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Weak values of quantum observables are a powerful tool for investigating a broad spectrum of quantum
phenomena. For this reason, several methods to measure them in the laboratory have been proposed. Some of
these methods require weak interactions and postselection, while others are deterministic, but require statis-
tics over a number of experiments growing exponentially with the number of measured particles. Here we
propose a deterministic dimension-independent scheme for estimating weak values of arbitrary observables.
The scheme, based on coherently controlled SWAP operations, does not require prior knowledge of the initial
and final states, nor of the measured observables, and therefore can work with uncharacterized preparation
and measurement devices. As a byproduct, our scheme provides an alternative expression for two-time states,
that is, states describing quantum systems subject to pre- and post-selections. Using this expression, we show
that the controlled-SWAP scheme can be used to estimate weak values for a class of two-time states associated
to bipartite quantum states with positive partial transpose.

I. INTRODUCTION

In a seminal 1988 paper [1], Aharonov, Albert, and Vaid-
man introduced the notion of weak values and showed that
they can be experimentally accessed by letting the measured
system interact weakly with a pointer in the time interval be-
tween a pre-selection and a post-selection. Since then, weak
values have proven a powerful tool for analyzing a broad
spectrum of quantum phenomena [2–5]. On the founda-
tional side, they provide a lens for experimentally investigat-
ing quantum paradoxes [6–8] and Leggett-Garg inequalities
[9–12], as well as a quantitative indicator of non-classicality
of quantum states [5, 13–15]. On the applied side, they
provide probabilistic amplification techniques for quantum
metrology [16–23] and for the direct measurement of quan-
tum states [24–27].
Several experimental schemes for measuring weak val-

ues have been proposed and demonstrated in the labora-
tory. Some schemes, based on the original definition of weak
values, involve weak measurement interactions and post-
selection (see [5] for a review). More recently, there has been
a growing interest in methods for estimating weak values
without post-selection and weak couplings. An ingenious
method was developed by Hoffman [28], who showed that
weak values can be estimated by performing standard mea-
surements on the outputs of the universal quantum cloning
machine. An alternative method was proposed by Wagner
et al [29], based on the so-called cyclic shift test [30], which
allows one to estimate the trace of the product of multiple
density matrices.
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A limitation of most of the existing deterministic estima-
tion protocols, however, is that their number of samples gen-
erally grows linearly in the system dimension 3 . For exam-
ple, the cloningmethod [28] provides an estimate of the weak
value multiplied by a terms of order 1/3 . Hence, obtaining a
reliable estimate requires a number of repetitions of the ex-
periment growing at least as 3 . For a quantum system com-
posed of = particles, this scaling results into an exponential
increase of the sample complexity with =. A similar issue
arises in the cyclic test approach [29], whose sample com-
plexity is also growing with 3 in the worst case over all pos-
sible observables.

In this paper, we provide a deterministic method for es-
timating weak values with dimension-independent sample
complexity. In our method, two identical quantum systems
are prepared in two quantum states associated to the pre-
and post-selections appearing in the definition of weak value.
Then, the two systems undergo a controlled SWAP opera-
tion, which exchanges them or leaves them unchanged de-
pending on the quantum state of a control system. After the
controlled-SWAP operation, the two systems undergo a pos-
sibly noisy measurement, whose measurement outcomes are
used to estimate the weak value by classical post-processing.

The controlled-SWAP scheme studied in this paper also
provides insights into the theory of two-time states, a gen-
eralized notion of states that describe quantum systems sub-
ject to both pre- and post-selections [31–33]. We show that
the expectation values associated to two-time states can be
obtained from the expectation values associated to ordinary
density matrices, by applying a linear fractional transforma-
tion that involves a SWAP operation and a partial transpose.
Using this result, we show that the controlled-SWAPmethod
can be used to estimate the expectation values of all two-
time states associated to density matrices with positive par-
tial transpose (PPT) [34, 35]. Finally, we discuss several adap-
tations of the controlled-SWAP method that allow to access
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the expectation values for two-time states associated to non-
PPT states.
The rest of the paper is structured as follows. In Section

II, we briefly review the notion of weak value and put for-
ward a dimension-independent estimation scheme based on
controlled-SWAP operations. In Section III, we develop sev-
eral generalizations of the proposed estimation scheme and
introduce a new type of quantities dubbed “double weak val-
ues”. In Section IV, we provide the reader with an overview
of the theory of two-time states. In Section V, we discuss the
matrix representation of two-time states. In Section VI, we
unravel a fundamental connection between two-time states
and the developed estimation scheme. In Section VII, we
draw the conclusions and outlook.

II. WEAK VALUE ESTIMATION

Weak values were introduced by Aharonov, Albert and
Vaidman, as part of a framework describing pre- and post-
selected ensembles [1]. Their original definition referred to
the scenario where a quantum system is pre-selected and
post-selected in two pure states, described by rays in the
system’s Hilbert space H : given two (generally unnormal-
ized) vectors |k〉 ∈ H and |k ′〉 ∈ H satisfying the condition
〈k |k ′〉 ≠ 0, the weak value of an observable � is

, (� |k,k ′) := 〈k ′ |�|k〉
〈k ′ |k〉 . (1)

Here the vector |k〉 (|k ′〉) represents the initial (final) state
of the system. The observable � is typically taken to be a
self-adjoint operator, but more generally could be any linear
operator acting onH . Hereafter, the algebra of all linear op-
erators on H will be denoted by Lin(H).
The notion of weak value was later generalized to mixed

states (see e.g. [36]): for a pair of density matrices d and
d ′ satisfying the condition Tr[dd ′] ≠ 0, the weak value is
defined as

, (� | d, d ′) = Tr[d ′�d]
Tr[d ′d] . (2)

Eq. (1) can be obtained as a special case of Eq. (2) by setting
d = |k〉〈k | and d ′ = |k ′〉〈k ′ |.
An important question is how to measure weak values.

In their seminal paper [1], Aharonov, Albert, and Vaidman
provided an experimental scheme using weak interactions
and postselection. A number of other schemes was subse-
quently devised by other authors [16–18, 24, 37–49]. The
most recent scheme was presented in Ref. [29]. In its sim-
plest version, the scheme is defined for rank-one observables,
of the form � = |U〉〈U | for some vector |U〉 ∈ H . It con-
sists in two subprotocols: a cyclic test [30] for estimating the
trace Tr[d ′ |U〉〈U |d]], and a swap test [50, 51] for estimat-
ing the trace Tr[d ′d]. The extension to general self-adjoint
observables � is done by using the spectral decomposition
� =

∑
8 08 |U8〉〈U8 | and computing the weak value of � as a

linear combination of the weak values of the rank-one ob-
servables �8 := |U8〉〈U8 |. A limitation of this approach, how-
ever, is that in general an observable � can have up to 3 dis-
tinct eigenvalues, and therefore the number of experimen-
tal settings needed to estimate the weak value of � grows
with the system’s dimension in the worst case. For a system
of = particles, the number of settings for the estimation of a
generic weak value grows exponentially with =.

