omega$ consisting of eigenvectors of K_{v_0}.
Proof Idea

Letting \(u(t) = \text{Ad}_{\eta^{-1}(t)} y(t) \), and using the orthonormal basis of \(K_{\nu_o} \), our equation becomes

\[
\sum_j \partial_t u^j(t) \varphi_j = - \sum_j \lambda_j u^j(t) \varphi_j + \sum_j w_o^j \varphi_j
\]

or

\[
\partial_t u^j(t) = - \lambda_j u^j(t) + w_o^j
\]

with solution

\[
u^j(t) = \frac{1 - e^{\lambda_j t}}{\lambda_j} w_o^j
\]

since \(u_j(0) = y_j(0) = 0 \).
Proof Idea

- Now $0 = u(t^*) = \text{Ad}_{\eta^{-1}(t^*)}y(t^*)$ if and only if $y(t^*) = 0$.
- So, $\eta(t^*)$ is conjugate to $\eta(0)$ if and only if
 \[0 = u_i(t^*) = \frac{1 - e^{\lambda_i t^*}}{\lambda_i} w_o^i, \]
i.e. if and only if K_v has an eigenvector with eigenvalue
 $\lambda_i = \frac{2\pi i}{t^*} k, \ k \in \mathbb{Z}/\{0\}$.
- Since complex eigenvalues come in conjugate pairs the multiplicity of every conjugate point is even:
 \[u_1(t) = \frac{1 - e^{\lambda_1 t}}{\Re(\lambda_1)} w_o^1 \quad u_2(t) = \frac{1 - e^{-\lambda_1 t}}{-\Re(\lambda_1)} w_o^2 \]

D. G. Ebin, *Geodesics on the Symplectomorphism Group*, GAFA, Published Online (2012)

