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A CHARACTERIZATION OF SINGULAR SCHRÖDINGER

OPERATORS ON THE HALF-LINE

RAFFAELE SCANDONE, LORENZO LUPERI BAGLINI, AND KYRYLO SIMONOV

Abstract. We study a class of delta-like perturbations of the Laplacian on
the half-line, characterized by Robin boundary conditions at the origin. Using
the formalism of nonstandard analysis, we derive a simple connection with a
suitable family of Schrödinger operators with potentials of very large (infinite)
magnitude and very short (infinitesimal) range. As a consequence, we also
derive a similar result for point interactions in the Euclidean space R3, in the

case of radial potentials. Moreover, we discuss explicitly our results in the case
of potentials that are linear in a neighbourhood of the origin.

1. Introduction

In this paper, we study the behavior of Schrödinger operators with very short
range potentials on the half-line, of the form

(1.1) −∆D + λV
(x

ε

)

,

where−∆D denotes the Dirichlet Laplacian on L2(R+), V is a real-valued, bounded,
compactly supported function, ε ≪ 1, and λ := λ(ε) ∈ R. In particular, we are
interested in the case when the potential is virtually zero-range, i.e. when ε → 0,
and when λ becomes very large, i.e. λ → ∞ as ε → 0, in order to create a delta-
like profile. Such models have been widely used in nuclear, atomic, and solid state
physics [10, 11, 24, 36], as they provide heuristic Hamiltonian for a non-relativistic
quantum particle moving under the influence of a fixed impurity.

Singular problems can be fruitfully studied by means of non-Archimedean meth-
ods, which provide rigorous ways to handle infinitesimal and infinite quantities; in
particular, in our problem they give the possibility to formalize the idea of letting
the potential be zero ranged and delta-like by taking ε infinitesimal and λ infinite
in the expression (1.1). In this paper, we will focus mostly on non-Archimedean
methods based on nonstandard analysis, on similar lines of those contained in the
seminal paper [2] (see also the recent paper [7]), but there have also been other non-
Archimedean approaches to the study of equations like (1.1), for example, those
based on different versions of Colombeau algebras (see e.g. [16, 23] and references
therein).

The classical construction of Schrödinger operators with a zero-range interaction
(also known as point interaction) is based on a restriction-extension approach (see
e.g. [17] and references therein): one first considers the closed, symmetric operator
T := −∆|C∞

c (R+) on L2(R+), then the Krein-von Neumann theory [31] guarantees
that T admits a one-parameter family of self-adjoint extensions {−∆α}α∈R∪{∞},
where −∆α acts as the free Laplacian, and functions ψ ∈ D(−∆α) are qualified
by the boundary condition αψ(0) = ψ′(0) (the case α = +∞ corresponds to the
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Dirichlet Laplacian). More precisely, we have the following explicit characterization
(see e.g. [17, Section 6.2.2.1] and [14]).

(1.2) −∆αf = −f ′′, D(−∆α) =







f ∈ L2(R+)

∣

∣

∣

∣

∣

f, f ′ ∈W 1,1(R+),
f ′′ ∈ L2(R+),
αf(0) = f ′(0)







.

Analogous models in Rd have been intensively studied, since the first rigorous
attempt by Berezin and Faddeev [9], and subsequent characterizations by many
other authors, see e.g. [1, 2, 6, 15, 21, 22, 25, 26, 30, 32] (we refer to the monograph
[4], the surveys [3, 13], and references therein for a comprehensive overview).

In particular, it is well-known that the operator −∆|C∞

c (Rd\{0}) is essentially
self-adjoint in dimension d ≥ 4, while it admits non-trivial self-adjoint extensions
in dimension d = 1, 2, 3. More precisely, in dimension d = 2, 3, there is a one-
parameter family {−∆α}α∈R∪{∞} of self-adjoint extensions, analogously to the half-
line case, while in dimension d = 1 there is a richer family of extensions, including
the so-called δ and δ′ interactions.

A particularly relevant question is to understand whether physically meaningful
operators of the form (1.1) converge (in a suitable sense), as ε→ 0 and λ→ ∞, to a
Schrödinger operator with point interaction. Such question has been widely studied
in the Euclidean case Rd (see e.g. [4, 5, 19, 20, 27] and references therein). The half-
line case has been investigated in [14, 34], by means of classical techniques. In [14]
the authors discussed the sub-critic scaling λ ∼ ε−2+δ, showing that the singular
perturbation preserves the Dirichlet boundary condition. The critical case λ ∼ ε−2

has been addressed in [34], where the author shows that the singular perturbation
can produce a non-trivial boundary condition in the limit as ε→ 0, under suitable
spectral assumptions on the potential. Analogous results have been proven within
the framework of nonstandard analysis, in the case of a square potential [2, 28].

In particular, in their pioneering work [2], Albeverio, Fenstad, and Høegh-Krohn
have shown that the self-adjoint operator −∆α on L2(R+) can be associated with
the nonstandard self-adjoint operator

(1.3) Hα = −∆D + λα1[0,ε]

on ∗L2(R+) (the “nonstandard extension of L2(R+)”), where ε is a fixed positive
infinitesimal, 1[0,ε] is the indicator function for the nonstandard interval [0, ε], and
λα is an infinite coupling constant, of the form

(1.4) λα = −
(

k +
1

2

)π2

ε2
+

2

ε
α+ β,

for arbitrary k ∈ N and β ∈ R. As a consequence, they also derived a similar
result in the Euclidean space R3, using the factorization of −∆α with respect to
the angular momentum decomposition of L2(R3).

The main goal of this paper is to extend the results in [2] to a large class of
compactly supported potentials.