We now provide a way to estimate weak values of arbitrary
observables in a dimension-independent way. Our scheme
applies also to infinite-dimensional systems, and does not
require the use of ideal projective measurements. Consider
a general quantum measurement, described by a positive
operator-valuedmeasure (POVM) (% 9 )#9=1, satisfying the con-
ditions % 9 ≥ 0∀9 and ∑

9 % 9 = � . We say that this POVM
allows estimation of the observable � if � is a linear combi-
nation of the POVM operators, namely

� =

∑

9

G 9 % 9 , (3)

for suitable coefficients {G 9 }#9=1 ∈ R# (here and in the follow-
ing we consider the estimation of self-adjoint observables).
An example of POVM that satisfies condition (3) is a noisy
measurement of �, corresponding to % 9 = (1 − ?) |U 9 〉〈U 9 | +
? �/3 for 9 ∈ {1, . . . , 3} and ? ∈ [0, 1]. In this case, Eq. (3) is
satisfied with G 9 = (0 9 − ? Tr[�]/3)/(1 − ?).
The operators % 9 give rise to a complex measure

@( 9 |d, d ′) := Tr[% 9 d d ′] , (4)

normalized as
∑
9 @( 9 |d, d ′) = Tr[d d ′]. We call this measure

the weak value (WV) measure.

When condition Eq. (3) is satisfied, the weak value (2) can
be written as the ratio of two expectation values with re-
spect to the WV measure: the expectation value E@ (- ) :=∑
9 G 9 @( 9 |d, d ′) of the random variable - and the expecta-

tion value E@ (. ) :=
∑
9 @( 9 |d, d ′) of the constant random

variable . with values ~ 9 = 1∀9 ; in formula,

, (� | d, d ′) =
E@ (- )
E@ (. )

. (5)

In general, the WV measure @( 9 |d, d ′) is not a probability
measure, and therefore E@ (·) are not proper expectation val-
ues. Nevertheless, we now show that every expectation value
with respect to theWVmeasure can be evaluated by comput-
ing expectations of suitable random variables with respect to
a proper probability distribution. To this purpose, we use the
following protocol.
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Protocol 1 Sampling from WV measure

Inputs. Two copies (1, (2 of the system, on which the weak
value of (3) is intended to be measured, prepared in the states
d and d ′, respectively, and an auxiliary qubit � prepared in
the state |+〉〈+| with |+〉 = (|0〉 + |1〉)/

√
2.

1. Application of the controlled SWAP gate

* = �(1 ⊗ �(2 ⊗ |0〉〈0|� + SWAP(1(2 ⊗ |1〉〈1|� (6)

to all three systems.

2. Measurement of (1 with the POVM (% 9 ) 9 .

3. Measurement of � with the four-outcome POVM
('2 )32=0 with

'0 = 1/2|+〉〈+|, (7)

'1 = 1/2|−〉〈−|, (8)

'2 = 1/2| + 8〉〈+8 |, (9)

'3 = 1/2| − 8〉〈−8 |, (10)

where |±〉 = (|0〉 ± |1〉)/
√
2, and | ± 8〉 = (|0〉 ± 8 |1〉)/

√
2.

Physically, the POVM ('2 )2 can be realized as a ran-
dom measurement, by measuring either on the basis
{|+〉, |−〉} or on the basis {| + 8〉, | − 8〉}.

Output. The protocol produces a pair of outcomes ( 9 , 2), dis-
tributed with probability

? ( 9 , 2 |d, d ′) := Tr
[
(% 9 ⊗ � ⊗ '2 )* (d ⊗ d ′ ⊗ |+〉〈+|)* †]

=
1

8

{
Tr[% 9 d] + Tr[% 9 d ′]

+ 2\ (1 − 2) (−1)2 Re
(
Tr[% 9dd ′]

)

− 2\ (2 − 2) (−1)2 Im
(
Tr[% 9dd ′]

) }
, (11)

where \ (C) is the Heaviside step function, defined as \ (C) = 1
for C ≥ 0 and \ (C) = 0 for C < 0 (see Appendix A for a
derivation of Eq. (11)).

The probability distribution (11) generated by the pro-
posed protocol leads to the following:

Lemma 1. For every random variable / : 9 ↦→ I 9 , the ex-
pectation value of / with respect to the WV measure @( 9 |d, d ′)
in Eq. (4) coincides with the expectation value of the random

variable /̃ : ( 9 , 2) ↦→ Ĩ 9,2 defined by

Ĩ 9,2 := 2I 9 (−1)2
[
\ (1 − 2) − 8\ (2 − 2)

]
(12)

with respect to the probability distribution ? ( 9 , 2 |d, d ′).

Proof. See Appendix B. �

The above lemma, combined with Eq. (5), implies that the
weak value , (�|d, d ′) can be estimated by computing the

empirical average of the random variables - and . with re-
spect to the experimental frequencies generated by Protocol
1. The sample complexity of the protocol is provided by the
following:

Theorem 1. With  copies of the input state pair d, d ′, the
weak value, (� | d, d ′) of an observable � =

∑
9 G 9% 9 with a

POVM (% 9 ) 9 and real coefficients {G 9 } 9 can be estimated up to
a small additive error n with a probability no less than 1 − X
given

 =

8 ln
(
6
X

)

n2

(
Gmax + |, (� | d, d ′) |

Tr[dd ′]

)2

+ $
(
ln 1

X

n

Gmax + |, (� | d, d ′) |
(Tr[dd ′])2

)
(13)

where Gmax ≔ max9 |G 9 |.

Proof. See Appendix C. �

When the POVM is the spectral decomposition of the ob-
servable �, the maximum value of G 9 is simply the norm
‖�‖ = sup‖ |k 〉 ‖=1 〈k |�|k〉. Note that the sample complexity
depends on the overlap between the states d and d ′, and can
become large when the states are nearly orthogonal. How-
ever, there is no dependence of the sample complexity on
the dimension of the system. As a result, our method pro-
vides a reduction of the sample complexitywith respect to the
method proposed in Ref. [29] in all the cases where the ob-
servable � has rank larger than one. Another appealing fea-
ture from the experimental point of view is that our method
only requires a controlled-SWAP operation, which is gener-
ally easier to implement than the controlled shift operations
in Ref. [29].
Beside the dimension-independent sample complexity, an

interesting feature of the above protocol is that it works with
uncharacterized preparation devices: to estimate the weak
value, (�| d, d ′), the experimenter does not need to know
in advance the initial state d and final state d ′. Similarly, the
experimenter does not need to know in advance the POVM
(% 9 ) 9 describing the measurement apparatus: the weak value
of any observable of the form� =

∑
9 G 9 % 9 can be computed

by averaging the random variable G 9 with respect to the fre-
quency distribution of the measurement outcome. These fea-
tures make the above protocol suitable for the tomographic
characterization of preparation devices (or measurement de-
vices) using weak values.

