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Weak values of quantum observables are a powerful tool for investigating quantum phenomena. Some
methods formeasuringweak values in the laboratory requireweak interactions and postselection, while others
are deterministic, but require statistics over a number of experiments that grows linearly with the dimension
of the measured system in the worst case over all possible observables. Here we propose a deterministic
dimension-independent scheme for estimating weak values of arbitrary observables. The scheme is based on
controlledSWAP operations, and associates states and observables in the mathematical expression of the weak
value to preparations devices and measurements devices in the experimental setup, respectively. Thanks to
this feature, it provides insights into the relation between states of two identical quantum systems at a single
moment of time and states of a single quantum system at two moments of time, also known as two-time states.
Specifically, our scheme provides an alternative expression for two-time states, and establishes a link between
two-time states accessible through the controlled-SWAP scheme and bipartite quantum states with positive
partial transpose.

I. INTRODUCTION

In a seminal 1988 paper [1], Aharonov, Albert, and Vaid-
man introduced the notion of weak values and showed that
they can be experimentally accessed by letting the measured
system interact weakly with a pointer in the time interval be-
tween a pre-selection and a post-selection. Since then, weak
values have proven a powerful tool for analyzing a broad
spectrum of quantum phenomena [2–5]. On the founda-
tional side, they provide a lens for experimentally investigat-
ing quantum paradoxes [6–8] and the behaviour of quantum
systems in time [9–12], and they also serve as a quantita-
tive indicator of non-classicality [5, 13–15]. On the applied
side, they provide probabilistic amplification techniques for
quantum metrology [16–23] and for the direct measurement
of quantum states [24–27].
Several experimental schemes for measuring weak values

have been proposed and demonstrated in the laboratory. The
first schemes, based on the original definition of weak values,
involve weak measurement interactions and post-selection
(see [5] for a review). More recently, there has been a growing
interest in methods for estimating weak values without post-
selection and weak couplings [28–36]. These schemes are
conceptually interesting because they disentangle the notion
of weak value from the notion of weak measurements, and
expand the scope of application of the notion of weak value
by linking it to fundamental protocols in quantum informa-
tion and computation. For example, an ingenious method
was developed by Hoffman [37], who showed that weak val-
ues can be estimated by performing standard measurements
on the outputs of the universal quantum cloning machine
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[38–40]. Another method was proposed byWagner et al [36],
based on a quantum algorithm called the cyclic shift test [41].

A limitation of the existing deterministic estimation proto-
cols, however, is that the number of samples needed to accu-
rately estimate theweak value generally grows linearly in the
system dimension 3 . For example, the cloning method [37]
provides an estimate of the weak value multiplied by a term
of order 1/3 . Hence, obtaining a reliable estimate requires a
number of repetitions of the experiment growing as 3 . For a
quantum system composed of = particles, this scaling results
into an exponential increase of the sample complexity, that
is, the number of samples needed to achieve a desired level
of accuracy of estimation. A similar issue arises in the cyclic
test approach [36], whose sample complexity grows with 3
in the worst case over all possible observables.

In this paper, we provide a deterministic method for es-
timating weak values with dimension-independent sample
complexity. In our method, two identical quantum systems
are prepared in the initial and final states appearing in the
definition of weak value. Then, the two systems undergo a
controlled-SWAP operation, which exchanges them or leaves
them unchanged depending on the quantum state of a con-
trol system, as illustrated in Figure 1 . After the controlled-
SWAP operation, the two systems undergo a possibly noisy
measurement, whose outcomes are used to estimate theweak
value.

The controlled-SWAP scheme studied in this paper also
provides insights into the theory of two-time states, a gen-
eralized type of states that describe quantum systems sub-
ject to both pre- and post-selections [42–44]. We show that
the expectation values associated to two-time states can be
obtained from the expectation values associated to bipartite
density matrices, by applying a linear fractional transforma-
tion that involves a SWAP operation and a partial transpose.
Using this result, we show that the controlled-SWAPmethod
can be used to estimate the expectation values of all two-

http://arxiv.org/abs/2311.03941v3
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time states associated to density matrices with positive par-
tial transpose (PPT) [45, 46]. Based on this fact, we discuss
several adaptations of the controlled-SWAP method that al-
low to access the expectation values for two-time states as-
sociated to non-PPT states.
The rest of the paper is structured as follows. In Section

II, we briefly review the notion of weak value and put for-
ward a dimension-independent estimation scheme based on
controlled-SWAP operations. In Section III, we develop sev-
eral generalizations of our scheme and introduce a new quan-
tity dubbed the “double weak value”. In Section IV, we pro-
vide the reader with an overview of the theory of two-time
states. The matrix representation of two-time states is dis-
cussed in Section V. In Section VI, we highlight a fundamen-
tal connection between two-time states and the developed
estimation scheme. Finally, we provide conclusions and an
outlook in Section VII.

II. WEAK VALUE ESTIMATION

In this section we provide a brief introduction to weak val-
ues, and present a deterministic scheme for estimating weak
values with dimension-independent sample complexity.

A. Introduction to weak values

Weak values were introduced by Aharonov, Albert and
Vaidman, as part of a framework describing pre- and post-
selected ensembles [1]. Their original definition referred to
the scenario where a quantum system ( is pre-selected and
post-selected in two pure states, described by rays in the sys-
tem’s Hilbert space H . Given two (generally unnormalized)
vectors |kin〉 ∈ H and |kfin〉 ∈ H satisfying the condition
〈kin |kfin〉 ≠ 0, the weak value of an observable � is defined
as

, (� |kin,kfin) :=
〈kfin |�|kin〉
〈kfin |kin〉

. (1)

Here the vector |kin〉 (|kfin〉) represents the initial (final) state
of the system. The observable � is typically taken to be a
self-adjoint operator, but more generally could be any linear
operator acting onH . Hereafter, the algebra of all linear op-
erators on H will be denoted by Lin(H).
More recently, the notion of weak value was generalized

to mixed states [44, 47]: for a pair of density matrices din and
dfin satisfying the condition Tr[dindfin] ≠ 0, the weak value
is defined as

, (� | din, dfin) =
Tr[dfin� din]
Tr[dfin din]

. (2)

Eq. (1) can be obtained as a special case of Eq. (2) by setting
din = |kin〉〈kin | and dfin = |kfin〉〈kfin |. Physically, the mixed-
state weak value (2) can be reduced to the pure-state weak
value (1) through a purification procedure presented in Ref.
[47].

An important question is how to measure weak values. In
their seminal paper [1], Aharonov, Albert, and Vaidman pro-
vided an experimental scheme using weak interactions and
postselection. A number of other schemes was subsequently
devised by other authors [11, 16–18, 24, 33, 48–58].

The most recent scheme was presented in Ref. [36]. In
its simplest version, the scheme is defined for pure states
din = |kin〉〈kin |, dfin = |kfin〉〈kfin |, and rank-one observ-
ables � = |U〉〈U |. Here, all the vectors |kin〉, |kfin〉, and
|U〉 are taken to have unit length. The protocol consists of
two subprotocols: a cyclic test [41] for estimating the trace
Tr[dfin |U〉〈U | din], and aSWAP test [59, 60] for estimating the
trace Tr[dfindin]. The extension to mixed states is straight-
forward: since both the cyclic and SWAP tests are linear in
the density matrix, they can be used to estimate the traces
Tr[dfin |U〉〈U | din] and Tr[dfin din] for arbitrary din and dfin.
The extension to general self-adjoint observables � is less
direct, because, in the cyclic test, the rank-one observable
|U〉〈U | is treated as a quantum state, and, therefore, it can-
not be directly replaced by a general observable. Instead, one
can use any diagonalization of the operator �, of the form
� =

∑A
8=1 08 |U8〉〈U8 | where A is the rank of�, (08 )A8=1 are (pos-

sibily degenerate) non-zero eigenvalues, and {|U8〉}A8=1 is an
orthonormal basis for the support of �. Using this decompo-
sition, one can then compute the weak value of � as a linear
combination of the weak values of the rank-one observables
�8 := |U8〉〈U8 |. A limitation of this approach, however, is that
in general the rank of the observable � can be as large as 3 ,
and therefore the number of experimental settings needed to
estimate the weak value of� grows with the system’s dimen-
sion in the worst case. For a system of= particles, the number
of settings for the estimation of a generic weak value grows
exponentially with =.

B. The controlled-SWAP protocol

Wenow provide a way to estimate weak values of arbitrary
observables in a dimension-independent way. Our scheme
applies also to infinite-dimensional quantum systems, and
does not require ideal projective measurements. A related
scheme [61] was recently proposed in a different context, fo-
cusing on the study of non-Hermitian quantum mechanics
and without making a connection to weak values.