Let us state explicitly that we do not assume the readers to have any prior
knowledge of nonstandard analysis: analogously to [2], our main results, and their
proofs, use only some of the most basic nonstandard definitions and notions, which
we will reintroduce in Section 2. The rest of the paper is structured as follows. In
Section 3, we state our main results, Theorem 3.2 and Corollary 3.6, whose proofs
are postponed to Section 4. In Section 5, we discuss explicitly the case of potentials
that are linear in a neighbourhood of the origin. In Section 6, we draw some final
remarks and perspectives.
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2. Nonstandard concepts

Nonstandard analysis belongs to the field of non-Archimedean mathematics,
i.e. to the study of structures containing infinite and infinitesimal quantities. The
structure we will use is that of non-Archimedean fields1:

Definition 2.1. Let K be an infinite totally ordered field. An element ξ ∈ K is:

• infinitesimal if, for all positive n ∈ N, |ξ| < 1
n ;

• finite if there exists n ∈ N such that |ξ| < n;
• infinite if, for all n ∈ N, |ξ| > n (equivalently, if ξ is not finite).

We say that K is non-Archimedean if it contains an infinitesimal ξ 6= 0, and that
K is superreal if it properly extends R.

By the completeness of R, it follows that any infinite totally ordered superreal
field is automatically non-Archimedean (whilst the converse is false: not all non-
Archimedean fields are superreal).

Infinitesimals can be used to formalize the notion of closeness:

Definition 2.2. We say that two numbers ξ, ζ ∈ K are infinitely close if ξ − ζ is
infinitesimal. In this case we write ξ ∼ ζ.

The relation ∼ is clearly an equivalence relation; in the case of the superreal
fields, the following Theorem, whose proof is just a simple application of the com-
pleteness of R, see e.g. [18, Theorem 5.6.1], completely characterizes the quotient
space of finite elements of K, making precise the relationship between K and R:

Theorem 2.3. If K is a superreal field, every finite number ξ ∈ K is infinitely

close to a unique real number r ∼ ξ, called the standard part of ξ.

Given a finite ξ ∈ K, we will denote its standard part by st(ξ). Moreover, with a
small abuse of notation, we will also write st(ξ) = +∞ (resp. st(ξ) = −∞) if ξ ∈ K

is a positive (resp. negative) infinite number.
In the sequel, we will work also with complex numbers. The analogue of complex

numbers for superreal fields can be easily introduced by considering

K+ iK,

namely, a field of numbers of the form

a+ ib, a, b ∈ K.

In this paper, the superreal field we use is any field of hyperreal numbers ∗R
coming from nonstandard analysis. Readers interested in a comprehensive intro-
duction to nonstandard analysis are referred to [18]; here, we will only recall (in a
semi-formal way) the very basic facts we need in the following sections, following
the simplified presentation of nonstandard methods of [8].

For most applications, nonstandard methods consist of just two ingredients:

• two mathematical universes2 U,V;
• a star map ∗ : U → V that associates to every object x ∈ U an object

∗x ∈ V, called its hyperextension, which satisfies the transfer principle.

1More in general, our problem could be approached using non-Archimedean rings, as it is done,
e.g. in Colombeau theory. However, as in this paper we will focus only on nonstandard analysis,

we prefer not to give the most general possible definitions.
2We will use this notion informally here, referring to [18] or any other book on nonstandard

analysis for a precise formalization; informally, a mathematical universe U,V is a collection that
is closed with respect to the basic set operations and includes the reals and any “mathematical
object” that can be constructed starting with the reals, e.g. functions, sets of functions, functionals,
sets of functionals, sets of sets of functions and so on.
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As always in applications of nonstandard methods to analysis, we will also assume
that R ⊂ ∗R and, for all real numbers r ∈ R, we identify r with its hyper-extension,
namely we let ∗r = r. Moreover, where there is no danger of confusion, we also
identify a real function f with its hyper-extension ∗f .

The transfer principle states the following:

Transfer Principle. Let P (a1, . . . , an) be an elementary property of the objects
a1, . . . , an. Then P (a1, . . . , an) holds if and only if P (∗a1, . . . , ∗an) holds.

Formally, elementary properties means first order properties (in some language)
with bounded quantifiers, see [12, Section 4.4] for details. For our semi-formal
presentation, it is sufficient to know that a property is elementary if:

• it involves only the usual logic connectives (and, or, if, then, not), quanti-
fiers (there exists, for all), and the basic notions of function, the value of a
function at a given point, relation, domain, codomain, ordered n-tuple, the
i-th component of an ordered tuple, and membership;

• all quantifiers are bounded by some set, namely, they appear in the form
∀x ∈ X or ∃x ∈ X , where X is some set.

Fact. We will apply the transfer principle only to the following properties, that
are all elementary:

• “for all ε ∈ R
+ and λ ∈ R, the operator Hλ,ε := −∆D + λV

(

x
ε

)

admits a

unique self-adjoint realization on L2(R+), which is bounded from below in
R. Moreover, for all z ∈ C \ R, for all g ∈ L2 (R+),

((Hλ,ε − z)−1g)(x) =

∫

R+

Gλ,ε,z(x, y)g(y)dy”,

which by transfer becomes:

“for all ε ∈ ∗R+ and λ ∈ ∗R, the operator Hλ,ε := −∆D +λV
(

x
ε

)

admits a

unique self-adjoint realization on ∗(L2(R+)), which is bounded from below
in ∗R (notice that this hence holds for any ε positive infinitesimal and for
every λ). Moreover, for all z ∈ ∗(C \R), for all g ∈ ∗(L2 (R+)

)

,

((Hλ,ε − z)−1g)(x) =

∫

∗R+

Gλ,ε,z(x, y)g(y)dy”;

• “for all ω, θ ∈ R and ε ∈ R+, the operator −∆ + θ+ωε
ε2 W

(

x
ε

)

admits a

unique self-adjoint realization on L2(R3)”, which by transfer becomes: “for
all ω, θ ∈ ∗R and ε ∈∗R+, the operator −∆+ θ+ωε

ε2 W
(

x
ε

)

admits a unique

self-adjoint realization on ∗L2(R3)”;
• Taylor’s formula;
• nonstandard formulation of equations (3.3) and (4.7).

Definition 2.4. A model of nonstandard methods is a triple 〈U,V, ∗〉 where U,V
are mathematical universes and ∗ : U → V is a star map that satisfies the transfer
principle.

To avoid confusion, we will use the term standard when referring to objects in
U, e.g. when talking about real functions.