III. DOUBLEWEAK VALUES

The controlled-SWAP protocol presented in the previous
section lends itself to several generalizations, discussed in
this section. These generalizations allow to estimate another
type of quantities, which we call “double weak values,” and
facilitate the connection with the theory of two-time states,
discussed in Section VI.
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A. Two local measurements

A first generalization of Protocol 1 is to measure both sys-
tems (1 and (2, instead of measuring only (1. Measuring (1
and (2 with two POVMs (% 9 ) 9 and (&: ): , respectively, gives
rise to the probability distribution

? ( 9 , :, 2 |d, d ′) := Tr
[
(% 9 ⊗ &: ⊗ '2 )* (d ⊗ d ′ ⊗ |+〉〈+|)* †] .

(14)

By sampling over this probability distribution, one can esti-
mate the averages of arbitrary random variables with respect
to the complex measure

@( 9 , : | d, d ′) := Tr[% 9d&:d ′] , (15)

thereby estimating all quantities of the form

Tr[�d�d ′] , (16)

for arbitrary observables � and � in the linear span of {%8 }8
and {& 9 } 9 , respectively.
These quantities give rise to a generalization of the notion

of weak value:

Definition 1. The double weak value of a pair of observables
� ∈ Lin(H) and � ∈ Lin(H) with respect to the initial state d
and the final state d ′ is the quantity

,2(�, � | d, d ′) := Tr[� d � d ′]
Tr[dd ′] . (17)

The double weak value generalizes the standard weak
value (2), whose expression can be retrieved from Eq. (17)
by setting � = � ; in short, one has

, (� | d, d ′) =,2(�, � | d, d ′) ∀�, d, d ′ ∈ Lin(H) . (18)

The double weak value has an interesting physical in-
terpretation. For pure states d = |k〉〈k | := k and d ′ =

|k ′〉〈k ′ | := k ′ , one has

,2(�, � |k,k ′) =, (�|k,k ′), (� |k ′,k ) , (19)

meaning that the double weak value is the product between
the weak value of � in the forward time direction, with ini-
tial state k and final state k ′ , and the weak value of � in the
backward time direction, with initial state k ′ and final state
k .

For general mixed states d =
∑
< A< |k<〉〈k< | and d ′ =∑

= A
′
= |k ′

=〉〈k ′
= |, the double weak value quantifies the correla-

tions between the weak values of� in the forward time direc-
tion and the weak values of � in the backward time direction;
in formula:

,2(�, � | d, d ′) =
∑

<,=

? (<,=), (�|k< ,k ′
=), (� |k ′

=,k<) ,

(20)

where ? (<,=) is the probability distribution

? (<,=) := A<A
′
= |〈k< |k ′

=〉|2∑
8, 9 A8A

′
9 |〈k8 |k ′

9 〉|2
. (21)

Recalling that the weak values were originally defined in
terms of weak measurement processes, the double weak
value in Eq. (20) can be interpreted as the correlation between
the quantities observed in two weak measurement processes
where the roles of the pre- and post-selections are exchanged.
These correlations would appear in an exotic scenario where
two different agents operate in two opposite time directions
[52], with one agent preparing inputs in the past and select-
ing outputs in the future, and the other agent preparing in-
puts in the future and selecting outputs in the past. In this
setting, the double weak value is the correlation between the
values observed by the two agents. It is quite remarkable
that such exotic correlations can be experimentally observed
through the controlled-SWAP protocol.

B. Local measurements and general bipartite states

A further generalization of Protocol 1 is to replace the
two uncorrelated states d and d ′ with a single bipartite state
din,fin. If systems (1 and (2 are measured with POVMs (% 9 ) 9
and (&: ): , respectively, the controlled-SWAP protocol pro-
duces a triple of outcomes ( 9 , :, 2) distributed with probabil-
ity

? ( 9 , :, 2 |d, d ′) := Tr
[
(% 9 ⊗ &: ⊗ '2 )* (din,fin ⊗ |+〉〈+|)* †] .

(22)

By sampling over this probability distribution, one can
simulate the averages of arbitrary random variables with re-
spect to the complex measure

@( 9 , : | din,fin) := Tr[(% 9 ⊗ &:) din,fin SWAP] , (23)

thereby estimating quantities of the form

Tr[(� ⊗ �) din,fin SWAP] (24)

for arbitrary observables � and � in the linear span of {%8 }8
and {& 9 } 9 , respectively.
As a biproduct, one can also estimate the ratios

Tr[(� ⊗ �) din,fin SWAP]
Tr[din,fin SWAP]

. (25)

Note that we do not use the term “(double) weak values” for
the ratios in Eq. (25). This omission is intentional: as we
will see later in the paper, the proper notion of (double) weak
value does not, in general, coincide with the ratios in Eq. (25),
but rather with a variant of Eq. (25) where the bipartite state
din,fin is subject to a partial transposition.

C. General bipartite states and joint measurements

A third generalization of the controlled-SWAP protocol
consists in performing a joint measurement on the two copies
of the system. If the two copies are initially in the bipartite
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state din,fin and are measured with the joint POVM (Π 9 ) 9 af-
ter the controlled-SWAP operation, the protocol produces a
pair of outcomes ( 9 , 2) distributed with probability

? ( 9 , 2 |d, d ′) := Tr
[
(Π 9 ⊗ '2 )* (din,fin ⊗ |+〉〈+|)* †] . (26)

By sampling from this probability distribution, an experi-
menter can estimate the expectation value of arbitrary ran-
dom variables with respect to the complex measure

@( 9 |d) = Tr[Π 9 din,fin SWAP] , (27)

and therefore the value of every quantity of the form

Tr[� din,fin SWAP] , (28)

where � ∈ Lin(H ⊗ H) is an arbitrary observable in the
linear span of the POVM operators {Π 9 }. Again, this allows
one to estimate the ratios

Tr[� din,fin SWAP]
Tr[din,fin SWAP]

. (29)

In the following sections, we will compare the experimen-
tally accessible quantities (28) and (29) with the weak values
associated to general two-time states.

IV. TWO-TIME STATES

Weak values can be interpreted as expectation values with
respect to a generalized type of quantum states, known as
two-time states [1, 32, 33]. In the following, we provide a brief
review of the notion of two-time state.
The prototype of a two-time state, introduced in the sem-

inal work of Aharonov, Bergmann, and Lebowitz [31], is the
linear functional _ : Lin(H) → C defined by the relation

_(�) := 〈k ′ |�|k〉 , ∀� ∈ Lin(�) , (30)

where |k〉 ∈ H and |k ′〉 ∈ H are two arbitrary vectors. The
complex number _(�) is then interpreted as the expectation
value of the observable � on the two-time state _. The func-
tional _ plays the role of an unnormalized state vector in text-
book quantum mechanics. In the following we will call _ a
two-time vector.
The notion of two-time vector was later generalized by

Aharonov and Vaidman [32], who considered general linear
combinations of the form

_(�) :=
#∑

8=1

〈k ′
8 |� |k8〉 , (31)

where # is a positive integer and {|k8 〉}#8=1 ⊂ H and
{|k ′

8 〉}#8=1 ⊂ H are arbitrary sets of vectors.
Mathematically, the set of two-time vectors (31) is the set

of all linear functionals on the observables of the system.