To estimate theweak value, (�|din, dfin) in Eq. (2) we em-
ploy two copies of the system, initialized in the states din and
dfin, respectively. To measure the observable �, we allow for
a generally noisy measurement device, described by a pos-
itive operator-valued measure (POVM), that is, a collection
of operators (% 9 )#9=1 satisfying the conditions % 9 ≥ 0∀9 and∑
9 % 9 = � . The outcomes of the measurement are associated

to the possible values (G 9 )#9=1 of the observable �. We take
the measurement to be unbiased, meaning that the expecta-
tion value of� on an arbitrary quantum state d is equal to the
average of the values (G 9 )#9=1 with respect to the probability
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FIG. 1: Controlled-SWAP protocol for the estimation of weak values and some of its generalizations for the estimation of
expectation values associated to two-time states. (1a) Estimation of the weak value, (�|din, dfin) := Tr[dfin� din]/Tr[dfin din],
with initial state din, final state dfin, and observable �. Two copies of the system are initially prepared in the states din and
dfin, undergo a controlled-SWAP gate, with the control qubit in the state |+〉 = (|0〉 + |1〉)/

√
2. Finally, a (possibly noisy)

measurement of the observable � is performed on the first copy, while the control is randomly measured in one of the two
bases {|+〉, |−〉} and {| + 8〉, | − 8〉}, consisting of the eigenstates of the Pauli observables - and . , respectively. (1b) Estimation
of the “double weak value” ,2(�, � |din, dfin) := Tr[� din � dfin]/Tr[dfin din], with observables � and �. (1c) Variant of the
protocol involving a general bipartite state din,fin. When the density matrix din,fin has positive partial transpose, this variant
can be used to estimate the expectation values associated to a class of two-time states. (1d) Variant of the protocol involving
a general bipartite state din,fin and a general bipartite observable $ .

distribution ? ( 9 |d) := Tr[% 9d], 9 ∈ {1, . . . , # }. In formula,

Tr[�d] =
∑
9

G 9 Tr[% 9d] ∀d , (3)

or, more compactly,

� =

∑
9

G 9 % 9 . (4)

An example of POVM that satisfies the unbiasedness con-
dition (4) is a noisy measurement of �. Given the canon-
ical spectral decomposition � =

∑#
9=1 0 9 & 9 where (0 9 )#9=1

are # distinct eigenvalues, and (& 9 )#9=1 are the projectors
on the corresponding eigenspaces, a noisy measurement of
the observable � can be defined as a POVM with operators
% 9 = (1−?)& 9 +? _ 9 � , where ? ∈ [0, 1) is a probability quan-
tifying the amount of noise, (_ 9 )#9=1 is a probability distribu-
tion, and 9 ∈ {1, . . . , # }. In this case, Eq. (4) is satisfied by
the assignment G 9 := (0 9 −? 0)/(1−?), with 0 :=

∑#
9=1 _ 9 0 9 .

The operators % 9 can be used to define a function from
measurement outcomes to complex numbers, given by

@( 9 |din, dfin) := Tr[% 9 din dfin] . (5)

Mathematically, this function is a complexmeasure [62], nor-
malized as

∑
9 @( 9 |din, dfin) = Tr[din dfin]. We call this mea-

sure the weak value (WV) measure.
When condition Eq. (4) is satisfied, the weak value (2) can

be written as the ratio of two expectation values with re-
spect to the WV measure: the expectation value E@ (- ) :=∑
9 G 9 @( 9 |din, dfin) of the random variable- and the expecta-

tion value E@ (. ) :=
∑
9 @( 9 |din, dfin) of the constant random

variable . with values ~ 9 = 1∀9 ; in formula,

, (� | din, dfin) =
E@ (- )
E@ (. )

. (6)

In general, the WV measure @( 9 |din, dfin) is not a probabil-
ity measure, and therefore E@ (- ) and E@ (. ) are not proper
expectation values. Nevertheless, we now show that ev-
ery expectation value with respect to the WV measure can
be evaluated by computing expectations of suitable random
variables with respect to a proper probability distribution. To
this purpose, we use the following protocol.

Protocol 1 Sampling from the WV measure

Inputs: Two copies (1, (2 of the system, prepared in the states
din and dfin, respectively, an auxiliary qubit� prepared in the
state |+〉〈+| with |+〉 = (|0〉 + |1〉)/

√
2, and a measurement

device described by the POVM (% 9 )#9=1.

Protocol:

1. Apply the controlled SWAP gate

* = �(1 ⊗ �(2 ⊗ |0〉〈0|� + SWAP(1(2 ⊗ |1〉〈1|� , (7)

whereSWAP(1(2 is theSWAP gate, uniquely defined by
the relation SWAP(1(2 (|U〉(1 ⊗ |V〉(2 ) = |V〉(1 ⊗ |U〉(2 , for
arbitrary vectors |U〉 and |V〉.

2. Measure (1 with the POVM (% 9 ) 9 .

3. Measure � with the four-outcome POVM ('2 )32=0 with

'0 =
1

2
|+〉〈+| ,

'1 =
1

2
|−〉〈−|

'2 =
1

2
| + 8〉〈+8 | ,

'3 =
1

2
| − 8〉〈−8 | , (8)
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where |±〉 = (|0〉± |1〉)/
√
2, and | ±8〉 = (|0〉±8 |1〉)/

√
2. Phys-

ically, the POVM ('2 )2 can be realized as a random measure-
ment, by measuring either on the basis {|+〉, |−〉} or on the
basis {| + 8〉, | − 8〉}.

Output: The protocol produces a pair of outcomes ( 9 , 2), dis-
tributed with probability

? ( 9 , 2 |din, dfin)
:= Tr

[
(% 9 ⊗ � ⊗ '2 )* (din ⊗ dfin ⊗ |+〉〈+|)* †] (9)

=
1

8

{
Tr[% 9 din] + Tr[% 9 dfin]

+ 2\ (1 − 2) (−1)2 Re
(
Tr[% 9dindfin]

)
− 2\ (2 − 2) (−1)2 Im

(
Tr[% 9dindfin]

) }
, (10)

where \ (C) is the Heaviside step function, defined as \ (C) = 1
for C ≥ 0 and \ (C) = 0 for C < 0. The derivation of Eq. (10) is
provided in Appendix A.

Expectation values with respect to the weak value mea-
sure (5) can then be obtained from expectation values with
respect to the probability distribution (10) generated by the
above protocol. The explicit recipe is provided by the follow-
ing lemma:

Lemma 1. For every random variable / : 9 ↦→ I 9 , the expec-
tation value of / with respect to the WV measure @( 9 |din, dfin)
in Eq. (5) coincides with the expectation value of the random

variable /̃ : ( 9 , 2) ↦→ Ĩ 9,2 defined by

Ĩ 9,2 := 2I 9 (−1)2
[
\ (1 − 2) − 8\ (2 − 2)

]
(11)

with respect to the probability distribution? ( 9 , 2 |din, dfin) in Eq.
(10).

The proof of the lemma is provided in Appendix B. This
lemma, combined with Eq. (6), implies that the weak value
, (�|din, dfin) can be estimated by computing the empirical
average of the random variables - and . with respect to the
experimental frequencies generated by Protocol 1. The sam-
ple complexity of the protocol is provided by the following:

Theorem 1. The weak value, (� | din, dfin) of an observable
� =

∑
9 G 9% 9 with a POVM (% 9 ) 9 and real coefficients {G 9 } 9 can

be estimated up to a small additive error n with a probability
no less than 1 − X by using  copies of the states din and dfin,
with  given by

 =

8 ln
(
6
X

)
n2

(
Gmax + |, (� | din, dfin) |

Tr[din dfin]

)2

+ $
©­­
«
ln

(
1
X

)
n

Gmax + |, (� | din, dfin) |
(Tr[dindfin])2

ª®®
¬

(12)

where Gmax ≔ max9 |G 9 |.