From now on, we consider given a model of nonstandard methods. We will work
in the non Archimedean field ∗R. We will use also the following notations3:

• given x, y ∈ ∗R, we write x = O(y) if there exists C ∈ R+ such that
|x| ≤ C|y|;

3Which slightly differ those more usual in nonstandard analysis, but are closer to those of
classical analysis.
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• we write x = Θ(y) if x = O(y) and y = O(x);
• we write x = o(y) if there exists ε infinitesimal such that |x| ≤ ε|y|; in
particular, x = o(1) means that x is infinitesimal;

• let Ω be an open subset of R
n, and let f : ∗Ω → ∗

R; we let st(f) be
the function st(f) : ∗Ω → R ∪ {−∞,+∞} such that for every x ∈ ∗Ω,
st(f)(x) := st (f(x)).

3. Main results

In this Section we state the main results of this paper, postponing their proofs
to Section 4.

We will use the following notations:

• for z ∈ C \R≥0, we write
√
z to denote the branch of the square root such

that Re
√
z > 0;

• given x ∈ Rd, we let 〈x〉 :=
√

1 + |x|2;
• given any two functions f, g ∈ C1(I), for some interval I ⊆ R, we let
W (f, g) := fg′ − f ′g be the Wronskian of f and g;

• for any set X ⊆ Rd, we denote by 1X the characteristic function of X ;
• given a function f ∈ L1

loc(R
3), we let P0f be its spherical mean, given by

(P0f)(x) =
1

4π

∫

S2

f (|x|ω) dω, x ∈ R
3.

Let us define the operators we want to study. We start by fixing a compactly
supported potential V ∈ L∞(R+,R). For any given ε ∈ R+ and λ ∈ R, it is well
known [31, 33] that the operator

(3.1) Hλ,ε := −∆D + λV
(x

ε

)

admits a unique self-adjoint realization on L2(R+), which is bounded from below.
There are more general conditions on V which ensure the self-adjointness of Hλ,ε,
see e.g. the discussion in [14]. For the sake of concreteness, we do not discuss here
the full general case, even though our arguments can be easily adapted.

Now, for any given ε ∈ ∗R+ and λ ∈ ∗R, as observed in Section 2 the transfer
principle guarantees that Hλ,ε defines a self-adjoint, bounded below operator on
∗L2(R+). We address the question of whether Hλ,ε can be restricted to a standard
operator. Let us first provide a precise definition.

Definition 3.1. Let Ω be an open subset of Rd. Let A be a self-adjoint operator
on ∗L2(Ω). We say that A is near standard if there exists a self-adjoint operator B
on L2(Ω) such that, for every f ∈ L2(Ω) and for every z ∈ C \ R, we have

st
(

(A− z)−1 ∗f
)

|Ω = (B − z)−1f.

In this case, we write st(A) = B.

Our main result is the following.

Theorem 3.2. Let us fix a potential V ∈ L∞(R+,R), with supp(V ) ⊆ [0,M ] for
some M > 0, and let ε, λ ∈ ∗R, with ε positive and infinitesimal and |λ| = O(ε−2).
Then the self-adjoint operator Hλ,ε is near standard.

Moreover, given θ ∈ R, let ψθ ∈ W 2,∞
loc (R+) →֒ C1(R+) be a non-zero solution to

(−∆D + θV )ψθ = 0, and consider the set

Υ := {θ ∈ R |ψ′
θ(M) = 0}.

If λ has the form

λ =
θ

ε2
+
ω

ε
+ o(ε−1), θ ∈ Υ, ω ∈ R,
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then st(Hλ,ε) = −∆α, with

(3.2) α =
ω

ψθ(M)2

∫ M

0

V (t)ψ2
θ(t)dt.

For all the other choices of λ, we have st(Hλ,ε) = −∆D.

Remark 3.3. Notice that the hypothesis |λ| = O
(

ε−2
)

entails that λ has the form

θε−2 + S(ε), where S(ε) = o(ε−2) and θ ∈ R. In fact, by our hypothesis we have

Iλ,ε :=
{

C ∈ R≥0 | ε2 |λ| ≤ C
}

6= ∅,
and the thesis is reached by taking θ = sgn(λ) · inf Iλ,ε.
Remark 3.4. Observe that, if θ ∈ Υ, we necessarily have ψθ(M) 6= 0, whence
α 6= +∞. This implies that st(Hλ,ε) is a Schrödinger operator with a non-trivial
point interaction at the origin. Moreover, since

∫ M

0

V (t)ψ2
θ(t)dt = −1

θ

∫ M

0

(ψ′
θ)

2(t)dt 6= 0,

we deduce that, by varying the parameter ω, we obtain all the possible values α ∈ R.
Furthermore, α generally depends not only on ω, but on θ as well through ψθ.

This should be compared with the result in [2], as the dependence on θ ∈ Υ vanishes
for the square potential V = 1[0,1]: in this case, in fact, one has α = ω

2 .

As a consequence of Theorem 3.2, we deduce a nonstandard formulation of the
general approximation theorem for Schrödinger operators with point interactions
in R3 [4, 27], in the case of radial, compactly supported potentials.

In order to introduce the result, let us first recall some well-known facts about
delta-like interactions in three dimensions (see e.g. [4, Chapter I.1]). As anticipated
in the Introduction, the symmetric operator −∆|C∞

c (R3\{0}) has a one-parameter

family of self-adjoints extensions, that we denote by
{

−∆
(3)
α

}

, α ∈ R ∪ {∞}, in
order to avoid confusion with the 1D case. The extension with α = ∞ coincides
with the free Laplacian on R3. Let us consider the angular momenta decomposition

(3.3) L2
loc(R

3) =

∞
⊕

ℓ=0

U−1L2
loc(R

+, rdr) ⊗ 〈Yℓ,−ℓ, . . . , Yℓ,ℓ〉,

where (Uf)(r) = rf(r), and Yℓ,m, ℓ ∈ N, m = 0,±1, . . . ,±ℓ, are the spherical

harmonics on L2(S2). With respect to this decomposition, the operator −∆
(3)
α

writes as

(3.4) −∆(3)
α =

(

−∆α ⊕
∞
⊕

ℓ=1

U−1HℓU
)

⊗ 1,

where Hℓ, ℓ ≥ 1, are self-adjoint operators on L2(R+, rdr), independent on α.
Explicitly, we have

(3.5)
D(Hℓ) = {f ∈ L2(R+) | f, f ′ ∈W 1,1

loc (R
+), −d2rf + ℓ(ℓ+ 1)r−2f ∈ L2(R+)},

Hℓf = −d2rf + ℓ(ℓ+ 1)r−2f.