Proposition 2. The set of all two-time vectors (31) is the vector
space consisting of all linear functionals from Lin(H) to C.

Proof. For every linear functional _ : Lin(H) → C,
there exists one and only one matrix ! ∈ Lin(H) such that
_(�) = Tr[! �]. By the singular value decomposition [53],
the matrix ! can be rewritten as ! =

∑3
8= |k8 〉〈k ′

8 |, where
{|k8 〉} and {|k ′

8 〉} are two sets of orthogonal states. Hence,
the functional _ has the Aharonov-Vaidman form (31). This
proves that every linear functional is a valid two-time vector.
The converse is trivial, since every two-time vector is, by
definition, a linear functional. �

The general notion of two-time vector (31) has been ex-
tended from pure to mixed states in the work by Silva et
al [33], who developed a framework for describing pre- and
post-selected ensembles of quantum states. We now review
this framework, using a slightly different notation that facil-
itates the connection with the notion of double weak value
introduced in this paper.
The transition from pure to mixed two-time states is sim-

ilar to the transition from state vectors to density matrices.

Definition 2. The two-time matrix corresponding to a two-
time vector _ : Lin(H) → C is the linear functional �_ :
Lin(H ⊗ H) → C uniquely defined by the relation

�_ (� ⊗ �) := _(�) _†(�) , ∀�, � ∈ Lin(H) , (32)

where _† is the functional defined by the relation _†(�) :=

_(�†) ,∀� ∈ Lin(H).
Definition 3. A (generally unnormalized) two-time density
matrix is linear functional l : Lin(H ⊗ H) → C of the form

l =

∑

=

�_= , (33)

where (_=)= are arbitrary linear functionals and (�_= )= are
two-time matrices defined as in Eq. (32).

In the following, two-time density matrices will also be
called two-time states. Mathematically, the set of all unnor-
malized two-time states is a convex cone, i.e. it contains
all convex combinations and all positive multiples of its el-
ements. Silva et al [33] showed that the (generally unnor-
malized) two-time states are in one-to-one correspondence
with (generally unnormalized) bipartite density matrices. In
the next section we will make this correspondence explicit,
providing an expression that connects two-time states to the
controlled-SWAP protocol introduced earlier in the paper.

V. MATRIX REPRESENTATION OF TWO-TIME STATES

We now provide an explicit matrix representation of two-
time states. To this purpose, we recall that every linear func-
tional l : Lin(H ⊗ H) → C is of the form

l (�) := Tr[$ �] (34)

for a suitable matrix$ ∈ Lin(H ⊗H). Our goal is to charac-
terize the constraints that the matrix$ has to satisfy in order
for the functional l to be a valid two-time state. This goal is
achieved by the following theorem:
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Theorem 3. The functional l in Eq. (34) is an unnormalized
two-time state if and only if the matrix $ is of the form

$ = %)2 SWAP , (35)

where % ∈ Lin(H ⊗ H) is a positive semidefinite matrix and
%)2 is the partial transpose of % over the second Hilbert space.

Proof. See Appendix D. �

Theorem 3 gives an explicit matrix representation of the
two-time states: in short, a two-time state must be a func-
tional of the form

l (�) = Tr
[
� %)2 SWAP

]
, (36)

for some positive matrix % .
Eq. (36) shows in an explicit way the correspondence be-

tween the convex cone of two-time states and the convex
cone of positive bipartite matrices. We now analyze the cor-
respondence further, by characterizing the structure of the
normalized two-time states, defined as follows

Definition4. A normalized two-time state is a two-time state
l such that l (� ) = 1, where � is the identity operator. The set
of normalized two-time states will be denoted by T∗ (H ⊗ H).
We now provide a characterization of the normalized

states, showing that they are in one-to-one correspondence
with a convex subset of bipartite density matrices.

Theorem 4. A linear functional l : Lin(H ⊗ H) → C is a
normalized two-time state if and only if it is of the form

l (�) = Tr[� d)2 SWAP]
Tr[d)2 SWAP] := ld (�) , (37)

where d ∈ Lin(H ⊗ H) is a normalized density matrix such
that Tr[d)2 SWAP] ≠ 0.

Proof. Suppose that l is a functional of the form (37).
Clearly, l satisfies the normalization condition l (� ) = 1.
Moreover, l is of the form l (�) = Tr[� %)2 SWAP] with
% := d/Tr[d)2 SWAP]. Note that % is positive, because d is
positive and

Tr[d)2 SWAP] =
∑

8, 9

〈8 |〈8 |d | 9〉| 9〉 , (38)

which implies Tr[d)2 SWAP] > 0. Hence, l is of the form
(36), and therefore it is a (normalized) two-time state.
Conversely, suppose thatl is a normalized two-time state.

Since l is a two-time state, it must be of the form (36) for
some positive matrix % . Since l is normalized, one has
Tr[%)2 SWAP] = l (� ) = 1, which implies in particular % ≠ 0,
and, since % is positive, Tr[%] ≠ 0. We can then define a
normalized density matrix d := %/Tr[%] satisfying the con-
dition Tr[d)2 SWAP] = Tr[%)2 SWAP]/Tr[%] = 1/Tr[%] ≠ 0.
Hence, we have

l (�) = Tr[� %)2 SWAP]
= Tr[%] Tr[� d)2 SWAP]
= Tr[� d)2 SWAP]/Tr[d)2 SWAP] . (39)

�

Note that the set of bipartite density matrices satisfying the
condition Tr[d)2 SWAP] ≠ 0 can be equivalently character-
ized as the set of bipartite density matrices that have non-zero
overlap with the canonical unnormalized maximally entan-
gled state |Φ〉 :=

∑3
8=1 |8〉 ⊗ |8〉, as one can see from Eq. (38).

We denote this set by

D∗(H ⊗ H) :=
{
d ≥ 0 ,Tr[d] = 1 , 〈Φ|d |Φ〉 > 0

}
. (40)

Note also that the correspondence between two-time states
and bipartite matrices is a homeomorphism (that is, it is in-
vertible and continuous), as it is given by the linear fractional
transformation d ↦→ ld in Eq. (37). Summarizing, we have
the following

Corollary 1. The sets of two-time states and bipartite density
matrices with nonzero overlap with the maximally entangled
state are homeomorphic; in formula, T∗(H ⊗ H) ≃ D∗ (H ⊗
H).