Proof. See Appendix C. �

Note that, when the POVM (% 9 )#9=1 is the spectral de-
composition of the observable �, Gmax is just the eigenvalue
of � with maximum modulus, equal to the norm ‖�‖ =

sup‖ |k 〉 ‖=1 〈k |�|k〉.
Theorem 1 provides the asymptotic scaling of the sample

complexity for small n : it identifies the leading order in 1/n
for every fixed value of X and of the overlap Tr[dindfin]. With
respect to the overlap, the scaling 1/(Tr[dindfin])2 is the same
as the scaling in the protocol of Ref. [36]. An important dif-
ference, however, is that the sample complexity in Theorem
1 does not depend on the dimension of the system. As a
consequence, Protocol 1 provides a reduction of the sample
complexity with respect to the protocol proposed of Ref. [36]
whenever the observable � has rank larger than one.
From the experimental point of view, Protocol 1 provides

a simplification with respect to the protocol of Ref. [36], in
that it only requires a controlled-SWAP operation, instead of
controlled shift operations, whose basic implementation con-
sists of a sequence of controlled SWAPs [36]. Since the SWAP
gate can be implemented as a sequence of three CNOT gates
[63], the controlled SWAP gate can be similarly realized as
a sequence of three controlled-CNOT gates, also known as
Toffoli gates. In the circuit model of quantum computing,
the controlled SWAP gate is also known as the Fredkin gate
and recently has been experimentally implementedwith pho-
tonic qubits [64, 65].
It is also interesting to compare the sample complexity of

our protocol with the sample complexity of the traditional
measurement scheme involving weak interactions and post-
selection. When the initial and final states are pure, the
sample complexity was evaluated in Refs. [4, 36], and was
shown to scale inverse linearly with the overlap Tr[dindfin] =
|〈kin |kfin〉|2. In this case, the weak measurement scheme ap-
pears to have lower sample complexity whenever din ≠ dfin.
In the mixed state case, however, the situation is gener-
ally different. A weak measurement scheme for measuring
mixed-state weak values was provided by Vaidman et al [47],
who showed that every mixed-state weak value can be re-
duced to a pure-state weak value by introducing three aux-
iliary systems, of the same dimension of the original system
( and hereafter denoted by �1, �2, and �3. Specifically, the
purification recipe by Vaidman et al can be summarized by
the following formula:

, (�|din, dfin) =, (� ⊗ ��1 ⊗ ��2 ⊗ ��3 |Ψin,Ψfin), (13)

where ��1 , ��2 , ��3 denotes the identity operator on the auxil-
iary systems �1, �2, �3, respectively, and Ψin and Ψfin are the
pure states associated to the vectors

|Ψin〉(�1�2�3 = |Ψ〉(�1 ⊗ |Ξ〉�2�3

|Ψfin〉(�1�2�3 = |Φ〉(�2 ⊗ |Γ〉�1�3 , (14)

where, in turn, the vectors

|Ψ〉(�1 :=
∑
<

√
A< |k<〉( ⊗ |<〉�1

|Φ〉(�2 :=
∑
=

√
A ′= |k ′

=〉( ⊗ |=〉�2 , (15)
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are purifications of the states din =
∑
< A< |k<〉〈k< | and

dfin =
∑
= A

′
= |k ′

=〉〈k ′
= |, respectively, and the vectors |Ξ〉�2�3

and |Γ〉�1�3 are defined as

|Ξ〉�2�3 :=
1
√
3

3∑
9=1

| 9〉�2 ⊗ | 9〉�3 (16)

|Γ〉�1�3 :=
1√

Tr[dindfin]

∑
<,=

√
A< A

′
= 〈k ′

= |k<〉 |<〉�1 ⊗ |=〉�3 .

(17)

The validity of Eq. (13) can be checked straightforwardly
from the definitions. With the above choice of purifi-
cation, the overlap between the initial and final states
is Tr[ΨinΨfin] = Tr[dindfin]/3 . Hence, the calcula-
tion of Refs. [4, 36] implies that the sample complexity
scales as 3/Tr[dindfin]. Comparing this scaling with the
1/(Tr[dindfin])2 scaling of our protocol, we obtain that the
weak measurement approach by Vaidman et al has lower
sample complexity when Tr[dindfin] is small compared to
1/3 , but higher sample complexity when Tr[dindfin] is large
compared to 1/3 . Besides the different scalings of the sample
complexity, it is also important to observe that our scheme
and the scheme by Vaidman et al use different ingredients:
our scheme uses access to the states din and dfin, while the
scheme by Vaidman et al uses access to the pure state |Ψin〉
and to a measurement that projects onto the pure state |Ψfin〉.
Both state and measurement include three auxiliary systems
in addition to the system on which the weak value is defined,
and preparing the state |Ψin〉 requires access to a purification
of the state din, which a strictly stronger resource compared
to access to a device that prepares din.

Finally, another interesting aspect of Protocol 1 is that its
operational setup mirrors the mathematical expression of the
weak value: the two states din and dfin in the mathematical
expression, (�| din, dfin) = Tr[dfin� din]/Tr[dfindin] corre-
spond to two state preparations in the setup, and the observ-
able � corresponds to the measurement of an observable in
the setup. In this aspect, Protocol 1 differs from other proto-
cols, where the observable � sometimes corresponds to the
generator of a unitary dynamics (as in the protocols based on
weak interactions) or to the preparation of a quantum state
(as in the cyclic-shift protocol of [36]). Later in the paper,
we will see that the correspondence between states and ob-
servables in the mathematical expression of weak value on
one hand, and state preparations and measurement devices
in the laboratory on the other hand enables a connection be-
tween bipartite quantum states and two-time states.

III. VARIANTS OF THE CONTROLLED-SWAP PROTOCOL

The controlled-SWAP protocol presented in the previous
section lends itself to several generalizations, discussed in
this section. These generalizations allow one to estimate an-
other type of quantities, which we call “double weak values.”

A. Two local measurements

A first generalization of Protocol 1 is to measure both sys-
tems (1 and (2, as illustrated in Fig. 1b. Measuring two ob-
servables � and � on systems (1 and (2, respectively, gives
rise to the probability distribution

? ( 9 , :, 2 |din, dfin)
:= Tr

[
(% 9 ⊗ &: ⊗ '2 )* (din ⊗ dfin ⊗ |+〉〈+|)* †] , (18)

where (% 9 ) 9 and (&: ): are the POVMs associated to observ-
ables � and �, respectively.
By sampling over this probability distribution, one can es-

timate the averages of arbitrary random variables with re-
spect to the complex measure

@( 9 , : | din, dfin) := Tr[% 9din&: dfin] , (19)

thereby estimating all quantities of the form

Tr[� din � dfin] , (20)

for arbitrary observables � and � in the linear span of {%8 }8
and {& 9 } 9 , respectively.
These quantities give rise to a generalization of the notion

of weak value:

Definition 1. The double weak value of a pair of observables
� ∈ Lin(H) and � ∈ Lin(H) with respect to the initial state
din and the final state dfin is the quantity

,2(�, � | din, dfin) :=
Tr[� din � dfin]
Tr[din dfin]

. (21)

The double weak value generalizes the standard weak
value (2), whose expression can be retrieved from Eq. (21)
by setting � = � ; in short, one has

, (� | din, dfin) =,2(�, � | din, dfin) ∀�, din, dfin ∈ Lin(H) .
(22)

The double weak value has an interesting physical in-
terpretation. For pure states din = |kin〉〈kin | := kin and
dfin = |kfin〉〈kfin | := kfin, one has

,2(�, � |kin,kfin) =, (�|kin,kfin), (� |kfin,kin) , (23)

meaning that the double weak value is the product of the
weak value of � in the forward time direction, with initial
state kin and final state kfin, and the weak value of � in the
backward time direction, with initial statekfin and final state
kin.

For general mixed states din =
∑
< A< |k<〉〈k< | and dfin =∑

= A
′
= |k ′

=〉〈k ′
= |, the double weak value quantifies the correla-

tions between theweak values of� in the forward time direc-
tion and the weak values of � in the backward time direction;
in formula:

,2(�, � | din, dfin) =
∑
<,=

? (<,=), (�|k< ,k ′
=), (� |k ′

=,k<) ,

(24)
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where ? (<,=) is the probability distribution

? (<,=) := A<A
′
= |〈k< |k ′

=〉|2∑
8, 9 A8A

′
9 |〈k8 |k ′

9 〉|2
. (25)

The above expression provides an alternative way to estimate
the double weak value, by sampling over pairs consisting of
a pure initial state k< and a pure final state k ′

= , according to
the probability distribution ? (<,=).
Recalling that the weak values were originally defined

in terms of weak measurement processes, the double weak
value in Eq. (24) can be interpreted as the correlation between
the quantities observed in two weak measurement processes
where the roles of the pre- and post-selections are exchanged.
These correlations would appear in an exotic scenario where
two different agents operate in two opposite time directions
[66], with one agent preparing inputs in the past and select-
ing outputs in the future, and the other agent preparing in-
puts in the future and selecting outputs in the past. In this
setting, the double weak value is the correlation between the
values observed by the two agents. It is quite remarkable
that such exotic correlations can be experimentally observed
through the controlled-SWAP protocol.
Yet another way to measure the double weak value for

mixed states is to use a purification approach, in a similar
vein as it was proposed by Vaidman et al for the mixed-state
weak values [47]. Here, we show that the double weak value
for mixed states can be reduced to the (standard) weak value
for pure states. To this purpose, we consider two copies of the
system of interest, denoted by (1 and (2, respectively, and two
auxiliary systems, �1 and �2, of the same dimension of the
system. Explicitly, the reduction is provided by the following
relation:

,2(�, � | din, dfin) =, (� ⊗ � ⊗ ��1 ⊗ ��2 | Γin, Γfin) , (26)

where Γin and Γfin are projectors onto the unit vectors

|Γin〉 = |Ψ〉(1�1 ⊗ |Φ〉(2�2

|Γfin〉 = |Φ〉(1�2 ⊗ |Ψ〉(2�1 , (27)

|Ψ〉 := ∑
<

√
A< |k<〉 ⊗ |<〉 and |Φ〉 := ∑

=

√
A ′= |k ′

=〉 ⊗ |=〉 being
purifications of the states din =

∑
< A< |k<〉〈k< | and dfin =∑

= A
′
= |k ′

=〉〈k ′
= |, respectively. The validity of Eq. (26) can be

checked straightforwardly from the above definitions.
It is worth noting that setting � = � in Eq. (26) provides a

new way to reduce the mixed-state weak value, (�|din, dfin)
to a pure-state weak value. This purification scheme is differ-
ent from the scheme by Vaidman et al, as it involves different
pre- and post-selections. Our scheme also implies a way to
measure the mixed-state weak value, (�|din, dfin) through
weak interactions, using pre- and post-selection on the states
Γin and Γfin, respectively. Interestingly, the overlap between
these states is Tr[ΓinΓfin] = (Tr[dindfin])2, and therefore the
sample complexity of the above weak measurement scheme
has the same scaling with respect to the overlap as the sample
complexity of our controlled-SWAP protocol.
In summary, there are at least three different types of pro-

tocols to measure the double-weak value for mixed states: (1)

our controlled-SWAP protocol, (2) protocols that measure the
standard weak values for the observables � and � and sam-
ple over different initial and final states, and (3) protocols that
measure the weak value for the observable�⊗� for pure en-
tangled states on an extended system.
It is also interesting to observe that, when the two observ-

ables � and � coincide (� = �) and the final state is pure
(dfin = |kfin〉〈kfin |), the double weak value coincides with the
associated weak value defined in Ref. [4] (cf. Eq. (14.19)
therein). The associated weak value was shown to arise in
a non-linear theory of weak measurements [4], and the vari-
ant of Protocol 1 discussed in this section provides an alter-
native way to measure them in the laboratory, by sampling
from the probability distribution (18), in which both POVMs
(% 9 ) 9 and (&: ): correspond to two (possibly different) noisy
measurements of the observable �.

B. Local measurements and general bipartite states

A further generalization of Protocol 1 is to replace the
two uncorrelated states din and dfin with a single bipartite
state din,fin, as illustrated in Fig. 1c. If systems (1 and (2
are measured with POVMs (% 9 ) 9 and (&: ): , respectively,
the controlled-SWAP protocol produces a triple of outcomes
( 9 , :, 2) distributed with probability

? ( 9 , :, 2 |din,fin) := Tr
[
(% 9 ⊗ &: ⊗ '2 )* (din,fin ⊗ |+〉〈+|)* †] .

(28)

By sampling over this probability distribution, one can
simulate the averages of arbitrary random variables with re-
spect to the complex measure

@( 9 , : | din,fin) := Tr[(% 9 ⊗ &:) din,fin SWAP] , (29)

thereby estimating quantities of the form

Tr[(� ⊗ �) din,fin SWAP] (30)

for arbitrary observables � and � for which the POVMs pro-
vide unbiased measurements (% 9 ) 9 and (&:): .
As a biproduct, one can also estimate the ratios

Tr[(� ⊗ �) din,fin SWAP]
Tr[din,fin SWAP]

. (31)

Note that we do not use the term “(double) weak values” for
the ratios in Eq. (31). This omission is intentional: as we will
see in the next section, the proper notion of (double) weak
value does not, in general, coincide with the ratios in Eq. (31),
but rather with a variant of Eq. (31) where the bipartite state
din,fin is subject to a partial transposition.

C. General bipartite states and joint measurements

A third generalization of the controlled-SWAP protocol
consists in performing a joint measurement on the two copies
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of the system, as illustrated in Fig. 1d. If the two copies are
initially in the bipartite state din,fin and are measured with the
joint POVM (Π 9 ) 9 after the controlled-SWAP operation, the
protocol produces a pair of outcomes ( 9 , 2) distributed with
probability

? ( 9 , 2 |din,fin) := Tr
[
(Π 9 ⊗ '2 )* (din,fin ⊗ |+〉〈+|)* †] . (32)

By sampling from this probability distribution, an experi-
menter can estimate the expectation value of arbitrary ran-
dom variables with respect to the complex measure

@( 9 |din,fin) = Tr[Π 9 din,fin SWAP] , (33)

and therefore the value of every quantity of the form

Tr[$ din,fin SWAP] , (34)

where$ ∈ Lin(H ⊗ H) is an arbitrary observable for which
the POVM (Π 9 ) 9 provides an unbiased measurement. Again,
this setup allows one to estimate the ratios

Tr[$ din,fin SWAP]
Tr[din,fin SWAP]

. (35)

In the next section, we will compare the experimentally
accessible quantities (34) and (35) with the weak values asso-
ciated to general two-time states.

IV. TWO-TIME STATES

Weak values can be interpreted as expectation values with
respect to a generalized type of quantum states, known as
two-time states [1, 43, 44]. In the following, we provide a brief
review of the notion of two-time state.

A. Two-time vectors

The prototype of a two-time state is the two-time vector
introduced in the seminal work of Aharonov, Bergmann, and
Lebowitz [42]. A two-time vector is a linear functional _ :
Lin(H) → C defined by the relation

_(�) := 〈kfin |�|kin〉 , ∀� ∈ Lin(H) , (36)

where |kin〉 ∈ H and |kfin〉 ∈ H are two arbitrary vectors.
Here, the functional _ plays the role of an unnormalized state
vector in textbook quantum mechanics. The complex num-
ber _(�) is sometimes called the expectation value of the ob-
servable � on the two-time vector _.
The notion of two-time vector was later generalized by

Aharonov and Vaidman [43], who considered general linear
combinations of the form

_(�) :=
#∑
8=1

〈k ′
8 |� |k8 〉 , ∀� ∈ Lin(H) , (37)

where # is a positive integer and {|k8 〉}#8=1 ⊂ H and
{|k ′

8 〉}#8=1 ⊂ H are arbitrary sets of vectors.
Mathematically, the set of two-time vectors (37) is the set

of all linear functionals on the observables of the system.

Proposition1. The set of all two-time vectors (37) is the vector
space consisting of all linear functionals from Lin(H) to C.
Proof. For every linear functional _ : Lin(H) → C,

there exists one and only one matrix ! ∈ Lin(H) such that
_(�) = Tr[! �]. By the singular value decomposition [67],
the matrix ! can be rewritten as ! =

∑3
8= |k8 〉〈k ′

8 |, where
{|k8 〉} and {|k ′

8 〉} are two sets of orthogonal states. Hence,
the functional _ has the Aharonov-Vaidman form (37). This
proves that every linear functional is a valid two-time vector.
The converse is trivial, since every two-time vector is, by
definition, a linear functional. �

B. Two-time matrices

The notion of two-time state was later been extended from
pure to mixed states by Silva et al [44], who developed a
framework for describing pre- and post-selected ensembles
of quantum states, and by Vaidman et al [47], who developed
the connection to weak interaction schemes. In this subsec-
tion we now review Silva et al’s framework, using a slightly
different notation that facilitates the connection with the no-
tion of double weak value introduced in this paper.
The transition from pure to mixed two-time states is simi-

lar to the transition from state vectors to density matrices in
textbook quantum mechanics. First, one defines the matrices
corresponding to pure states:

Definition 2. The two-time density matrix corresponding to
a two-time vector _ : Lin(H) → C is the bilinear functional
�_ : Lin(H) × Lin(H) → C defined by the relation

�_ (�, �) := _(�) _† (�) , ∀�, � ∈ Lin(H) , (38)

where _† is the functional defined by the relation _†(�) :=

_(�†) ,∀� ∈ Lin(H). We call a matrix �_ of the form (38)
a pure two-time density matrix.

Here, the term “matrix” refers to the fact that the observ-
ables � and � in Eq. (38) can be regarded as the row and
column indices of a matrix. Explicitly, �_ can be represented
by a matrix by fixing two bases {�8 }3

2

8=1 and {� 9 }3
2

9=1 for the
space Lin(H), and defining the matrix elements [�_]8 9 :=
�_ (�8 , � 9 ).

The correspondence between the two-time state _ and the
two-time matrix �_ is analogous to the correspondence be-
tween a unit vector |k〉 and the corresponding density ma-
trix |k〉〈k |. It is instructive to see this correspondence in
a few examples. First, a two-time vector of the basic form
_(�) = 〈kfin |�|kin〉 gives rise to the two-time matrix

�_ (�, �) = 〈kfin |�|kin〉〈kin |� |kfin〉 . (39)

More generally, a two-time vector of the Aharonov-Vaidman
form _(�) = ∑#

8=1〈k ′
8 |�|k8 〉 gives rise to the two-time matrix

�_ (�, �) =
(
#∑
8=1

〈k ′
8 |�|k8 〉

) (
#∑
9=1

〈k 9 |� |k ′
9 〉

)
. (40)
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Note that every pure two-time matrix �_ satisfies the posi-
tivity condition

�_ (�,�†) ≥ 0 ∀� ∈ Lin(H) . (41)

Definition 3. A (generally unnormalized) two-time density
matrix is a bilinear functional l : Lin(H) × Lin(H) → C of
the form

l =

∑
=

�_= , (42)

where (_=)= are arbitrary linear functionals and (�_= )= are
two-time matrices defined as in Eq. (38). The two-time density
matrix l is normalized if l (� , � ) = 1, where � is the identity
operator onH .