Identity (3.4) tells us that −∆
(3)
α diagonalizes with respect to decomposition (3.3),

and that it coincides with −∆ after projecting out the subspace of radial functions.
Next, let us fix a radial, compactly supported potential W ∈ L∞(R3,R), and

consider the operator −∆ +W , which admits a unique self-adjoint realization on
L2(R3) (see e.g. [33]). We recall the notion of zero energy resonance for −∆+W
(see e.g. [27] and references therein), which corresponds to the presence of a suitable
distributional eigenfunction.
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Definition 3.5. The operator −∆ +W is zero energy resonant if there exists a
function Ψ ∈ L2(R3, 〈x〉−1−δdx) \ L2(R3), for any δ > 0, such that

(−∆+W )Ψ = 0

as a distributional identity. The function Ψ is called a zero-energy resonance.

Now, for every ω, θ ∈ R, and ε ∈ ∗R positive and infinitesimal, consider the
operator

Aε,θ,ω := −∆+
θ + ωε

ε2
W
(x

ε

)

,

which is self-adjoint on ∗L2(R3) by means of the transfer principle, as observed in
Section 2. That Aε,θ,ω is near standard is a direct consequence of Theorem 3.2, but
we can say more: st (Aε,θ,ω) is non-trivial if and only if −∆ + θW is zero energy
resonant, in a sense that is made precise by the following Corollary.

Corollary 3.6. Let us fix a radial, compactly supported potential W ∈ L∞(R3,R),
and writeW (|x|) := V (x), where suppV ⊆ [0,M ] for someM > 0. The self-adjoint
operator Aε,θ,ω is near standard. Moreover, we have the following dichotomy.

(i) If −∆+ θW is not zero-energy resonant, then st(Aε,θ,ω) = −∆.

(ii) If −∆+θW has a zero-energy resonance Ψθ, then st(Aε,θ,ω) = −∆
(3)
α , with

α =
ω

ψθ(M)2

∫ M

0

V (t)ψ2
θ(t)dt 6= ∞,

where the function ψθ : R+ → R is defined by

(3.6) ψθ(|x|) := |x|(P0Ψθ)(x), x ∈ R
3.

We will see in the proof of Corollary 3.6 that the coupling parameters θ ∈ Υ(V )
are exactly those for which the unscaled operator −∆ + θW has a zero energy-
resonance.

4. Proof of the main results

In this Section we prove our main results, namely Theorem 3.2 and Corollary
3.6, by adapting the nonstandard techniques of [2] to our more general case.

Let us start with some preliminary discussion. Without loss of generality, we can
assume that suppV ⊆ [0, 1]. For any fixed z ∈ C, and for any given θ, γ ∈ R, we

consider the unique solution ψθ,γ ∈ W 2,∞
loc (R+) →֒ C1(R+) to the Cauchy problem

(4.1)











−ψ′′
θ,γ + (θV − γz)ψθ,γ = 0,

ψθ,γ(0) = 0

ψ′
θ,γ(0) = 1.

In particular, ψθ := ψθ,0 is a non-zero solution to (−∆D + θV )ψθ = 0. Moreover,

it is easy to show that the map (θ, γ) 7→ ψθ,γ belongs to C1(R2,W 2,∞
loc (R+)).

Next, for every fixed ε ∈ (0, 1] and λ ∈ R, let us consider the self-adjoint operator
Hλ,ε on L2(R+), defined by (3.1). In order to characterize the resolvent map
(Hλ,ε − z)−1, for z ∈ C \ R, we analyze the following equation:

(4.2) − φ′′(x) + λV
(x

ε

)

φ(x) − zφ(x) = 0, x ∈ R
+.

Let us denote by uλ,ε, vλ,ε∈ C1(0, ε) the solutions to (4.2) on [0, ε], respectively with
uλ,ε(0) = 0, u′λ,ε(0) = 1 and vλ,ε(1) = 0, v′λ,ε(0) = 0. Observe that, for x ∈ [0, ε],

(4.3) uλ,ε(x) = εψε2λ,ε2

(x

ε

)

.
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Let φ1, φ2 ∈ C1(R+) be solutions to (4.2), respectively with φ1(0) = 0 and
φ2(x) → 0 as x→ ∞. Explicitly, we consider

(4.4) φ1(r) :=

{

uλ,ε(x), x ∈ [0, ε]

ae
√
zx + be−

√
zx, x > ε,

(4.5) φ2(r) :=

{

cuλ,ε(x) + dvλ,ε(x), x ∈ [0, ε]

e−
√
zx, x > ε,

where the constants a, b, c, d ∈ C are determined by imposing the differentiability
of φ1 and φ2 at x = ε. For a later convenience, we write down the expressions for
a and b:

(4.6) a =
1

2
e−

√
zε

(

uλ,ε(ε) +
u′λ,ε(ε)√

z

)

, b =
1

2
e
√
zε

(

uλ,ε(ε)−
u′λ,ε(ε)√

z

)

.

By Sturm–Liouville theory, the Wronskian K := W (φ1, φ2) is independent on
x, and a direct computation shows that actually K = −2a

√
z. In addition, since

z 6∈ σ(Hλ,ε), we have that K 6= 0, and the integral kernel of (Hλ,ε − z)−1 is given
explicitly by

(4.7) Gz(x, y) =
1

K

{

φ1(x)φ2(y), x ≤ y,

φ1(y)φ2(x), x ≥ y.

Let us fix now ε, λ(ε) ∈ ∗
R, with ε positive and infinitesimal and |λ| = O(ε−2).