Note that the mapping d ↦→ ld in Eq. (37) is non-linear
and it does not preserve convex combinations. Neverthe-
less, it is linear fractional, and therefore it maps convex com-
binations into convex combinations, although with gener-
ally different weights. Explicitly, a convex combination of
density matrices, say d =

∑
8 ?8 d8 , is mapped into a con-

vex combination of two-time states ld =
∑
8 @8 ld8 , with

@8 = ?8 〈Φ|d8 |Φ〉/(
∑
9 ? 9 〈Φ|d 9 |Φ〉). This condition implies

that the mapping d ↦→ ld maps pure bipartite states into
extreme points of the set of two-time states, and vice-versa.

VI. TWO-TIME STATES AND THE CONTROL-SWAP
PROTOCOL

Theorem 4 reveals a fundamental connection between
two-time states and the control-SWAP protocol presented
earlier in the paper. As we saw in Eq. (29), the control-SWAP
protocol allows an experimenter to estimate any quantity of
the form

l̃d (�) :=
Tr[� d SWAP]
Tr[d SWAP] , (41)

for every bipartite observable� and every bipartite quantum
state d .
The difference between the quantities (41) and the expecta-

tion values (37) is the presence of the partial transpose on the
secondHilbert space. Physically, one can interpret the partial
transpose as the signature of the difference between the spa-
tial correlations accessible with the control-SWAP protocol
and the time correlations associated to two-time states.
By comparing Eqs. (41) and (37) we can also have a clear

view of the strengths and limitations of the control-SWAP
protocol. First, if the density matrix d is invariant under par-
tial transpose, an experimentalist who has access to two sys-
tems in the joint state d can directly estimate the expectation
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values on the two-time state ld , by using the control-SWAP
protocol.
More generally if the density matrix is positive under par-

tial transpose (PPT) [34, 35], the control-SWAP protocol can
provide an estimate of the expectation values on the two
time-stateld , if the experimenter is given access to the quan-
tum state d)2 . This is the case of the protocols shown ear-
lier in the paper, where we saw how to estimate the weak
values (1) and (2), which correspond to the expectation val-
ues of the observable � ⊗ � on the two-time states lk⊗(k ′ ))
and ld⊗(d ′ )) , respectively. Similarly, the double weak value
Tr[d ′�d�]/Tr[d ′d] is the expectation of the product observ-
able � ⊗ � with respect to the two-time state ld⊗(d ′ )) .
In constrast, the control-SWAP protocol does not provide,

in general, an estimate of the expectation values on a two-
time state when the density matrix d is not PPT. One way
to circumvent this problem would be to approximate the
partial transpose operation with a physical process, such as
the optimal universal transpose map [54, 55]. However, the
estimation protocol resulting from this approach would be
dimension-dependent: indeed, optimal universal transpose is
the completely positive trace-preserving map given by

�(d) = dT + �
3 + 1

, (42)

and the 1/(3+1) factor implies that the sample complexity for
the estimation of the expectation valuesld (�) grows linearly
with 3 .
Another approach is to introduce an auxiliary system, and

to reduce two-time states associated to non-PPT density ma-
trices to extended two-time states associated to PPT density
matrices. This approach can be easily illustrated in the pure
state case. In this case, Aharonov and Vaidman [32] showed
that every two-time vector _(�) :=

∑#
8=1〈k ′

8 |� |k8 〉 can be
obtained by introducing an auxiliary system of dimension # ,
and a joint two-time vector Λ(·) := 〈Ψ′ | · |Ψ〉 correspond-
ing to the initial vector |Ψ〉 = ∑

8 |k8 〉 ⊗ |8〉 ∈ H ⊗ Haux and
final vector |Ψ′〉 =

∑
8 |k ′

8 〉 ⊗ |8〉 ∈ H ⊗ Haux, where Haux

is the Hilbert space of the auxiliary system and {|8〉}#8=1 is an
orthonormal basis forHaux. With this definition, one has the
relation

_(�) = Λ(� ⊗ �aux) , ∀� ∈ Lin(H) , (43)

meaning that the expectation value of the observable � on
the two-time vector _ coincides with the expectation value
of the observable � ⊗ �aux on the the joint two-time vector Λ.
In turn, the two-time vector Λ consists just in a pre-selection
and a post-selection to pure states, and therefore it can be
reproduced by a product (and therefore PPT) state. Explicitly,
we have

Λ(� ⊗ �aux)
Λ(� ⊗ �aux)

= lΨ⊗(Ψ′ )) (� ⊗ �aux ⊗ � ⊗ �aux) , (44)

where lΨ⊗(Ψ′ )) , defined as in Eq. (37), is a normalized two-
time state in T∗(H ⊗Haux ⊗H ⊗Haux). Combining Eqs. (43)
and (44), we can see that the weak values _(�)/_(� ) can be
estimated by the control-SWAP protocol, if the experimenter

has access to the pure quantum states states proportional to

the vectors |Ψ〉 and |Ψ′〉.
The above argument can be extended from two-time vec-

tors to two-time matrices. For example, the expectation val-
ues with respect to the two-time matrix �_ associated to the
two-time vector _ in the previous paragraph can be computed
as

�_ (�)
�_ (� )

= lΨ⊗(Ψ′ ))
(
, (� ⊗ �aux ⊗ �aux), †

)
, (45)

where, is the unitary operator that permutes the Hilbert
spaces H ⊗ H ⊗ Haux ⊗ Haux into H ⊗ Haux ⊗ H ⊗ Haux.
Eq. (45) means that the expectation value on the l.h.s. can
be estimated by the controlled-SWAP protocol, if the exper-
imenter has access to the pure quantum states proportional

to the vectors |Ψ〉 and |Ψ′〉.
Overall, the extension approach has the benefit of being

dimension-independent, but it requires either the two-time
state l to be known, or the appropriate PPT state of the sys-
tem and the auxiliary to be provided to the experimenter.

VII. CONCLUSIONS AND OUTLOOK

In this paper we have designed a dimension-independent
scheme for estimating weak values of arbitrary observables.
The scheme is based on the controlled-SWAP gate, and gen-
erates a probability distribution that can be used to sample
from a complex measure underlying the weak values of in-
terest. Crucially, the initial and final states of the system as
well as the observable itself, whose weak value is estimated,
do not have to be a priori known to experimenter.
As a byproduct, the structure of the controlled-SWAP

scheme provides several insights to theory of two-time states.
In particular, we have derived an alternative expression for
two-time states, which provides an explicit characterization
of the correspondence between two-time states and (a subset
of) bipartite density matrices. Using this expression, we char-
acterized the domain of applicability of the control-SWAP
protocol, showing that it can be used to estimate the expecta-
tion values of all two-time states corresponding to PPT den-
sity matrices (including, of course, the product density ma-
trices corresponding to the usual definition of weak values).
For two-time states corresponding to non-PPT density ma-
trices, the controlled-SWAP protocol can still be used if the
experimenter is given access to an extendend quantum states
involving a pair of auxiliary systems.
An interesting open question for future research is

whether dimension-independent sampling schemes like ours
could be constructed for the estimation of Kirkwood-Dirac
(KD) quasiprobability distributions, an important type of
complex measures that often arise in quantum information
and foundations [14, 56, 57]. KD distributions have a close
connection with weak values, and their negativity provides
a signature of quantum contextuality in Spekkens’ formula-
tion [58]. In turn, KD distributions have found numerous ap-
plications beyond quantum foundations, including quantum
metrology [59–61], condensed matter physics [56, 62, 63],
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and thermodynamics [57]. The approach ofWagner et al [29]
provides a way to estimate the value of the KD distribution at
every fixed point. The open question is whether there exist
ways to simulate sampling from the KD distribution.
Another interesting direction concerns the theory of two-

time states and its relation of the study of causality in quan-
tum theory [64–69]. Recent findings have suggested that
anomalous weak values of observables shared between sev-
eral parties can assist in witnessing the causal relationships
between the parties’ laboratories [70]. Moreover, two-time
states (and multiple-time states in general) themselves can
carry information about the underlying causal structure [71]
and can be used to witness indefinite causal order of oper-
ations [72]. Finally, protocols exploiting controlled causal
order of operations in a protocol known as the quantum
SWITCH [64, 65] have been shown to be useful for efficient
estimation of quantities that can be connected with weak
values and KD distributions, such as out-of-time-correlators
[73] and incompatibility of quantum observables [74]. There-
fore, an interplay between weak values, KD distributions,
and indefinite causal order in quantum SWITCH appears as
a promising direction for future investigations.
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Appendix A: Derivation of Eq. (11)

At the beginning of the protocol, the two copies of the sys-
tem ((1 and (2) and the control qubit are in the product state

l = d ⊗ d ′ ⊗ |+〉〈+|. (A1)

Application of the controlled SWAP gate* produces the new
state

*l* †
=

1

2

{
d ⊗ d ′ ⊗ |0〉〈0| + d ′ ⊗ d ⊗ |1〉〈1|

+ (d ⊗ d ′)SWAP ⊗ |0〉〈1|
+ SWAP(d ⊗ d ′) ⊗ |1〉〈0|

}
. (A2)

A measurement of the first system and auxiliary qubit with
the POVM (% 9 ) 9 and ('2 )2 , respectively, produces a pair of
outcomes ( 9 , 2) distributed with probability

? ( 9 , 2 |d, d ′) =
1

2
Tr

[
% 9d ⊗ d ′ ⊗ '2 |0〉〈0|

+ % 9d ′ ⊗ d ⊗ '2 |1〉〈1|

+ (% 9 ⊗ � ) (d ⊗ d ′)SWAP ⊗ '2 |0〉〈1|
]

+ (% 9 ⊗ � )SWAP(d ⊗ d ′) ⊗ '2 |1〉〈0| .
Using the relations

〈0|'2 |0〉 = 〈1|'2 |1〉 =
1

4
∀2 ∈ {0, 1, 2, 3} (A3)

and

〈0|'2 |1〉 =
(−1)2
4

(
\ (1 − 2) + 8\ (2 − 2)

)
∀2 ∈ {0, 1, 2, 3}

(A4)

we then obtain

? ( 9 , 2 |d, d ′) =
1

8

{
Tr[% 9d] + Tr[% 9d ′]

+ (−1)2
(
\ (1 − 2) + 8\ (2 − 2)

)

· Tr
[
(% 9 ⊗ � ) (d ⊗ d ′)SWAP

]

+ (−1)2
(
\ (1 − 2) − 8\ (2 − 2)

)

· Tr
[
(% 9 ⊗ � )SWAP(d ⊗ d ′)

]}
. (A5)

Finally, using the relation Tr[(� ⊗ �) SWAP] =

Tr[��] ,∀�, � ∈ Lin(H), we obtain

? ( 9 , 2 |d, d ′) =
1

8

{
Tr[% 9d] + Tr[% 9d ′]

+ (−1)2\ (1 − 2)
(
Tr[% 9 dd ′] + Tr[d% 9d ′]

)

+ 8 (−1)2\ (2 − 2)
(
Tr[% 9dd ′] − Tr[d% 9d ′]

)}

=
1

8

{
Tr[% 9d] + Tr[% 9d ′]

+ 2(−1)2\ (1 − 2) Re Tr[% 9dd ′]

− 2(−1)2\ (2 − 2) ImTr[% 9dd ′]
}
, (A6)

where the second equality follows from the identity

Tr[d% 9d ′] = Tr[d ′d% 9 ] = Tr[(% 9 dd ′)†] = Tr[% 9dd ′]. This
concludes the proof of Eq. (11).

Appendix B: Proof of Lemma 1

The proof of Lemma 1 is a straightforward calculation: we
only need to calculate the expectation value of the random
variable /̃ in Eq. (12) with respect to the probability distribu-

http://dx.doi.org/ 10.1103/PhysRevA.88.022318
http://dx.doi.org/10.1038/ncomms2076
http://dx.doi.org/10.1038/nphys2930
http://arxiv.org/abs/1906.10726
http://dx.doi.org/10.1038/s41467-020-20456-x
http://dx.doi.org/10.22331/q-2019-10-14-194
http://dx.doi.org/10.1088/1367-2630/aa84fe
http://arxiv.org/abs/2306.05958
http://dx.doi.org/10.1103/PhysRevA.94.040302
http://dx.doi.org/10.1103/PhysRevLett.130.170201
http://dx.doi.org/10.1080/01621459.1963.10500830


11

tion ? ( 9 , 2 |d, d ′). Explicitly, the expectation value is

E? [/̃ ] =

∑

9,2

Ĩ 9,2 ? ( 9 , 2 |d, d ′)

= 2
∑

9,2

I 9 (−1)2
[
\ (1 − 2) − 8\ (2 − 2)

]
? ( 9 , 2 |d, d ′)

=
1

4

∑

9

I 9

(
Tr[% 9d] + Tr[% 9d ′]

)

·
∑

2

(−1)2
[
\ (1 − 2) − 8\ (2 − 2)

]

+ 1

2

∑

2

(−1)22\ (1 − 2)
[
\ (1 − 2) − 8\ (2 − 2)

]

·
∑

9

I 9 Re Tr[% 9 dd ′]

− 1

2

∑

2

(−1)22\ (2 − 2)
[
\ (1 − 2) − 8\ (2 − 2)

]

·
∑

9

I 9 ImTr[% 9dd ′]

=

∑

9

I 9

(
ReTr[% 9dd ′] + 8 ImTr[% 9dd ′]

)

=

∑

9

I 9@( 9 |d, d ′)

= E@ [/ ] . (B1)

In summary, the expectation value of the random variable
/̃ with respect to the probability distribution ? ( 9 , 2 |d, d ′) is
equal to the expectation value of the random variable / with
respect to the complex distribution @( 9 |d, d ′).

Appendix C: Proof of Theorem 1

The proof is based on two lemmas, provided in the follow-
ing.

Lemma2. Let d and d ′ be a pair of states, let (% 9 ) 9 be a POVM,
and let {G 9 } 9 be a set of real numbers, with Gmax := max9 |G 9 |.
Let aRe := Re(Tr[d ′�d]) and a Im := Im(Tr[d ′�d]) be the real
and imaginary parts of the weak value of the observable � :=∑
9 G 9 % 9 , respectively. The estimate of aRe and a Im obtained

from  runs of Protocol 1 has error at most

na = 2Gmax

√
1

 
ln

2

X
(C1)

with probability at least 1 − X .

Proof. In accordance with (5), Tr[d ′�d] = E@ [- ], where @ is
the WV measure defined in (4), and - is a random variable
taking values in {G 9 } 9 . Lemma 1 guarantees that the proba-
bility distribution (11) generated by Protocol 1 can be equiv-
alently used to estimate E@ [- ]. In turn, it can be rewritten

as

? ( 9 , 2 |d, d ′) =
1

2

(
\ (1 − 2)?Re( 9 , 2 |d, d ′)

+ \ (2 − 2)?Im( 9 , 2 − 2|d, d ′)
)
, (C2)

with probability distributions

?Re( 9 , 2̄ |d, d ′) =
1

4

{
Tr[% 9 (d + d ′)] + 2(−1)2̄ ReTr[d ′% 9d]

}

?Im( 9 , 2̄ |d, d ′) =
1

4

{
Tr[% 9 (d + d ′)] − 2(−1)2̄ ImTr[d ′% 9d]

}
,

where 2̄ ∈ {0, 1}.
Now, recall that the POVM ('2 )2 in Protocol 1 can be ob-

tained by randomly choosing between the projective mea-
surements (2'0, 2'1) and (2'2, 2'3), which give rise to the
probability distributions ?Re( 9 , 2̄ |d, d ′) and ?Im( 9 , 2̄ |d, d ′), re-
spectively. Then, a straightforward calculation demonstrates
that E?Re [-̃ ] = aRe and E?Im [−-̃ ] = a Im, so that

E@ [- ] = E?Re [-̃ ] + 8E?Im [−-̃ ] . (C3)

In turn, -̃ is a random variable associated with the corre-
sponding two-outcome projective measurement of auxiliary
qubit and taking values in {G̃ 9,2̄ } 9,2̄ , where G̃ 9,2̄ = (−1)2̄G 9 ,
and 9 and 2̄ are the measurement outcomes. Therefore, for  
runs of Protocol 1, we can consider a projective measurement
{2'0, 2'1} of the auxiliary qubit performed in  /2 runs and
the measurement {2'2, 2'3} performed in other  /2 runs.
In order to estimate aRe, in the :-th run of the protocol, we

associate themeasurement {2'0, 2'1}with a random variable
-: ≔ -̃/( /2) taking values in {2(−1)2̄G 9/ } 9,2̄ . Hence, the
estimator -Re ≔

∑ /2
:=1

-: is an unbiased estimator for aRe.
According to the Hoeffding’s inequality [75], the probabil-
ity of estimation with an additive error at least na is upper-
bounded as

Pr(|-Re − aRe | ≥ na ) ≤ 2 exp

(
− 2n2a∑

: (max(-: ) −min(-: ))2

)
.

(C4)
As each of  /2 estimators is bounded as −2Gmax/ ≤ -: ≤
2Gmax/ , where Gmax = max9 |G 9 |, we obtain

∑

:

(max(-: ) −min(-: ))2 =
8G2max

 
. (C5)

Therefore, the probability (C4) is upper-bounded by

Pr(|-Re − aRe | ≥ na) ≤ 2 exp

(
− n2a 

4G2max

)
. (C6)

Requiring that it does not exceed X is equivalent to the upper
bound

2 exp
(
−n2a /4G2max

)
≤ X, (C7)

bounding hence the estimation error as

na ≥ 2Gmax

√
1

 
ln

2

X
. (C8)
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This means that, for  /2 runs of Protocol 1, we can make
sure that the estimation of aRe is within an error na with a
probability no less than 1 − X . This relation between the
error and the number of copies also holds for the estimation
of the imaginary part a Im, since, in accordance with (C3), it
is associated with the same estimator -Re up to an overall
minus sign, which does not change the upper bound (C4).
hence the proof. �

Corollary 2. Given a pair of states d , d ′, for runs of Protocol
1, the estimate of ` := Tr[d ′d] can be guaranteed to have an
error at most

n` = 2

√
1

 
ln

2

X
, (C9)

with probability at least 1 − X .

Proof. First, we note that ` = aRe if � = � . Therefore,
from the ( /2)-round measurement outcomes for estimating
aRe, we can simultaneously construct an unbiased estimator

. ≔
∑ /2
:=1

.: for `, where .: ≔ 2(−1)2/ . Since ` is a non-
negative number, it is not necessary to estimate its imaginary
part. Applying the Hoeffding’s inequality (C4) and taking
into account that Gmax = 1 for `, we find that the estimation
error is bounded by

n` ≤ 2

√
1

 
ln

2

X
. (C10)

Therefore, for  /2 runs of the Protocol 1, we can make sure
that the estimation of ` is within a error n` with a probability
1 − X . �

Lemma 3. Given an observable � =
∑
9 G 9% 9 , where (% 9 ) 9 is

a set of POVM elements, and a pair of states d , d ′, for  runs
of Protocol 1, the estimate of its weak value, (� | d, d ′) can be
guaranteed to have an error at most:

n =

√
2(Gmax + |, (� | d, d ′) |)

`/n` − 1
, (C11)

where Gmax := max 9 |G 9 |, ` = Tr[d ′d], and n` = 2
√

1
 
ln 2

X
,

with probability at least 1 − 3X .

Proof. First, we we recall that , (� | d, d ′) = ,Re + 8,Im,
where ,Re = aRe/` and ,Im = a Im/`. Therefore, the cor-
responding estimation error is given by

n =
√
n2
,Re

+ n2
,Im

, (C12)

where n,Re and n,Re are errors in estimation of the real and
imaginary parts of the weak value, respectively. The error in

estimation of the real part,Re can be upper-bounded as

n,Re =

����
-Re

.
− aRe

`

����

=

����
-Re` − aRe` + `aRe − .aRe

.`

����

≤ |-Re − aRe |` + |` − . | |aRe |
|. |`

≤
na + n` |,Re |

|. | , (C13)

where the first inequality follows from the triangle inequal-
ity |0 + 1 | ≤ |0 | + |1 |, while the second inequality, in accor-
dance with Lemma 2 and Corollary 2, follows from the upper
bounds (C1) and (C9), respectively. As the latter can be given
as ` − n` ≤ . ≤ ` + n` , we can assume that the correspond-
ing estimation error is small enough to fulfill the condition
n` < `, so that |. | ≥ ` − n` ≥ 0 and, thus,

nRe(, ) ≤
na + n` |,Re |
` − n`

. (C14)

Comparing (C1) and (C9), it is easy to note that na = Gmaxn` .
Therefore,

n,Re ≤
Gmax + |,Re |
`/n` − 1

. (C15)

Similarly, the error of estimating Im(, (� | d, d ′)) is bounded
from above as

nIm(, ) ≤
Gmax + |,Im |
`/n` − 1

. (C16)

Therefore, an upper bound on the total error in estimation of
the weak value, (�|d, d ′)

n ≤
√
(Gmax + |,Re |)2 + (Gmax + |,Im |)2

`/n` − 1

=

√
2G2max + 2Gmax (|,Re | + |,Im |) + |, (�|d, d ′) |2

`/n` − 1

≤
√
2G2max + 4Gmax |, (�|d, d ′) | + |, (�|d, d ′) |2

`/n` − 1

≤
√
2(Gmax + |, (�|d, d ′) |)

`/n` − 1
, (C17)

is valid if the bounds |-Re − aRe | ≤ na , |-Im − a Im | ≤ na , and
|. − ` | ≤ n` are satisfied. Since each bound is violated with
a probability not higher than X , the violation probability of
at least one of them is upper-bounded by 3X . Hence, the
estimation error of , (� | d, d ′) does not exceed the upper
bound (C17) with probability at least 1 − 3X . �

Proof of Theorem 1. Applying Lemma 3 and taking into
account (C9), we can reverse (C11) in order to obtain an ex-
pression for the number  of runs of the Protocol 1 in terms
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of the estimation error n ,

 =

4 ln 2
X

`2

(√
2 (Gmax + |, (� | d, d ′) |)

n
+ 1

)2
. (C18)

Denoting Λ ≔
√
2 (Gmax + |, (� | d, d ′) |) /n for the sake of

simplicity, we obtain

 =

4 ln 2
X
Λ
2

`2

(
1 + 1

Λ

)2

=

4 ln 2
XΛ

2

`2

(
1 + 2

Λ
+ 1

Λ2

)

=

4 ln 2
X
Λ
2

`2
+$

(
ln 1

X
Λ

`2

)
, (C19)

where the third equality follows from the assumption that
Λ ≫ 1. Finally, relabelling 3X to X for the sake of simplicity,
we conclude that

 =

8 ln
(
6
X

)

n2

(
Gmax + |, (� | d, d ′) |

Tr[dd ′]

)2

+ $
(
ln 1

X

n

Gmax + |, (� | d, d ′) |
(Tr[dd ′])2

)
(C20)

runs of Protocol 1 are enough to ensure that the estimation of
weak value, (� | d, d ′) has an additive error at most n with
a probability at least 1 − X . Hence the proof.

Appendix D: Proof of Theorem 3

Here we present the proof of Theorem 3. The proof con-
sists of a few lemmas, which are of independent interest as
they clarify the mathematical details of the matrix represen-
tation of two-time states.

Lemma 4. Let _ : Lin(H) → C be a two-time vector, written
as _(�) = Tr[! �] for a suitable matrix ! ∈ Lin(H). Then,
one has

_†(�) = Tr[!†�] ∀� ∈ Lin(H) (D1)

and

�_ (�) = Tr
[ (
! ⊗ !†

)
�
]

∀� ∈ Lin(H ⊗ H) . (D2)

Proof. By definition, _†(�) = _(�†) = Tr[!�†] =

Tr[!†�], whence Eq. (D1). Now, one has

�_ (� ⊗ �) = Tr
[
! �

]
Tr

[
!† �

]

= Tr
[ (
! ⊗ !†

) (
� ⊗ �

) ]
∀�, � ∈ Lin(H) .

(D3)

Since the product matrices � ⊗ � are a spanning set for
Lin(H ⊗ H), Eq. (D2) follows. �

Lemma 5. The set of unnormalized two-time density matrices
consists of functionals l of the form l (�) = Tr[$�], where

$ =

∑

=

!= ⊗ !†= , (D4)

and (!=)= ⊂ Lin(H) are arbitrary matrices.

Proof. Immediate from Eqs. (33) and (D2). �

Lemma 6. For every bipartite vector |Ψ〉 ∈ H ⊗H there exists
a matrix" ∈ Lin(H) such that

SWAP

(
|Ψ〉〈Ψ|

))2
= "† ⊗ ". (D5)

Proof. Let us expand |Ψ〉 as |Ψ〉 = ∑
8 |U8〉⊗|V8〉 for suitable

vectors (|U8〉)8 ⊂ H and (|V8〉)8 ⊂ H . Then, we have

SWAP (|Ψ〉〈Ψ|))2 =
∑

8, 9

SWAP
(
|U8〉〈U 9 | ⊗ |V8〉〈V 9 |

))2

=

∑

8, 9

SWAP |U8〉〈U 9 | ⊗ |V 9 〉〈V8 |

=

∑

8, 9

|V 9 〉〈U 9 | ⊗ |U8〉〈V8 |

= "† ⊗ " , (D6)

with " :=
∑
8 |U8〉〈V8 |. �

Lemma 7. A matrix $ ∈ Lin(H ⊗ H) is of the form (D4) if
and only if it is of the form (35).

Proof. Suppose that $ is of the form (D4). Let |Ψ〉 =∑
8 |U8〉 ⊗ |V8 〉 be an arbitrary vector inH ⊗H . Then, one has

〈Ψ| ($ SWAP))2 |Ψ〉 = Tr
[
($ SWAP))2 |Ψ〉〈Ψ|

]

= Tr
[
$ SWAP (|Ψ〉〈Ψ|))2

]

= Tr
[
$ ("† ⊗ ")

]

=

∑

=

Tr
[
(!= ⊗ !†=) ("† ⊗ ")

]

=

∑

=

��Tr[!†="]
��2 ≥ 0 , (D7)

the third equality following from Lemma 6 and the fourth
from Eq. (D4). Since the vector |Ψ〉 is arbitrary, the matrix
% := ($ SWAP))2 is positive semidefinite. Moreover, one has
$ = %)2 SWAP. Hence,$ is of the form (35).

Conversely, suppose that $ has the form (35), namely$ =

%)2 SWAP for some positive matrix % . Decomposing % as % =∑
= |Ψ=〉〈Ψ= |, we obtain

%)2 SWAP = SWAPSWAP %)2 SWAP

=

∑

=

SWAP

(
SWAP |Ψ=〉〈Ψ= |)2

)
SWAP

=

∑

=

SWAP

(
"†
= ⊗ "=

)
SWAP

=

∑

=

"= ⊗ "†
= (D8)
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where the third equality follows from Lemma 6. Hence,
%)2 SWAP is of the form (D4) with != := "= . �

Proof of Theorem 3. By Lemma 5, the functional l de-

fined by l (�) = Tr[$�] is a two-time state if and only if
$ =

∑
= != ⊗ !†= . Then, Lemma 7 guarantees that there ex-

ists a positive semidefinite matrix % ∈ Lin(H ⊗H) such that
$ = %)2SWAP if and only if$ =

∑
= !=⊗!†= . Hence the proof.