Note that every two-time density matrix l obeys the pos-
itivity condition

l (�,�†) ≥ 0 ∀� ∈ Lin(H) , (43)

which follows from Eqs. (41) and (42). In the next section, we
will show that this condition is both necessary and sufficient
for a bilinary functional l to be a two-time density matrix.
Hereafter, we will refer to l (�, �) as the expectation value

of the pair of observables (�, �) with respect to the two-time
matrix l . One way to estimate the expectation value l (�, �)
from experimental data is to decompose l as in Eq. (42) and
to measure the expectation values with respect to the pure
two-time matrices �_= , which are proportional to products
of weak values. Later in the paper, we will see another way
to estimate the expectation values based on the SWAP test.
Before concluding this section, we provide a concrete

example of a mixed two-time density matrix. Consider
two-time vectors of the form _<= (�) =

√
?<?

′
= 〈k ′

= |�|k<〉,
where (?<)< and (? ′=)= are two probability distributions, and
{|k<〉}< and {|k ′

=〉} are two orthonormal bases. This choice
gives rise to the two-time matrix l defined by

l (�, �) =
∑
<,=

�_<=
(�, �)

=

∑
<,=

?<?
′
= 〈k ′

= |�|k<〉 〈k< |� |k ′
=〉

= Tr[� din � dfin] , (44)

where din =
∑
< ?< |k<〉〈k< | and dfin =

∑
= ?

′
= |k ′

=〉〈k ′
= | are

ordinary, single-time density matrices. Note that l (� , � ) =

Tr[din dfin]: if the overlap Tr[din dfin] is nonzero, then the
two-time matrix l can be normalized, thus obtaining the
normalized two-time density matrix l∗ := l/l (� , � ). Note
that the expectation value l∗ (�, �) coincides with the dou-
ble weak value defined in Eq. (21).
In the following, the set of two-time density matrices

of a system with Hilbert space H will be denoted by
TwoTimeD(H). Mathematically, the set of all unnormalized
two-time states is a convex cone, i.e. it contains all convex
combinations and all positive multiples of its elements.

The set of normalized two-time density matrices will be
denoted by

TwoTimeD∗ (H) :=
{
l ∈ TwoTimeD(H) | l (� , � ) = 1

}
.

(45)

Mathematically, the set of normalized two-time density
matrices is a convex set, contained in the convex cone
TwoTimeD(H).

V. CHARACTERIZATION OF THE TWO-TIME STATES

Silva et al [44] showed that (generally unnormalized) two-
time states are in one-to-one correspondence with (generally
unnormalized) bipartite density matrices. We now make this
correspondence explicit, providing an expression that con-
nects two-time states to the controlled-SWAP protocol intro-
duced earlier in the paper.
Our main result is the following characterization:

Theorem 2. For every bilinear functional l : Lin(H) ×
Lin(H) → C, the following statements are equivalent:

1. l is a two-time density matrix.

2. l (�,�†) ≥ 0 for every � ∈ Lin(H).

3. There exists a positive operator %l ∈ Lin(H ⊗ H) such
that

l (�, �) = Tr
[
%)2l SWAP (� ⊗ �)

]
∀�, � ∈ Lin(H) ,

(46)

where %)2l is the partial transpose of %l over the second
Hilbert space.

Proof. See Appendix D. �

Note that the operator %l in Theorem 2 is uniquely de-
fined:

Proposition 2. For every bilinear functional l : Lin(H) ×
Lin(H) → C, if two operators %l and % ′l satisfy Eq. (46), then
they are necessarily equal, namely %l = % ′l .

Proof. Since the product operators � ⊗ � are a spanning

set for Lin(H ⊗ H), the condition Tr
[
%
)2
l SWAP (� ⊗ �)

]
=

Tr
[
%
′)2
l SWAP (� ⊗ �)

]
∀�, � ∈ Lin(H) implies

% ′)2l SWAP = %)2l SWAP. Multiplying by SWAP and
taking the partial transpose on both sides of the equality, we
then obtain % ′l = %l . �

Theorem 2 establishes a one-to-one correspondence be-
tween the convex cone of two-time states and the convex
cone of positive bipartite matrices. We now analyze the cor-
respondence further, by characterizing the structure of the
normalized two-time states and showing that they are in one-
to-one correspondencewith a convex subset of bipartite den-
sity matrices.
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Theorem3. A bilinear functional l : Lin(H)×Lin(H) → C
is a normalized two-time state if and only if it is of the form

l (�, �) =
Tr

[
d)2
in,fin

SWAP (� ⊗ �)
]

Tr
[
d
)2
in,fin

SWAP

] , ∀�, � ∈ Lin(H) ,

(47)

where din,fin ∈ Lin(H ⊗ H) is a normalized density matrix

such that Tr[d)2
in,fin

SWAP] ≠ 0.

Proof. See Appendix E. �

Note that, if the state din,fin in Theorem 3 is of the product
form din,fin = din ⊗ d)fin, then the expectation value l (�, �)
in Eq. (47) coincides with the double weak value defined in
Eq. (21), and therefore can be estimated using our controlled-
SWAP protocol. More discussion on the estimation of expec-
tation value of general two-time states using (variants of) the
controlled-SWAP protocol will be provided in the next sec-
tion.
It is worth noting the relation

Tr
[
d)2 SWAP

]
= 〈〈� | d |�〉〉 , ∀d ∈ Lin(H ⊗ H), (48)

where |�〉〉 :=
∑3
8=1 |8〉 ⊗ |8〉 is the canonical unnormalized

maximally entangled state. Using this relation, we can see
that Theorem 3 establishes a one-to-one correspondence be-
tween the set of normalized two-time density matrices and
the subset of bipartite density matrices defined by

D∗ (H ⊗ H) :=
{
din,fin ∈ Lin(H ⊗ H) | din,fin ≥ 0 ,

Tr[din,fin] = 1 ,

〈〈� |din,fin |�〉〉 > 0
}
.

(49)

Note also that the correspondence between two-time states
and bipartite matrices is a homeomorphism (that is, it is in-
vertible and continuous), as it is given by the linear fractional
transformation d ↦→ ld , where ld is the bilinear functional
defined by

ld (�, �) :=
Tr[d)2 SWAP (� ⊗ �)]

Tr[d)2 SWAP] . (50)

Summarizing, we have the following

Corollary 1. The sets of normalized two-time states and
bipartite density matrices with nonzero overlap with the
maximally entangled state are homeomorphic; in formula,
TwoTimeD∗ (H) ≃ D∗(H ⊗ H).

Note that the correspondence between two-time density
matrices and bipartite density matrices mapping is non-
linear and it does not preserve convex combinations. Nev-
ertheless, it is linear fractional, and therefore it maps convex
combinations into convex combinations, although with gen-
erally different weights. Explicitly, the mapping d ↦→ ld in

Eq. (50) maps a convex combination of density matrices, say
d =

∑
8 ?8 d8 , into a convex combination of two-time states

ld =
∑
8 @8 ld8 , with @8 = ?8 〈Φ|d8 |Φ〉/(

∑
9 ? 9 〈Φ|d 9 |Φ〉).

This condition implies that the mapping d ↦→ ld maps pure
bipartite states into extreme points of the set of two-time
states, and vice-versa.

VI. TWO-TIME STATES AND THE
CONTROLLED-SWAP PROTOCOL

Theorem 3 reveals a fundamental connection between
two-time states and the controlled-SWAP protocol presented
earlier in the paper. As we saw in Eq. (31), the controlled-
SWAP protocol allows an experimenter to estimate any quan-
tity of the form

l̃d (�, �) :=
Tr[d SWAP (� ⊗ �)]

Tr[d SWAP] , (51)

for every pair of observables (�, �) and every bipartite quan-
tum state d .
The difference between the quantities (51) and the expec-

tation values on two-time states (47) is the presence of the
partial transpose on the second Hilbert space. Physically, the
partial transpose can be interpreted as the signature of the
difference between the spatial correlations accessible with
the controlled-SWAP protocol and the time correlations as-
sociated to two-time states.
By comparing Eqs. (51) and (47) we can also have a clear

view of the strengths and limitations of the controlled-SWAP
protocol. First, if the density matrix d is invariant under par-
tial transpose, an experimentalist who has access to two sys-
tems in the joint state d can directly estimate the expecta-
tion values on the two-time state ld , by using the controlled-
SWAP protocol.
More generally, if the density matrix is positive under par-

tial transpose (PPT) [45, 46], the controlled-SWAP protocol
can provide an estimate of the expectation values on the two
time-stateld , if the experimenter is given access to the quan-
tum state d)2 . This is the case of the protocols shown ear-
lier in the paper, where we saw how to estimate the weak
values (1) and (2), which correspond to the expectation val-
ues of the observables (�, � ) on the two-time states lkin⊗k)

fin

and ldin⊗d)fin
, respectively. Similarly, the double weak value

Tr[dfin� din �]/Tr[dfin din] is the expectation value of the ob-
servables (�, �) with respect to the two-time state ldin⊗d)fin

.