Owing to the transfer principle, we have that Hλ,ε is a self-adjoint operator on
∗L2(R+), and Gz is the integral kernel of its resolvent. More precisely, for every4

z ∈ C \ R and for every g ∈ ∗L2(R+), we have

(

(Hλ,ε − z)−1g
)

(x) =

∫

∗R+

Gz(x, y)g(y)dy.

In particular, for every x ∈ ∗R, with x ≥ ε, and for every f ∈ L2(R+), formulas
(4.4), (4.5) and (4.7) yield

(

(Hλ,ε − z)−1 ∗f
)

(x) =
e−

√
zx

K

(

∫ ε

0

uλ,ε(y)
∗f(y)dy

+

∫ x

ε

(ae
√
zy + be−

√
zy) ∗f(y)dy + (ae2

√
zx + b)

∫ +∞

x

e−
√
zy ∗f(y)dy

)

.

(4.8)

In the following Lemma, we show the restriction to R+ of the resolvent map
(4.8) defines a standard operator.

Lemma 4.1. For every z ∈ C \ R, the map

Φz : f 7→ st
(

(Hλ,ε − z)−1 ∗f
)

|R+

defines a bounded linear operator on L2(R+).

Proof. Analyzing the identity (4.8), and observing that K−1a = −(4z)−1/2 is finite,
we easily deduce that it is sufficient to show that K−1b and K−1uλ,ε(y) are finite,
for every y ∈ [0, ε].

Let us write λ = θε−2+S(ε), with θ ∈ R and S(ε) = o(ε−2) (such decomposition
is indeed possible, see Remark 3.3). We have the following expansions, which follow

4By transfer, this property would actually hold more in general for every z ∈ ∗(C \ R).
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immediately from the representation (4.3), Taylor’s formula and the fact that the

map (θ, γ) 7→ ψθ,γ belongs to C1(R2,W 2,∞
loc (R+)).

uλ,ε(y) = εψε2λ,ε2(ε
−1y)(4.9)

= εψθ,0(ε
−1y) + o(ε), ∀ y ∈ [0, ε],

u′λ,ε(ε) = ψ′
ε2λ,ε2(1)(4.10)

= ψ′
θ,0(1) + ε2S(ε)

∂G
∂θ

(θ, 0) +O(max{(ε2S(ε))2, ε2}),

where we introduced the C1-map

G : R× R → R, G(λ, γ) = ψλ,γ(1).

Now we distinguish two cases.

Case I: θ 6∈ Υ. It follows from (4.9) that uλ,ε(y) = O(ε) for every y ∈ [0, ε].
Moreover, u′λ,ε(ε) = Θ(1), as ψ′

θ,0(1) 6= 0 (whilst all other summands in expansion

(4.10) are infinitesimal). Hence, we deduce from (4.6) that b is finite and K is not
infinitesimal. We conclude that K−1b and K−1uλ,ε(y), y ∈ [0, ε], are finite.

Case II: θ ∈ Υ. Since ψ′
θ,0(1) = 0, expansion (4.10) reduces to

(4.11) u′λ,ε(ε) = ε2S(ε)
∂G
∂θ

(θ, 0) +O(max{(ε2S(ε))2, ε2}).

Let us compute explicitly (∂θG)(θ, 0). We have (∂θG)(θ, 0) = g′(1), where g satisfies

−g′′ + θV g + V ψθ = 0,

with initial conditions g(0) = g′(0) = 0. Let ψ̃θ ∈ C1(R+) be the solution to the
Cauchy problem











−ψ̃′′
θ + θV ψ̃θ = 0,

ψ̃θ(0) = 1

ψ̃′
θ(0) = 0.

Using W (ψθ, ψ̃θ) = −1, we can apply the variation of constants to get

g(x) =
(

∫ x

0

V (t)ψ̃θ(t)ψθ(t)dt
)

ψθ(x) −
(

∫ x

0

V (t)ψθ(t)
2dt
)

ψ̃θ(x).

Taking into account the values of ψθ, ψ̃θ at x = 0 and the condition ψ′
θ(1) = 0, we

obtain

∂G
∂θ

(θ, 0) = g′(1)

= −
(

∫ 1

0

V (t)ψθ(t)
2dt
)

ψ̃′
θ(1).

Finally, the identity ψθ(1)ψ̃
′
θ(1) =W (ψθ, ψ̃θ) = −1 yields

(4.12)
∂G
∂θ

(θ, 0) =
1

ψθ(1)

(

∫ 1

0

V (t)ψθ(t)
2dt
)

.

In particular, as θV (t)ψ̃2
θ = ψ̃′′

θ ψ̃θ, an integration by parts yields

(4.13)
∂G
∂θ

(θ, 0) = − 1

θψθ(1)

∫ 1

0

(ψ′
θ)

2(t)dt 6= 0.
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Next, observe that ψθ,0(1) 6= 0, otherwise we would have ψθ,0 ≡ 0. Owing to
formulas (4.6), (4.9), (4.11), and using that ψθ,0(1) ∈ R \ {0}, ∂θG(θ, 0) ∈ R \ {0},√
z 6∈ R, we obtain

K = −2a
√
z

= −e−
√
zε
(√
zuλ,ε(ε) + uλ,ε(ε)

)

= −e−
√
zε
(√

zεψθ,0(1) + o(ε) + ε2S(ε)
∂G
∂θ

(θ, 0) +O(max{(ε2S(ε))2, ε2})
)

= Θ(max{ε, ε2S(ε)}),
given that no cancellation can occur between the terms

√
zεψθ,0(1) 6∈ R and

ε2S(ε)(∂θG)(θ, 0) ∈ R. Analogously, we deduce that

b =
1

2
e
√
zε

(

uλ,ε(ε)−
u′λ,ε(ε)√

z

)

= Θ(max{ε, ε2S(ε)}).
It follows that K−1b is finite. Moreover, since uλ,ε(y) = O(ε) for y ∈ [0, ε], and

K−1 =
(

Θ(max{ε, ε2S(ε)})
)−1

= O(ε−1), we also obtain that K−1uλ,ε(y) is finite
for every y ∈ [0, ε]. The proof is complete. �

Observe now that, given f ∈ C∞
c (R+) and z ∈ C \ R, we have

(Hλ,ε − z) ∗f = ∗((−∆− z)f),

or equivalently
∗f = (Hλ,ε − z)−1 ∗((−∆− z)f).

Taking the standard part and restricting to R+ we obtain

(4.14) Φz ((−∆− z)f) = f, ∀ f ∈ C∞
c (R+),

where Φz is the bounded linear operator defined in Lemma 4.1. It follows that
Φz = (−∆α(z) − z)−1, for a suitable α(z) ∈ R ∪ {∞}. In order to conclude the
proof of the main Theorem, it remains to show that α(z) is actually independent
on z. To this aim, let us fix z ∈ C \ R and an arbitrary f ∈ L2(R3) \ {0}, and set
gz := (Hλ,ε − z)−1 ∗f . By construction, st(gz)|R+ belongs to D(−∆α(z)) \ {0}, and
it follows by representation (1.2) that α(z) = st

(

g′z(ε)/gz(ε)
)

. Owing to formula

(4.8), a direct computation yields st
(

g′z(ε)/gz(ε)
)

= st
(

u′λ,ε(ε)/uλ,ε(ε)
)

, whence

(4.15) α(z) = st
(

u′λ,ε(ε)/uλ,ε(ε)
)

.

Using (4.15) and the expansions (4.9)-(4.10) we can determine α(z), showing that
it is indeed independent on z ∈ C\R. Again, we write λ = θε−2+S(ε), with θ ∈ R

and S(ε) = o(ε−2), and we distinguish two cases.

Case I: θ 6∈ Υ. Since u′λ,ε(ε) = Θ(1) and uλ,ε(ε) = O(ε), we get α(z) = ∞ for

every z ∈ C \R. We conclude that Hλ,ε is near standard, in the sense of Definition
3.1, with st(Hλ,ε) = −∆D.

Case II: θ ∈ Υ. We already observed that ψθ,0(1) 6= 0 and (∂θG)(θ, 0) 6= 0, which
in view of expansions (4.9)-(4.10) implies uλ,ε(ε) = Θ(ε) and u′λ,ε(ε) = Θ(ε2S(ε)).

If S(ε) = Θ(ε−γ) for some γ ∈ (1, 2), then u′λ,ε(ε)/uλ,ε(ε) is of the order of ε1−γ ,

which is infinite, hence by (4.15) we have that α(z) = ∞ for every z ∈ C \ R. We
conclude that Hλ,ε is near standard, with st(Hλ,ε) = −∆D.

If S(ε) = ωε−1 + o(ε−1), with ω ∈ R, then (4.15) yields

(4.16) α(z) =
ω

ψθ,0(1)

(∂G
∂θ

(θ, 0)
)

≡ α.
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We deduce that Hλ,ε is near standard, with st(Hλ,ε) = −∆α. Moreover, combining
(4.16) with (4.12), we obtain the desired expression (3.2) for α.

We have completed the proof of Theorem 3.2.
We conclude this Section by proving Corollary 3.6.

Proof of Corollary 3.6. Consider the operator

Hε,θ,ω := −∆D +
θ + ωε

ε2
V
(x

ε

)

,

which is near standard by means of Theorem 3.2, as θ and ω are finite5, with
st(Hε,θ,ω) = −∆α for a suitable α := α(θ, ω) ∈ R ∪ {∞}.

Let us consider the nonstandard decomposition

(4.17) ∗L2(R3) =

∞
⊕

ℓ=0

U−1 ∗L2(R+, rdr) ⊗ 〈Yℓ,−ℓ, . . . , Yℓ,ℓ〉,

obtained by applying the transfer principle to (3.3). With respect to decomposition
(4.17), we have the factorization

(4.18)
(

Aε,θ,ω − z)−1 =
(

(

Hε,θ,ω − z)−1 ⊕
∞
⊕

ℓ=1

U−1( ∗Hℓ − z)−1U
)

⊗ 1,

for every z ∈ C \ R, where Hℓ, ℓ ≥ 1, are the operators defined by (3.5).
Moreover, we define the extension map E3 : L2(R3) ∋ f 7→ ∗f ∈ ∗L2(R3),

and the restriction map R3 : ∗L2(R3) ∋ g 7→ st(g)|R3 . Analogously, we define
the extension map E1 : L2(R+) ∋ f 7→ ∗f ∈ ∗L2(R+), and the restriction map
R1 : ∗L2(R+) ∋ g 7→ st(g)|R+ . Using (4.18) and the linearity of the extension and
restriction maps, we obtain

R3

(

Aε,θ,ω − z)−1 E3 = R3

(

(

(

Hε,θ,ω − z)−1 ⊕
∞
⊕

ℓ=1

U−1( ∗Hℓ − z)−1U
)

⊗ 1

)

E3

=
(

(

R1

(

Hε,θ,ω − z)−1 E1
)

⊗ 1
)

⊕R3

( ∞
⊕

ℓ=1

U−1( ∗Hℓ − z)−1U ⊗ 1

)

E3

=
(

(−∆α − z)−1 ⊕
∞
⊕

ℓ=1

U−1(Hℓ − z)−1U
)

⊗ 1,

for every z ∈ C\R, as an identity with respect to the standard decomposition (3.3).
Comparing the identity above with (3.4), we deduce that Aε,θ,ω is near standard,

with st(Aε,θ,ω) = −∆
(3)
α . It remains to prove the dichotomy.

(i) Assume that −∆ + θW is not zero energy resonant. Let ψθ ∈ C1(R+) be
a non-zero solution to (−∆D + θV )ψθ = 0, and suppose that θ ∈ Υ(V ), namely
ψ′
θ(M) = 0. It follows that ψθ(x) = ψθ(M) for x ≥ M . Hence the function Ψθ,

defined by Ψθ(x) = |x|−1ψθ(|x|), belongs to L2(R3, 〈x〉−1−δ) \ L2(R3), for δ > 0,
and satisfies (−∆+θW )Ψθ = 0, namely it is a zero-energy resonance for −∆+θW ,
yielding a contradiction. We deduce that θ 6∈ Υ(V ), whence α = ∞.

(ii) Assume that Ψθ is a zero-energy resonance for−∆+θW . Since Ψθ ∈ L2
loc(R

3)
andW ∈ L∞(R3), the relation (−∆+θW )P0Ψθ = 0 implies that P0Ψθ ∈ H2

loc(R
3).

Then the Morrey-Sobolev embedding for radial functions (see e.g. [35, Proposition

1.1]) guarantees that the function ψθ, defined by (3.6), belongs to W 1,∞
loc (R+).

5To apply Theorem 3.2, it would have been sufficient to assume that θ + ωε = O(1).
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Moreover, since H2
loc(R

3) →֒ L∞
loc(R

3), the relation (−∆+ θW )P0Ψθ = 0 yields also

∆ψθ ∈ L∞
loc(R

+). Combining everything, we conclude that ψθ ∈ W 2,∞
loc (R+).

Next, we consider the representation of Ψθ with respect to decomposition (3.3):

(4.19) Ψθ =
(

U−1ψθ ⊗ Y0
)

⊕
∞
⊕

ℓ=1

ℓ
⊕

m=−ℓ

U−1ψ
(ℓ,m)
θ ⊗ Yℓ,m,

for suitable ψ
(ℓ,m)
θ ∈ L2

loc(R
+). Owing to the relation (−∆+θW )Ψθ = 0, we obtain

that (−∆+ θV )ψθ = 0 and

(4.20) (Hℓ + θV )ψ
(ℓ,m)
θ = 0, ℓ ≥ 1, m = −ℓ, . . . , ℓ.

Given that suppV ⊆ [0,M ], equation (4.20) and the characterization (3.5) yield

ψ
(ℓ,m)
θ (r) = Aℓ,mr

ℓ+1 +Bℓ,mr
−ℓ, r ≥M,

for suitable Aℓ,m, Bℓ,m ∈ R. Since Ψθ ∈ L2(R3, 〈x〉−1−δdx), we necessarily have
Aℓ,m = 0, which implies

∣

∣

∣

(

U−1ψ
(ℓ,m)
θ ⊗ Yℓ,m

)

(x)
∣

∣

∣
.

1

|x|ℓ+1
, |x| ≥M.

In particular, we have U−1ψ
(ℓ,m)
θ ⊗ Yℓ,m ∈ L2(R3) for every ℓ ≥ 1, m = −ℓ, . . . , ℓ.

Since Ψθ 6∈ L2(R3), we deduce from (4.19) that U−1ψθ ⊗ Y0 6∈ L2(R3), which
guarantees that ψθ is not identically zero.

Summarizing so far, we have proved that ψθ ∈ W 2,∞
loc (R+) is a non-zero function,

satisfying the equation (−∆+ θV )ψθ = 0. Suppose now that ψ′
θ(M) = β 6= 0. It

would follow that ψθ(x) = ψθ(M) + βx for x ≥ M , contradicting the condition
Ψθ ∈ L2(R3, 〈x〉−1−δ) for δ > 0. We deduce that θ ∈ Υ(V ), and Theorem 3.2
provides the desired expression for α. Moreover, given that ψθ(M) 6= 0, we obtain
α 6= ∞. �

5. Linear potentials

In this Section, we focus on a family of compactly supported potentials, which
are linear in a neighborhood of the origin. More precisely, for ξ ∈ R, we consider

Vξ(x) = (1− ξx)1[0,1].

Hence, given ε, λ ∈ ∗R, with ε being a positive infinitesimal and |λ| = O(ε−2), we
want study the Schrödinger operator

H
(ξ)
λ,ε := −∆D + λVξ

(x

ε

)

,

which is self-adjoint on ∗L2(R+) and near standard, as we proved in Section 4.

For θ ∈ R \ {0}, let ψ(ξ)
θ ∈ C1(0, 1) be the solution to the Cauchy problem

(5.1)















−∂2x ψ(ξ)
θ (x) + θVξ(x)ψ

(ξ)
θ (x) = 0, x ∈ [0, 1],

ψ
(ξ)
θ (0) = 0,

∂xψ
(ξ)
θ (0) = 1.

In view of Theorem 3.2, we only need to consider the case when ∂xψ
(ξ)
θ (1) = 0,

which defines the set Υ := Υ(ξ). We distinguish between two cases, with respect to
the value of the parameter ξ.

Case I: (ξ = 0). In this case, we recover the square potential, which corresponds
to the Schrödinger operator

(5.2) Hα = −∆D + λα1[0,ε]
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analyzed by Albeverio, Fenstad, and Høegh-Krohn in [2]. We have

ψ
(0)
θ (x) =

e
√
θx − e−

√
θx

2
√
θ

.

For a rectangular potential barrier (θ > 0), it is straightforward to check that

∂xψ
(0)
θ (1) 6= 0. When θ < 0 (corresponding to a rectangular potential well) we have

∂xψ
(0)
θ (1) = cos(

√

|θ|),
whence the set Υ(0) is given explicitly by

Υ(0) =
{

− π2
(

k +
1

2

)2

| k ∈ N

}

⊂ (−∞, 0).

Due to Theorem 3.2, λ can be expressed as

λ =
θ

ε2
+
ω

ε
+ o(ε−1), θ ∈ Υ(0), ω ∈ R.

Then we find that st(H
(0)
λ,ε) = −∆α, with

α = ω
(

ψ
(0)
θ (M)

)−2
∫ M

0

V0(t)
(

ψ
(0)
θ

)2
(t)dt =

ω

2
,

and we recover the result in [2]. As was noticed before, in this particular case, α
does not depend on θ ∈ Υ(0).

Case II: (ξ 6= 0). The solution of (5.1) reads

ψ
(ξ)
θ (x) =

1

ξσθ,ξ

Bi(σθ,ξ)Ai(σθ,ξ(1− ξx)) −Ai(σθ,ξ) Bi(σθ,ξ(1− ξx))

Bi(σθ,ξ)Ai
′(σθ,ξ)−Ai(σθ,ξ) Bi

′(σθ,ξ)
,

where Ai(x) and Bi(x) are the Airy functions [29, Chapter 9.1], and σθ,ξ = 3

√

θ
ξ2 .

Taking into account the value of the Wronskian of the Airy functions, namely
W (Ai(x),Bi(x)) = 1

π , we deduce

(5.3) ψ
(ξ)
θ (x) =

π

ξσθ,ξ

[

Ai(σθ,ξ) Bi(σθ,ξ(1 − ξx))− Bi(σθ,ξ)Ai(σθ,ξ(1− ξx))
]

.

Imposing the condition ∂xψ
(ξ)
θ (1) = 0, we obtain

Υ(ξ) =
{

θ : Ai(σθ,ξ) Bi
′(σθ,ξ(1− ξ))− Bi(σθ,ξ)Ai

′(σθ,ξ(1− ξ)) = 0
}

.

It is easy to check that Υ is an infinite discrete set. Moreover, for x > 0,

(5.4)
Ai(x)

Bi(x)
> 0,

Ai′(x)

Bi′(x)
< 0.

Using (5.4) we deduce that, for ξ ≤ 1, Υ(ξ) ⊂ (−∞, 0). When ξ > 1 the potential
Vξ has a non-zero negative part, whence the set Υ(ξ) contains also positive values.

Now, if λ has the form

(5.5) λ =
θ

ε2
+
ω

ε
+ o(ε−1), θ ∈ Υ(ξ), ω ∈ R,

then st(H
(ξ)
λ,ε) = −∆α(ξ) , where

α(ξ) =
ω

(ψ
(ξ)
θ (1))2

∫ 1

0

Vξ(x
′)
(

ψ
(ξ)
θ (x′)

)2
dx′.

The integral in the r.h.s. is equal to
∫ 1

0

Vξ(x
′)
(

ψ
(ξ)
θ (x′)

)2
dx′ =

1

3ξ3σ3
θ,ξ

[

1− σθ,ξ(1− ξ)2
( Ai(σθ,ξ)

Ai′(σθ,ξ(1− ξ))

)2
]

,
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and by computing the explicit value of ψ
(ξ)
θ (1) we obtain

(5.6) α(ξ) =
ω

3ξσθ,ξ

[(Ai′(σθ,ξ(1− ξ))

Ai(σθ,ξ)

)2

− σθ,ξ(1− ξ)2
]

.

In particular, for the triangular potential (i.e. ξ = 1) we have

(5.7) α(1) =
ω

3 3
√
θ

( Ai′(0)

Ai( 3
√
θ)

)2

.

We conclude this Section by focusing on what happens when potential Vξ is an
infinitesimal modification of the characteristic function 1[0,1]. Namely, we consider

the operator H
(ξ)
λ,ε in the case when ξ ∈∗R is infinitesimal, where we have st (Vξ) =

1[0,1]. Our aim is to show that, if |λ| = O(ε−2), then H
(ξ)
λ,ε is near standard, with

st(H
(ξ)
λ,ε) = st(H

(0)
λ,ε). In view of Definition 3.1, it is enough to show that, for every

f ∈ L2(R+) and z ∈ C \ R,
(5.8) st

(

(H
(ξ)
λ,ε − z)−1∗f

)

|R+ = st
(

(H
(0)
λ,ε − z)−1∗f

)

|R+ .

By means of the discussion in Section 4, this is equivalent to prove the following
identities:

st
(

ψ
(ξ)
θ (x)

)

= ψ
(0)
θ (x), ∀x ∈ [0, 1], ∀ θ < 0,(5.9)

st
(

∂xψ
(ξ)
θ (1)

)

= ∂xψ
(0)
θ (1), ∀ θ ∈ R \ {0}.(5.10)

Let us prove explicitly the identity (5.9), the computations for (5.10) being
similar. We use the following asymptotic expansions of the Airy functions, valid as
x→ +∞ (see e.g. [29, Chapter 9.7]).

Ai (−x) = 1√
π
cos
(

2
3x

3/2 − π
4

)

x−1/4 +O(x−7/4)(5.11)

Bi (−x) = − 1√
π
sin
(

2
3x

3/2 − π
4

)

x−1/4 +O(x−7/4)(5.12)

Using (5.3), (5.11), (5.12), the identity sin(α − β) = sin(α) cos(β) − cos(α) sin(β),
and the Taylor expansion, we obtain

st(ψ
(ξ))
θ (x)) = st

(

sin
(

2
3 (−σθ,ξ)3/2(1− (1− ξx)3/2)

)

ξ(−σθ,ξ)3/2(1− ξx)1/4

)

= st

(

sin
(

2
3

√
−θ 1−(1−ξx)3/2

ξ

)

√
−θ(1− ξx)1/4

)

=
sin(

√
−θx)√
−θ

≡ ψ
(0)
θ (x).

6. Conclusions

We have shown in this paper that non-Archimedean methods are well suited for
the study of singular Schrödinger operators, analyzing in detail the case of delta-like
interactions on the half-line. The transfer principle, indeed, provides a very efficient
way to construct a self-adjoint operator with infinite magnitude and infinitesimal
range, in the abstract framework of nonstandard analysis. Then, the finiteness
of the resolvent allows to conclude that the nonstandard singular operator can be
actually restricted, in a canonical way, to a classical Schrödinger operator with a
Robin boundary condition at the origin. Translated into the standard setting, this
provides an approximation result for the point interaction by means of a suitable
family of re-scaled, regular potentials. Remarkably, the spectral conditions needed
to produce a non-trivial boundary condition in the limit (identified in Theorem 3.2
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by the condition ψ′
θ(M) = 0 for the coupling parameter θ) arise in this context by a

quite direct argument, i.e. by considering an eigenfunction expansion with respect
to the infinitesimal parameter associated to the range of the interaction.

This approach appears to be quite versatile, and it can be adapted to the study of
point interactions on bounded domains and compact manifolds, as well as to more
complicated perturbations of the Laplace operator, such as interactions supported
on curves and surfaces, non-local singular operators, measure-type potentials. In
addition, it could be helpful in order to investigate problems arising from multi-
particle quantum systems with contact interactions. In this context, in fact, there
are many unsolved questions concerning the approximation of idealized zero-range
models by means of regular Schrödinger operators, and the non-Archimedean point
of view could provide useful insights and open new perspectives.
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