In contrast, the controlled-SWAP protocol does not pro-
vide, in general, an estimate of the expectation values on a
two-time state when the density matrix d is not PPT. One
way to circumvent this problemwould be to approximate the
partial transpose operation with a physical process, such as
the optimal universal transpose map [68, 69]. However, the
estimation protocol resulting from this approach would be
dimension-dependent: indeed, optimal universal transpose is
the completely positive trace-preserving map given by

�(d) = dT + �
3 + 1

, (52)
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and the 1/(3 + 1) factor implies that the sample complexity
for the estimation of the expectation values ld (�, �) grows
linearly with 3 .
Another approach is to introduce an auxiliary system,

and to reduce two-time states associated to non-PPT den-
sity matrices to extended two-time states associated to den-
sity matrices that are PPT with respect to the bipartition be-
tween pre- and post-selected systems. This approach can
be easily illustrated in the pure state case. In this case,
Aharonov and Vaidman [43] showed that every two-time
vector _(�) :=

∑#
8=1〈k ′

8 |� |k8 〉 can be obtained by introduc-
ing an auxiliary system of dimension # , and a joint two-
time vector Λ(·) := 〈Ψfin | · |Ψin〉 corresponding to the ini-
tial vector |Ψin〉 =

∑
8 |k8 〉 ⊗ |8〉 ∈ H ⊗ Haux and final vector

|Ψfin〉 =
∑
8 |k ′

8 〉 ⊗ |8〉 ∈ H ⊗ Haux, where Haux is the Hilbert
space of the auxiliary system and {|8〉}#8=1 is an orthonormal
basis forHaux. With this definition, one has the relation

_(�) = Λ(� ⊗ �aux) , ∀� ∈ Lin(H) , (53)

meaning that the expectation value of the observable � on
the two-time vector _ coincides with the expectation value
of the observable � ⊗ �aux on the the joint two-time vector Λ.
In turn, the two-time vector Λ consists just in a pre-selection
and a post-selection to pure states, and therefore it can be
reproduced by a product (and therefore PPT) state. Explicitly,
we have

Λ(� ⊗ �aux)
Λ(� ⊗ �aux)

= l
Ψin⊗Ψ)

fin
(� ⊗ �aux ⊗ � ⊗ �aux) , (54)

where l
Ψin⊗Ψ)

fin
, defined as in Eq. (47), is a normalized two-

time state in T∗(H ⊗Haux ⊗H ⊗Haux). Combining Eqs. (53)
and (54), we can see that the normalized expectation value
_(�)/_(� ) can be estimated by the controlled-SWAP proto-
col, if the experimenter has access to the pure quantum states
Ψin and Ψ

)
fin.

The above argument can be extended from two-time vec-
tors to two-time matrices. For example, the expectation val-
ues with respect to the two-time matrix �_ associated to the
two-time vector _ in the previous paragraph can be computed
as

�_ (�, �)
�_ (� , � )

= l
Ψin⊗Ψ)

fin
(� ⊗ �aux, � ⊗ �aux) . (55)

Eq. (55) means that the expectation value on the l.h.s. can
be estimated by the controlled-SWAP protocol, if the experi-
menter has access to the pure quantum states Ψin and Ψ

)
fin.

Overall, the extension approach has the benefit of being
dimension-independent, but it requires either the two-time
state l to be known, or the appropriate PPT state of the sys-
tem and the auxiliary system to be provided to the experi-
menter.

VII. CONCLUSIONS AND OUTLOOK

This paper provided a dimension-independent scheme for
estimating weak values of arbitrary observables. The scheme

is based on the controlled-SWAP gate, and generates a proba-
bility distribution that can be used to sample from a complex
measure underlying the weak values of interest. Crucially,
the scheme is modular: changing the initial and final states of
the system in the mathematical expression of the weak value
corresponds to changing two preparation devices in the ex-
perimental setup, while changing the observable in the math-
ematical expression corresponds to changing a measurement
device in the experimental setup.

The structure of the controlled-SWAP scheme provides
several insights into theory of two-time states. In particu-
lar, we have derived an alternative expression for two-time
states, which provides an explicit characterization of the cor-
respondence between two-time states and (a subset of) bipar-
tite density matrices. Using this expression, we showed that
the controlled-SWAP protocol can be used to estimate the ex-
pectation values of all two-time states corresponding to PPT
density matrices (including, of course, the product density
matrices corresponding to the usual definition of weak val-
ues). For two-time states corresponding to non-PPT density
matrices, the controlled-SWAP protocol can still be used if
the experimenter is given access to an extendend quantum
states involving a pair of auxiliary systems.

Due to the ubiquitous presence of weak values in quan-
tum mechanics, our estimation scheme can be useful in sev-
eral applications [5], including e.g. estimating quantum sen-
sitivity [1, 70], coherence [71], and asymmetry [72]. An
interesting open question for future research is whether
dimension-independent sampling schemes like ours could
be constructed for the estimation of Kirkwood-Dirac (KD)
quasiprobability distributions, an important type of complex
measures that often arise in quantum information and foun-
dations [14, 35, 73–75]. KD distributions have a close con-
nection with weak values, and their negativity provides a
signature of quantum contextuality in Spekkens’ formula-
tion [76]. In turn, KD distributions have found numerous ap-
plications beyond quantum foundations, including quantum
metrology [77–79], condensed matter physics [73, 80, 81],
and thermodynamics [35]. The approach of Wagner et al [36]
provides a way to estimate the value of the KD distribution at
every fixed point. The open question is whether there exist
ways to simulate sampling from the KD distribution, in anal-
ogy to the scheme for sampling from the weak distribution
proposed in this paper.

Another interesting direction concerns the theory of two-
time states and its relation of the study of causality in quan-
tum theory [82–87]. Recent findings have suggested that
anomalous weak values of observables shared between sev-
eral parties can assist in witnessing the causal relationships
between the parties’ laboratories [88]. Moreover, two-time
states (and multiple-time states in general) themselves can
carry information about the underlying causal structure [89]
and can be used to witness indefinite causal order of oper-
ations [90]. Finally, protocols exploiting controlled causal
order of operations in a protocol known as the quantum
SWITCH [82, 83] have been shown to be useful for efficient
estimation of quantities that can be connected with weak
values and KD distributions, such as out-of-time-correlators
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[91] and incompatibility of quantum observables [92]. There-
fore, an interplay between weak values, KD distributions,
and indefinite causal order in quantum SWITCH appears as
a promising direction for future investigations.
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Appendix A: Derivation of Eq. (10)

In the following, we will use the short-hand notation d :=
din and d ′ := dfin.
At the beginning of the protocol, the two copies of the sys-

tem ((1 and (2) and the control qubit are in the product state

l = d ⊗ d ′ ⊗ |+〉〈+|. (A1)

Application of the controlled-SWAP gate* produces the new
state

*l* †
=

1

2

{
d ⊗ d ′ ⊗ |0〉〈0| + d ′ ⊗ d ⊗ |1〉〈1|

+ (d ⊗ d ′)SWAP ⊗ |0〉〈1|
+ SWAP(d ⊗ d ′) ⊗ |1〉〈0|

}
. (A2)

A measurement of the first system and auxiliary qubit with
the POVM (% 9 ) 9 and ('2 )2 , respectively, produces a pair of
outcomes ( 9 , 2) distributed with probability

? ( 9 , 2 |d, d ′) =
1

2
Tr

[
% 9d ⊗ d ′ ⊗ '2 |0〉〈0|

+ % 9 d ′ ⊗ d ⊗ '2 |1〉〈1|
+ (% 9 ⊗ � ) (d ⊗ d ′)SWAP ⊗ '2 |0〉〈1|

+ (% 9 ⊗ � )SWAP(d ⊗ d ′) ⊗ '2 |1〉〈0|
]
.

Using the relations

〈0|'2 |0〉 = 〈1|'2 |1〉 =
1

4
∀2 ∈ {0, 1, 2, 3} (A3)

and

〈0|'2 |1〉 =
(−1)2
4

(
\ (1 − 2) + 8\ (2 − 2)

)
∀2 ∈ {0, 1, 2, 3}

(A4)

we then obtain

? ( 9 , 2 |d, d ′) =
1

8

{
Tr[% 9d] + Tr[% 9d ′]
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. (A5)

Finally, using the relation Tr[(� ⊗ �) SWAP] =

Tr[��] ,∀�, � ∈ Lin(H), we obtain

? ( 9 , 2 |d, d ′) =
1

8

{
Tr[% 9d] + Tr[% 9d ′]

+ (−1)2\ (1 − 2)
(
Tr[% 9 dd ′] + Tr[d% 9d ′]

)
+ 8 (−1)2\ (2 − 2)

(
Tr[% 9dd ′] − Tr[d% 9d ′]

)}
=

1

8

{
Tr[% 9d] + Tr[% 9d ′]

+ 2(−1)2\ (1 − 2) Re Tr[% 9dd ′]

− 2(−1)2\ (2 − 2) ImTr[% 9dd ′]
}
, (A6)
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where the second equality follows from the identity

Tr[d% 9d ′] = Tr[d ′d% 9 ] = Tr[(% 9 dd ′)†] = Tr[% 9dd ′]. This
concludes the proof of Eq. (10).

Appendix B: Proof of Lemma 1

In the following, we will use the short-hand notation d :=
din and d ′ := dfin.
The proof of Lemma 1 is a straightforward calculation: we

only need to calculate the expectation value of the random
variable /̃ in Eq. (11) with respect to the probability distribu-
tion ? ( 9 , 2 |d, d ′). Explicitly, the expectation value is

E? [/̃ ] =

∑
9,2

Ĩ 9,2 ? ( 9 , 2 |d, d ′)

= 2
∑
9,2

I 9 (−1)2
[
\ (1 − 2) − 8\ (2 − 2)

]
? ( 9 , 2 |d, d ′)

=
1

4

∑
9

I 9

(
Tr[% 9d] + Tr[% 9d ′]

)

·
∑
2

(−1)2
[
\ (1 − 2) − 8\ (2 − 2)

]

+ 1

2

∑
2

(−1)22\ (1 − 2)
[
\ (1 − 2) − 8\ (2 − 2)

]

·
∑
9

I 9 Re Tr[% 9 dd ′]

− 1

2

∑
2

(−1)22\ (2 − 2)
[
\ (1 − 2) − 8\ (2 − 2)

]

·
∑
9

I 9 ImTr[% 9dd ′]

=

∑
9

I 9

(
ReTr[% 9dd ′] + 8 ImTr[% 9dd ′]

)

=

∑
9

I 9@( 9 |d, d ′)

= E@ [/ ] . (B1)

In summary, the expectation value of the random variable
/̃ with respect to the probability distribution ? ( 9 , 2 |d, d ′) is
equal to the expectation value of the random variable / with
respect to the complex distribution @( 9 |d, d ′).

Appendix C: Proof of Theorem 1

In the following, we will use the short-hand notation d :=
din and d ′ := dfin.
The proof is based on two lemmas, provided in the follow-

ing.

Lemma2. Let d and d ′ be a pair of states, let (% 9 ) 9 be a POVM,
and let {G 9 } 9 be a set of real numbers, with Gmax := max9 |G 9 |.
Let aRe := Re(Tr[d ′�d]) and a Im := Im(Tr[d ′�d]) be the real
and imaginary parts of the weak value of the observable � :=

∑
9 G 9 % 9 , respectively. The estimate of aRe and a Im obtained

from  runs of Protocol 1 has error at most

na = 2Gmax

√
1

 
ln

2

X
(C1)

with probability at least 1 − X .

Proof. In accordance with (6), Tr[d ′�d] = E@ [- ], where @ is
the WV measure defined in (5), and - is a random variable
taking values in {G 9 } 9 . Lemma 1 guarantees that the proba-
bility distribution (10) generated by Protocol 1 can be equiv-
alently used to estimate E@ [- ]. In turn, it can be rewritten
as

? ( 9 , 2 |d, d ′) =
1

2

(
\ (1 − 2)?Re( 9 , 2 |d, d ′)

+ \ (2 − 2)?Im( 9 , 2 − 2|d, d ′)
)
, (C2)

with probability distributions

?Re( 9 , 2̄ |d, d ′) =
1

4

{
Tr[% 9 (d + d ′)] + 2(−1)2̄ ReTr[d ′% 9d]

}
?Im( 9 , 2̄ |d, d ′) =

1

4

{
Tr[% 9 (d + d ′)] − 2(−1)2̄ ImTr[d ′% 9d]

}
,

where 2̄ ∈ {0, 1}.
Now, recall that the POVM ('2 )2 in Protocol 1 can be ob-

tained by randomly choosing between the projective mea-
surements (2'0, 2'1) and (2'2, 2'3), which give rise to the
probability distributions ?Re( 9 , 2̄ |d, d ′) and ?Im( 9 , 2̄ |d, d ′), re-
spectively. Then, a straightforward calculation demonstrates
that E?Re [-̃ ] = aRe and E?Im [−-̃ ] = a Im, so that

E@ [- ] = E?Re [-̃ ] + 8E?Im [−-̃ ] . (C3)

In turn, -̃ is a random variable associated with the corre-
sponding two-outcome projective measurement of auxiliary
qubit and taking values in {G̃ 9,2̄ } 9,2̄ , where G̃ 9,2̄ = (−1)2̄G 9 ,
and 9 and 2̄ are the measurement outcomes. Therefore, for  
runs of Protocol 1, we can consider a projective measurement
{2'0, 2'1} of the auxiliary qubit performed in  /2 runs and
the measurement {2'2, 2'3} performed in other  /2 runs.
In order to estimate aRe, in the :-th run of the protocol, we

associate themeasurement {2'0, 2'1}with a random variable
-: ≔ -̃/( /2) taking values in {2(−1)2̄G 9/ } 9,2̄ . Hence, the
estimator -Re ≔

∑ /2
:=1

-: is an unbiased estimator for aRe.
According to the Hoeffding’s inequality [93], the probabil-
ity of estimation with an additive error at least na is upper-
bounded as

Pr(|-Re − aRe | ≥ na ) ≤ 2 exp

(
− 2n2a∑

: (max(-: ) −min(-: ))2

)
.

(C4)
As each of  /2 estimators is bounded as −2Gmax/ ≤ -: ≤
2Gmax/ , where Gmax = max9 |G 9 |, we obtain

∑
:

(max(-: ) −min(-: ))2 =
8G2max

 
. (C5)



15

Therefore, the probability (C4) is upper-bounded by

Pr(|-Re − aRe | ≥ na ) ≤ 2 exp

(
− n2a 

4G2max

)
. (C6)

Requiring that it does not exceed X is equivalent to the upper
bound

2 exp
(
−n2a /4G2max

)
≤ X, (C7)

bounding hence the estimation error as

na ≥ 2Gmax

√
1

 
ln

2

X
. (C8)

This means that, for  /2 runs of Protocol 1, we can make
sure that the estimation of aRe is within an error na with a
probability no less than 1 − X . This relation between the
error and the number of copies also holds for the estimation
of the imaginary part a Im, since, in accordance with (C3), it
is associated with the same estimator -Re up to an overall
minus sign, which does not change the upper bound (C4).
Hence the proof. �

Corollary 2. Given a pair of states d , d ′, for runs of Protocol
1, the estimate of ` := Tr[d ′d] can be guaranteed to have an
error at most

n` = 2

√
1

 
ln

2

X
, (C9)

with probability at least 1 − X .

Proof. First, we note that ` = aRe if � = � . Therefore,
from the ( /2)-round measurement outcomes for estimating
aRe, we can simultaneously construct an unbiased estimator

. ≔
∑ /2
:=1

.: for `, where .: ≔ 2(−1)2/ . Since ` is a non-
negative number, it is not necessary to estimate its imaginary
part. Applying the Hoeffding’s inequality (C4) and taking
into account that Gmax = 1 for `, we find that the estimation
error is bounded by

n` ≤ 2

√
1

 
ln

2

X
. (C10)

Therefore, for  /2 runs of the Protocol 1, we can make sure
that the estimation of ` is within a error n` with a probability
1 − X . �

Lemma 3. Given an observable � =
∑
9 G 9% 9 , where (% 9 ) 9 is

a set of POVM elements, and a pair of states d , d ′, for  runs
of Protocol 1, the estimate of its weak value, (� | d, d ′) can be
guaranteed to have an error at most:

n =

√
2(Gmax + |, (� | d, d ′) |)

`/n` − 1
, (C11)

where Gmax := max 9 |G 9 |, ` = Tr[d ′d], and n` = 2
√

1
 ln 2

X ,

with probability at least 1 − 3X .

Proof. First, we we recall that , (� | d, d ′) = ,Re + 8,Im,
where ,Re = aRe/` and,Im = a Im/`. Therefore, the cor-
responding estimation error is given by

n =
√
n2
,Re

+ n2
,Im

, (C12)

where n,Re and n,Re are errors in estimation of the real and
imaginary parts of the weak value, respectively. The error in
estimation of the real part,Re can be upper-bounded as

n,Re =

����-Re

.
− aRe

`

����
=

����-Re` − aRe` + `aRe − .aRe
.`

����
≤ |-Re − aRe |` + |` − . | |aRe |

|. |`

≤
na + n` |,Re |

|. | , (C13)

where the first inequality follows from the triangle inequal-
ity |0 + 1 | ≤ |0 | + |1 |, while the second inequality, in accor-
dance with Lemma 2 and Corollary 2, follows from the upper
bounds (C1) and (C9), respectively. As the latter can be given
as ` − n` ≤ . ≤ ` + n` , we can assume that the correspond-
ing estimation error is small enough to fulfill the condition
n` < `, so that |. | ≥ ` − n` ≥ 0 and, thus,

n,Re ≤
na + n` |,Re |
` − n`

. (C14)

Comparing (C1) and (C9), it is easy to note that na = Gmaxn` .
Therefore,

n,Re ≤
Gmax + |,Re |
`/n` − 1

. (C15)

Similarly, the error of estimating Im(, (� | d, d ′)) is bounded
from above as

n,Im ≤ Gmax + |,Im |
`/n` − 1

. (C16)

Therefore, an upper bound on the total error in estimation of
the weak value, (�|d, d ′)

n ≤
√
(Gmax + |,Re |)2 + (Gmax + |,Im |)2

`/n` − 1

=

√
2G2max + 2Gmax (|,Re | + |,Im |) + |, (�|d, d ′) |2

`/n` − 1

≤
√
2G2max + 4Gmax |, (�|d, d ′) | + |, (�|d, d ′) |2

`/n` − 1

≤
√
2(Gmax + |, (�|d, d ′) |)

`/n` − 1
, (C17)

is valid if the bounds |-Re − aRe | ≤ na , |-Im − a Im | ≤ na , and
|. − ` | ≤ n` are satisfied. Since each bound is violated with
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a probability not higher than X , the violation probability of
at least one of them is upper-bounded by 3X . Hence, the
estimation error of , (� | d, d ′) does not exceed the upper
bound (C17) with probability at least 1 − 3X . �

Proof of Theorem 1. Applying Lemma 3 and taking into
account (C9), we can reverse (C11) in order to obtain an ex-
pression for the number  of runs of the Protocol 1 in terms
of the estimation error n ,

 =

4 ln 2
X

`2

(√
2 (Gmax + |, (� | d, d ′) |)

n
+ 1

)2
. (C18)

Denoting Λ ≔
√
2 (Gmax + |, (� | d, d ′) |) /n for the sake of

simplicity, we obtain

 =

4 ln 2
X
Λ
2

`2

(
1 + 1

Λ

)2

=

4 ln 2
X
Λ
2

`2

(
1 + 2

Λ
+ 1

Λ2

)

=

4 ln 2
X
Λ
2

`2
+$

(
ln 1

X
Λ

`2

)
, (C19)

where the third equality follows from the assumption that
Λ ≫ 1. Finally, relabelling 3X to X for the sake of simplicity,
we conclude that

 =

8 ln
(
6
X

)
n2

(
Gmax + |, (� | d, d ′) |

Tr[dd ′]

)2

+ $
(
ln 1

X

n

Gmax + |, (� | d, d ′) |
(Tr[dd ′])2

)
(C20)

runs of Protocol 1 are enough to ensure that the estimation
of weak value , (� | d, d ′) has an additive error at most n
with a probability at least 1 − X . Hence the proof. �

Appendix D: Proof of Theorem 2

1 =⇒ 2. This implication was already proven by Eq. (43).
2 =⇒ 3. A bilinear functional l : Lin(H) × Lin(H) sat-

isfying the positivity condition l (�,�†) ≥ 0, ∀� ∈ Lin(H)
defines a scalar product on Lin(H) through the relation

〈�, �〉l := l (�†, �) ∀�, � ∈ Lin(H) . (D1)

With this notation, the positivity condition is equivalent to
the positivity of the scalar product 〈· , ·〉l .
We now use the correspondence between operators in

Lin(H) and bipartite vectors inH ⊗H given by the double-
ket notation |�〉〉 :=

∑3−1
9=0 �| 9〉 ⊗ | 9〉, ∀� ∈ Lin(H). Using

this correspondence, the scalar product 〈· , ·〉l can be equiv-
alently written

〈�, �〉l = 〈〈�| %l |�〉〉 , ∀�, � ∈ Lin(H) (D2)

for some positive semidefinite operator %l ∈ Lin(H ⊗ H).
Hence, we have

l (�, �) = 〈�†, �〉l
= 〈〈�† | %l |�〉〉
= Tr

[
%l |�〉〉〈〈�† |

]
= Tr

[
%)2l

(
|�〉〉〈〈�† |

))2 ]

= Tr
[
%)2l (� ⊗ � ) (|�〉〉〈〈� |))2 (� ⊗ � )

]
= Tr

[
%)2l (� ⊗ � )SWAP(� ⊗ � )

]
= Tr

[
%)2l SWAPSWAP(� ⊗ � )SWAP(� ⊗ � )

]
= Tr

[
%)2l SWAP(� ⊗ �)

]
, (D3)

where |�〉〉 = ∑3−1
9=0 | 9〉 ⊗ | 9〉.

3 =⇒ 1. Let us consider first the case where the operator
%l is rank-one, that is %l = |Γ〉〈Γ | for some bipartite vector

|Γ〉 ∈ H ⊗ H . Let us write |Γ〉 =
∑
8 |k8 〉 ⊗ |k ′

8 〉 for some
suitable vectors |k8〉 and |k ′

8 〉 in H . Then, we have

l (�, �) = Tr
[
%)2l SWAP(� ⊗ �)

]
=

∑
8, 9

Tr

[(
|k8 〉〈k 9 | ⊗ |k ′

8 〉〈k
′
9 |
))2

SWAP(� ⊗ �)
]

=

∑
8, 9

Tr
[ (
|k8 〉〈k 9 | ⊗ |k ′

9 〉〈k ′
8 |
)
SWAP(� ⊗ �)

]

=

∑
8, 9

Tr
[ (
|k8 〉〈k ′

8 | ⊗ |k ′
9 〉〈k 9 |

)
(� ⊗ �)

]

=

∑
8, 9

〈k ′
8 |�|k8 〉 〈k 9 |� |k ′

9 〉

= _(�) _†(�) , ∀�, � ∈ Lin(H) , (D4)

where _ : Lin(H) → C is the linear functional defined by
_(�) := ∑

8 〈k8 |�|k ′
8 〉. By definition, �_ (�, �) := _(�) _†(�) =

is the two-time matrix associated to the two-time vector _.
Hence, Eq. (D4) implies that the functional l is equal to the
two-time matrix �_ .
To conclude, consider the case where the rank of %l is

larger than one. Since %l is positive semidefinite, it can be
written as a sum of rank-one terms, say %l =

∑
= |Γ=〉〈Γ= |.

By the result of the previous paragraph, we then obtain the
decomposition l =

∑
= �_= , where _= is the two-time vector

associated to |Γ=〉. Hence, l is a two-time matrix. �

Appendix E: Proof of Theorem 3

Suppose that l is a functional of the form (47). Clearly,
l satisfies the normalization condition l (� , � ) = 1. More-
over, l is of the form l (�, �) = Tr[%)2l SWAP (� ⊗ �)] with
%l := d/Tr[d)2 SWAP]. Note that %l is positive, because d is
positive and

Tr[d)2 SWAP] = 〈〈� |d |�〉〉 ≥ 0 , (E1)
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where |�〉〉 =
∑3−1
9=0 | 9〉 ⊗ | 9〉. Since Tr[d)2 SWAP] is guaran-

teed to be non-zero, we have Tr[d)2 SWAP] > 0. Hence, l is
of the form (46), and therefore it is a (normalized) two-time
state.
Conversely, suppose thatl is a normalized two-time state.

Since l is a two-time state, it must be of the form (46) for
some positive matrix %l . Since l is normalized, one has
Tr[%)2l SWAP] = l (� , � ) = 1, which implies in particular
%l ≠ 0, and, since %l is positive, Tr[%] > 0. We can then
define a normalized density matrix d := %l/Tr[%l ] satisfy-

ing the condition Tr[d)2 SWAP] = Tr[%)2l SWAP]/Tr[%l ] =

1/Tr[%l ] ≠ 0. Hence, we have

l (�, �) = Tr[%)2 SWAP (� ⊗ �)]
= Tr[%] Tr[d)2 SWAP (� ⊗ �)]
= Tr[d)2 SWAP (� ⊗ �)]/Tr[d)2 SWAP] . (E2)

�


