
ar
X

iv
:2

50
5.

20
20

8v
1 

 [
qu

an
t-

ph
] 

 2
6 

M
ay

 2
02

5

Estimation of multivariate traces of states given partial classical information

Kyrylo Simonov,1, ∗ Rafael Wagner,2, 3, 4, 5, † and Ernesto Galvão2, 6, ‡

1Fakultät für Mathematik, Universität Wien, Vienna, Austria
2INL – International Iberian Nanotechnology Laboratory, Braga, Portugal

3Centro de Física, Universidade do Minho, Braga, Portugal
4Department of Physics “E. Fermi”, University of Pisa, Pisa, Italy
5Institut für Theoretische Physik, Universität Ulm, Ulm, Germany

6Instituto de Física, Universidade Federal Fluminense, Niterói—RJ, Brazil
(Dated: May 27, 2025)

Bargmann invariants of order n, defined as multivariate traces of quantum states Tr[ρ1ρ2 . . . ρn],
are useful in applications ranging from quantum metrology to certification of nonclassicality. A
standard quantum circuit used to estimate Bargmann invariants is the cycle test. In this work,
we propose generalizations of the cycle test applicable to a situation where n systems are given
and unknown, and classical information on m systems (m ≤ n) is available, allowing estimation of
invariants of order n + m. Our main result is a generalization of results on 4th order invariants
appearing in ‘double’ weak values from Chiribella et al. [Phys. Rev. Research 6, 043043 (2024)].
The use of classical information on some of the states enables circuits on fewer qubits and with
fewer gates, decreasing the experimental requirements for their estimation, and enabling multiple
applications we briefly review.

I. INTRODUCTION

Bargmann invariants [1–6] are multivariate traces of
quantum states. These are defined as

∆n(ϱϱϱ) = Tr[ρ1ρ2 . . . ρn], (1)

where n is defined to be the order of the invariant and ϱϱϱ ≡
(ρ1, . . . , ρn) ∈ D(H)n is a tuple of quantum states, where
D(H) denotes the set of density matrices associated to
the Hilbert space H. The values ∆n(ϱϱϱ) are invariant
under the transformation

(ρ1, ρ2, . . . , ρn) 7→ (Uρ1U
†, Uρ2U

†, . . . , UρnU
†) (2)

for any unitary U : H → H.
The investigation of generic multivariate traces of ma-

trices for understanding quantum mechanical properties
of physical systems goes back to the very beginning of
quantum theory, e.g. in n-point correlation functions for
quantum statistical mechanics [7]. These multivariate
traces of quantum states have multiple applications, mo-
tivating the development of efficient ways for measuring
them. In photonics, their phases [8] are known as col-
lective photonic phases [9, 10], and have been measured
for invariants of up to fourth order [11–14]. They are es-
sential for the complete characterization of multiphoton
indistinguishability [15, 16], as required by linear-optical
photonic quantum computation [9, 17].

Already the simplest Bargmann invariants have their
utility. Second order invariants Tr[ρ1ρ2], also known
as two-state overlaps, have been shown to provide suf-
ficient information for witnessing various nonclassical
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resources of quantum states such as quantum coher-
ence [18–21], nonstabilizerness [22, 23], preparation con-
textuality [21, 24], Kochen–Specker contextuality [20], in-
distinguishability [19, 25, 26], and Hilbert space dimen-
sion [19, 24]. Two-state overlaps can be semi-device in-
dependently self-tested [27] and be used for certifying
properties of distributed quantum computers [28], sym-
metry of quantum channels [29], and for performing ef-
ficient fidelity-based certification of almost all quantum
states [30].

There are various applications requiring Bargmann in-
variants of order n > 2. Third-order invariants de-
scribe weak values [31–33] and standard Kirkwood–Dirac
(KD) quasiprobability representations [34–39]. Some
experimentally relevant situations actually require the
estimation of invariants of order n > 3. For exam-
ple, consider four pure states {|ϕ1⟩⟨ϕi|}4i=1 such that
⟨ϕ1|ϕ3⟩ = ⟨ϕ2|ϕ4⟩ = 0. In such a case, all third-
order invariants ∆3(ϕi, ϕj , ϕk) are equal to zero yet the
fourth-order invariant may be non-null. This implies
that this invariant is not a function of the other third-
order invariants. Moreover, as pointed out in Ref. [17],
in general when states are not pure one must estimate
multivariate traces of states of large orders in order to
completely characterize the relational information classes
(i.e., completely solve the unitary invariance problem).
Other situations where one must estimate higher-order
invariants of (in general) mixed quantum states are for
spectrum estimation {Tr[ρk]}k [35, 40–45], entanglement
spectroscopy [46], quantifying entanglement and non-
stabilizerness [47, 48], characterizing topological order,
quantum phase transitions and emergent irreversibil-
ity [49, 50], performing quantum error mitigation [51, 52],
Gibbs state preparation [53], and virtual cooling [54].
Measurements of 5th-order invariants Tr[ρ1ρ2ρ3ρ4ρ5] en-
able the characterization of the degree of incompatibility
between observables [55], and of information scrambling
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and quantum chaos via out-of-time-ordered correlators
(OTOCs) [35, 56–58]. Invariants of even higher order
appear in the description of sequential weak measure-
ments [59] and of the Pancharatnam phase [60, 61] ac-
quired after a sequence of projective measurements [62–
64]. It is well known that the Pancharatnam phase
is connected to geometric phases, also known as Berry
phases [2–6, 65–67].

Having clarified the many applications provided by
estimating n-th order Bargmann invariants for which
n ≥ 3, we note that state of the art quantum circuits
aimed at measuring ∆n(ϱϱϱ) require the application of at
least n Fredkin gates on at least n qubits [17, 68]. This
protocol for estimating Bargmann invariants is known
as the cycle test protocol. A detailed comparison be-
tween estimating ∆n(ϱϱϱ) using the cycle test and other
approaches can be found in Ref. [35]. The current im-
plementations of the cycle test quantum circuits assume
no prior information of the tuple ϱϱϱ. The states in ϱϱϱ
can be unknown inputs, and the estimation works even
when no prior classical description—e.g. their complete
tomographic information, or a classical description of a
state preparation circuit—is available. In other words,
the quantum circuits from Refs. [17, 68] work even if the
input states are provided by another party. This raises
the question: How can prior classical information im-
prove the estimation of invariants using the cycle test?

Recently, Chiribella et al. [69] showed, using a varia-
tion of the swap test, that it is possible to estimate the
quantity Tr[ρ1Aρ2B], where A and B are two known ob-
servables. This implies that choosing A and B to be
related to quantum states the same circuits can estimate
fourth order invariants. This significantly simplifies tests
of such higher-order Bargmann invariants provided that
one has the ability to perform some degree of classical
postprocessing on the observed data, and provided clas-
sical information on a subset of the quantum states is
available.

In this work, we advance the results of Ref. [69]. We
demonstrate how their circuits can be straightforwardly
generalized to estimate Bargmann invariants (1) of any
order by replacing the swap test with its generalized ver-
sion, the cycle test [17]. We refer to our scheme as a
measurement-enhanced cycle test, and therefore to the
scheme from Ref. [69] as a measurement-enhanced swap
test. Our results reveal intriguing trade-offs between
the ability to estimate higher-order Bargmann invariants,
the quantum memory required, the need for controlled
unitaries (such as Fredkin gates), and the availability
of prior classical information about observables. Using
our scheme, it is possible to act unitarily on n′ systems
to estimate Bargmann invariants of order n = n′ + m
(m ≤ n′), provided that we have a classical description
of the m quantum states in order to implement the mea-
surements Ak = {ρk,1 − ρk} for each state ρk whose
classical description is given, as illustrated in Fig. 1.

The results of Chiribella et al. [69] demonstrate that
the swap test can be employed to estimate Tr[ρ1Aρ2B].

Figure 1. Main result. Quantum circuits for estimating
multivariate traces—expressed as ∆n(ϱϱϱ) = Tr[ρ1 . . . ρn] =
Tr[CYCn(ρ1 ⊗ . . .⊗ ρn)] where CYCn is a unitary—such as the
cycle test [17] typically assume that all input states are ei-
ther fully unknown (e.g., black-box preparations) or need to
be physically prepared on demand. We show that if classi-
cal descriptions of m ≤ ⌊n/2⌋ of these states are available,
one can trade the cost of preparing those m states for the
cost of measurement and classical post-processing. This sub-
stitution relaxes the circuit requirements for estimating such
invariants. The figure shows the case of n = 5 and m = 2.

Motivated by this, a natural question is whether varia-
tions of the destructive swap test [70]—without auxiliary
qubits or Fredkin gates—can also be a useful alterna-
tive to estimate such multivariate traces in some regimes.
Here, we focus on the simplest case of third-order invari-
ants for single-qubit states. We show that it is possible to
estimate third-order invariants using circuit variations of
a destructive swap test. Nevertheless, we argue that this
approach is impractical. While we present a scheme for
estimating these invariants given classical state informa-
tion of one of the three states, the excessive number of re-
quired measurements and post-processing renders it use-
less compared to standard methods or simply performing
state tomography.

Although measurement-enhanced versions of destruc-
tive tests may not be useful, we are motivated by the
goal of estimating invariants destructively. We therefore
discuss how to implement destructive cycle tests, which
avoid the need for auxiliary qubits to estimate Bargmann
invariants, and present a quantum circuit implementa-
tion of a destructive 3-cycle test for estimating any third-
order Bargmann invariant.

Outline. The remainder of this work is structured as
follows. Sec. II presents background on standard tests
for estimating Bargmann invariants. It begins with well
known schemes for estimating second-order invariants in
Sec. II A, followed by higher-order invariants in Sec. II B.
Section II C presents the results by Chiribella et al. [69],
which we later generalize in Sec. III. We dub our gen-
eralized protocol the measurement-enhanced cycle test,
encompassing the standard cycle test scheme, the swap
test scheme, and the protocol from Ref. [69] as as spe-
cific instances. Section IV investigates if improvements
are possible by considering variations of the so-called de-
structive swap test. In that section we show how to use
the destructive swap test to estimate third-order invari-
ants, describe how to implement destructive cycle tests,
and present a quantum circuit for estimating third-order
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invariants. Finally, Sec. V concludes with a discussion of
our results, applications, and future directions.

II. BACKGROUND

A. Quantum circuits for measuring two-state
overlaps

Starting with quantum circuits used to estimate
Tr[ρσ], we first review the swap test [71, 72]. Let us
denote by SWAP : H⊗H → H⊗H the swap unitary op-
eration such that SWAP(|u⟩ ⊗ |v⟩) = |v⟩ ⊗ |u⟩, for every
|u⟩ , |v⟩ ∈ H. Given a basis {|i⟩}i for H we can write the
swap unitary as

SWAP =
∑
i,j

|i⟩⟨j| ⊗ |j⟩⟨i|,

from which it is elementary to show that for general den-
sity matrices ρ1, ρ2 ∈ D(H) it holds that

Tr[ρ1ρ2] = Tr[SWAP(ρ1 ⊗ ρ2)]. (3)

It is then possible to use this relation to propose a quan-
tum circuit for estimating the two-state overlap, known
as the swap test [72]. This test performs an Hadamard
test [73] where the unitary U = SWAP. When necessary,
to specify that we swap systems Ha and Hb, we will also
write SWAPa,b. The swap test was recently re-discovered
by employing machine learning techniques [74, 75] and
is illustrated in Fig. 2. For a generalization of this test
to multi-qudit systems H = (Cd)⊗n or to infinite dimen-
sional systems, we refer the reader to Refs. [76–78].

As can be seen in Fig. 2, to estimate the two-state
overlap using the swap test we perform measurements
in the auxiliary qubit, leaving the other systems unmea-
sured. Therefore, the product state ρ1 ⊗ ρ2 is then pro-
jected onto another quantum state without being de-
stroyed in the process. Contrastingly, the destructive
swap test [18, 29, 70] requires no auxiliary qubit, and
uses the fact that the swap operator can be expended in
the Bell basis. Therefore, the destructive swap test es-
timates Tr[ρ1ρ2] by making a Bell measurement on the
bipartite system. The quantum circuit implementation
is shown in Fig. 3.

For both tests shown in Figs. 2 and 3 we can imagine
that a form of delegated quantum computation is hap-
pening, where we do not have complete information of
the quantum states that are sent to us by another party.
We can perform the quantum computation for this party
and return to them the value Tr[ρ1ρ2] we infer without
ever knowing the actual states they prepared.

|+⟩ H

ρ1

ρ2

Figure 2. Circuit implementing a swap test. The inputs
are two quantum states and an auxiliary qubit system (also
known as a control system) that is put in a coherent state
|+⟩⟨+|⊗ρ1 ⊗ρ2. A controlled swap (also known as a Fredkin
gate) between the auxiliary qubit and the two states is per-
formed. an Hadamard gate is applied to the auxiliary qubit
that is then measured in the Z basis {|0⟩, |1⟩}. The two-state
overlap is recovered via the relation p(0) = (1 + Tr[ρ1ρ2])/2.

ρ1 H

ρ2

Figure 3. Circuit implementing a destructive swap
test. The input state is ρ1 ⊗ ρ2. One then performs a Bell
measurement, which is implemented by a CNOT followed by
an Hadamard on the first system, and local Z measurements.
Assuming each system is a single qubit, the two-state overlap
is recovered via the relation p(1, 1) = (1− Tr[ρ1ρ2])/2. For
generic multi-qubit systems see Ref. [29].

B. Quantum circuits for measuring Bargmann
invariants

It is possible to generalize the argument made for the
swap test in order to estimate higher-order Bargmann in-
variants with different implementations of an Hadamard
test. We follow Refs. [17, 68]. We start noticing that,
for every n-tuple of quantum states ϱϱϱ ∈ D(H)n, we can
write (1) as

∆n(ϱϱϱ) = Tr[CYCn(ρ1 ⊗ ρ2 ⊗ . . .⊗ ρn)], (4)

where CYCn is a unitary associated to the action of a
cyclic permutation of n elements

(a1, a2, a3 . . . , an−1, an)
Cn7→ (a2, a3, . . . , an−1, an, a1).

(5)
When n = 2 we have that CYC2 ≡ SWAP, and we recover
Eq. (3). For n ≥ 3, we know that ∆n(ϱϱϱ) ∈ C [64]. We can
estimate ∆n(ϱ) using an Hadamard test for which U =
CYCn. This type of test is known as the cycle test [17].

Different instances of the cycle test [17] consider dif-
ferent decompositions of CYCn into different elementary
gates. A possible choice is via the sequence of swap uni-
taries,

CYCn = SWAPn−1,n . . . SWAP2,3SWAP1,2. (6)
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Figure 4. Circuit implementing a cycle test. We show
an instance of an Hadamard test, where the unitary CYCn is
the unitary representation of a cyclic permutation Cn of n
symbols. We initialize a quantum memory of n+1 systems in
a product state. The first wire in the circuit represents a sin-
gle qubit system. The remaining wires represent systems of
dimension d ≥ 2. After the controlled cycle operation a gate
P s = diag(1, is) is applied to the auxiliary qubit, later mea-
sured with the computational basis. When s = 0, measuring
the auxiliary qubit yields the real part of the Bargmann in-
variant, while when s = 1 the imaginary part.

This leads to the circuit implementation of the cycle test
shown in Fig. 4. Note that when n = 2 this reduces to
the swap test from Fig. 4.

Depending on how the n-cycle unitary operator CYCn
is decomposed into SWAPs (or other unitary gates), each
such decomposition yields a different quantum circuit ca-
pable of estimating Bargmann invariants. One way of im-
proving the depth of the quantum circuit just described
is by using entangled states as auxiliary systems, instead
of a single-qubit control system as in Fig. 4. We refer to
Refs. [17, 68] for details.

So far, all the quantum circuits considered for estimat-
ing Bargmann invariants allow for the possibility that all
the quantum states in ϱϱϱ are provided by another party.
In this way, it is natural that the circuits to estimate
Bargmann invariants of n unknown quantum states re-
quires n systems to be available as a quantum memory
to be used in the quantum computation.

However, as recently shown in Ref. [69], it is possible
to estimate third and fourth-order Bargmann invariants
using just the swap test circuit from Fig. 2. They do not
explicitly consider this specific use as they focus on the
estimation of weak values [31, 33, 79]. Yet, it is trivial to
see that their protocol can be used for this purpose. In-
triguingly, this allows one to use a quantum circuit with
two systems (and an additional single qubit auxiliary sys-
tem) to estimate Bargmann invariants of order up to four.
This gain is not only in the accessible memory, but also
in the number of necessary Fredkin gates required as a
standard cycle test to estimate a fourth-order invariant
would need three Fredkin gates. The key insight here is
that these circuits require classical information on two of
the four states. In what follows, we briefly review the
results from Ref. [69].

R

A

B

|+⟩

ρ1

ρ2

Figure 5. Quantum circuit considered by Chiri-
bella et al. [69]. The input state is |+⟩⟨+| ⊗ ρ1 ⊗ ρ2. The
first wire represents a single qubit system, while the remain-
ing wires represent generic single qudit systems. We apply a
Fredkin gate between all three systems and perform local mea-
surements. The auxiliary qubit is measured with the positive
operator-valued measure (POVM) R from Eq. (7). The other
systems are measured with generic POVMs A and B. We dub
this a measurement-enhanced swap test since the measure-
ments of A, B allow for the estimation of Tr[ρ1Aρ2B], oth-
erwise inaccessible to the standard swap test—hence the ‘en-
hancement’ in the order of the accessible multivariate trace.

C. The measurement protocol by Chiribella et al.

The relevant quantum circuit is shown in Fig. 5.
From it, Ref. [69] shows how to estimate Tr[ρ1Aρ2B],
where A and B are positive operator-valued measures
(POVMs) [80]. Suppose we have access to a tripartite
system HC ⊗ HS1 ⊗ HS2 ≡ C2 ⊗ H ⊗ H, where H is
an arbitrary finite dimensional Hilbert space. The sys-
tem HC = C2 is our control (or auxiliary) qubit. The
algorithm proceeds as follows:

1. Prepare a tripartite product state |+⟩⟨+|⊗ρ1⊗ρ2,
where |+⟩ = 1/

√
2(|0⟩ + |1⟩) ∈ C2, while ρ1, ρ2 ∈

D(H) are generic.

2. Apply the controlled SWAP gate, that we denote as
cSWAP [81].

3. Measure system HS1
with a POVM A = {Pj}j .

4. Measure system HS2 with a POVM B = {Qk}k.

5. Measure the auxiliary qubit system HC with a
POVM {Rc}3c=0 given by

R0 =
1

2
|+⟩⟨+|, R1 =

1

2
|−⟩⟨−|,

R2 =
1

2
|+i⟩⟨+i|, R3 =

1

2
|−i⟩⟨−i|, (7)

where |±⟩ = 1/
√
2(|0⟩ ± |1⟩) and |±i⟩ = 1/

√
2(|0⟩ ±

i|1⟩).

From this protocol, one obtains the following joint dis-
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Figure 6. Circuit implementing a measurement-
enhanced cycle test. The number of unknown d-
dimensional quantum states is n′ and the number of known
states is m ≤ n′. The order of the estimated multivariate
trace is n = n′ + m. Up to the measurements, the circuit
is the same as the one we show in Fig. 4. We perform the
POVM measurement R on the auxiliary qubit (see Eq. (7))
and local measurements to m ≤ n′ systems using the POVMs
A1, . . . , Am.

tribution:

p(j, k, c|ρ1, ρ2) =
= Tr[(Pj ⊗Qk ⊗Rc) cSWAP(ρ1 ⊗ ρ2 ⊗ |+⟩⟨+|)cSWAP†].

As shown by Ref. [69], sampling from this distribution
allows us to learn the real and imaginary part of the
complex values

q(j, k|ρ1, ρ2) := Tr[Pjρ1Qkρ2].

To see this, let us consider for simplicity the case where
B = 1. In this case, the joint distribution simplifies to

p(j, c|ρ1, ρ2) =
1

8

(
Tr[Pjρ1] + Tr[Pjρ2]

+ 2θ(1− c)(−1)cRe[Tr[Pjρ1ρ2]]

− 2θ(c− 2)(−1)cIm[Tr[Pjρ1ρ2]]
)
, (8)

where θ(t) is the Heaviside step function [69, Eq.(10),
Appendix A] and c ∈ {0, 1, 2, 3}. We will generalize these
results later in Sec. III.

Note that in this case estimating this quantity has dif-
ferent demands in terms of prior knowledge of its con-
stituents. While the quantum states ρ1, ρ2 ∈ D(H) can
be completely unknown by who implements the quan-
tum circuit, the operators Pj , Qk must be known. We
shall refer to this quantum algorithm as a measurement-
enhanced swap test, as it allows us to estimate more than
just two-state overlaps (hence the ‘enhancement’) given
that we can perform the measurements A, B. Specifi-
cally, we can see that if A = {ρ3,1 − ρ3} and B = 1

we have that the resulting construction shown above for
p(j, c|ρ1, ρ2) becomes

p(ρ3, 0) =
1

8

(
Tr[ρ1ρ3] + Tr[ρ2ρ3] + 2Re[Tr[ρ1ρ2ρ3]]

)
,

where we have let Pj ≡ ρ3, c = 0, and p(ρ3, 0) ≡
p(ρ3, 0|ρ1, ρ2). Hence we conclude that we can learn from
this estimation the real part of the third-order Bargmann
invariant. Letting c > 2 allows us to infer the imaginary
part of the third-order invariant. In what follows, we will
generalize the protocol introduced by Ref. [69], and then
discuss how one can use it to measure multivariate traces
of states.

III. MEASUREMENT-ENHANCED
CYCLE TEST

Fix n ∈ N to be any integer greater than or equal to 2.
Our goal is to estimate a Bargmann invariant Tr[ρ1 . . . ρn]
of order n. The number of unknown d-dimensional quan-
tum states entering the quantum circuit is n′ ≤ n, and
we denote them as the tuple ϱϱϱ = (ρ1, . . . , ρn′), while
the number of quantum states for which we have clas-
sical tomographic information is 0 ≤ m ≤ n′ such
that n′ + m = n, and we denote this as the tuple
ϱ̃ϱϱ = (ρ̃1, . . . , ρ̃m). As we have done previously, we will
next introduce how to estimate multivariate traces of
states and observables using a generalization of the pro-
tocol introduced by Chiribella et al. and then show how
the estimation of Bargmann invariants is a particular in-
stance. In what follows, the d-dimensional quantum sys-
tems have any finite dimension, and only the auxiliary
system is taken to be a single-qubit system.

We start by considering a generalization of the quan-
tum circuit from Fig. 5. Instead of the cSWAP considered
in Fig. 5 we let the controlled unitary to be cCYCn, i.e.
a controlled operation of the unitary CYCn. We show
one possible implementation of such controlled unitary
in Fig. 4. Letting ϱ := ρ1 ⊗ ρ2 ⊗ . . .⊗ ρn′ to be the input
system on our circuit, the first operation performed is as
follows

|+⟩⟨+| ⊗ ϱ 7−→ cCYCn′(|+⟩⟨+| ⊗ ϱ)cCYC†n′ , (9)

where

cCYCn′ = |0⟩⟨0|⊗1+|1⟩⟨1|⊗SWAPn′,n′−1 . . . SWAP12. (10)

This leaves the entire system in the state

1

2
|0⟩⟨0| ⊗ ϱ+

1

2
|1⟩⟨1| ⊗ CYCn′(ϱ)+

+
1

2

(
|0⟩⟨1| ⊗

∑
a

pa|a2⟩⟨a1| ⊗ . . .⊗ |a1⟩⟨an′ |+ h. c.
)
,

where a = (a1, a2, . . . , an′) is a multi-index label which
we use as

∑
a ≡ ∑

a1,a2,...,an′ . Moreover pa =
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p1a1
p2a2

. . . pn
′

an′ is the product statistics, and we have
written each state ρi in terms of some—not necessar-
ily known—convex combination of pure quantum states
ρi =

∑
ai
piai

|ai⟩⟨ai|. We have also used

CYCn′(|a1, a2, . . . , an′⟩) = |a2, . . . , an′ , a1⟩.

If we stop here, measuring the auxiliary qubit in the X

(Y ) basis performs the cycle test operation for estimat-
ing the real (imaginary) part of a n′-th order Bargmann
invariants [17, 35]. Now let us assume that not only
the control qubit is measured on the X basis, but also
the first m ≤ n′ systems, for some fixed value m, are
measured with respect to POVMs A1 = {Pj1}j1 , . . .,
Am = {Pjm}jm . This yields a joint probability distri-
bution

p(j1, . . . , jm,±) =
1

4

( m∏
i=1

Tr[Pjiρi] +

m∏
i=1

Tr[Pjiρi+1]±
∑
a

pa⟨a2|Pj1 |a1⟩⟨a3|Pj2 |a2⟩ . . . ⟨am+1|Pjm |am⟩ ×

× ⟨am+2|am+1⟩ . . . ⟨an′ |an′−1⟩⟨a1|an′⟩ ± c. c.
)

=
1

4

( m∏
i=1

Tr[Pjiρi] +

m∏
i=1

Tr[Pjiρi+1]±
∑
a

pa⟨a1|an′⟩⟨an′ |an′−1⟩ . . . ⟨am+2|am+1⟩ ×

× ⟨am+1|Pjm |am⟩ . . . ⟨a3|Pj2 |a2⟩⟨a2|Pj1 |a1⟩ ± c. c.
)

=
1

4

( m∏
i=1

Tr[Pjiρi] +

m∏
i=1

Tr[Pjiρi+1]± 2Re[Tr(ρn′ . . . ρm+2ρm+1PjmρmPjm−1ρm−1 . . . Pj2ρ2Pj1ρ1)]
)
.

To simplify the notation we write j = (j1, j2, . . . , jm),
and we also denote

□n′+m(j, ϱϱϱ) := Tr(ρn′ . . . ρm+1Pjmρm . . . Pj1ρ1). (11)

Note that the above is not a Bargmann invariant, since
each Pjm is not necessarily a quantum state, but a generic
POVM element (hence the different notation of using □
instead of ∆) [82].

Instead of performing an X measurement of the aux-
iliary qubit, we can perform random measurements with
respect to both X and Y bases on the auxiliary (control)
qubit, using the four outcome POVM R from Eq. (7). In
this case, the joint probability distribution becomes:

p(j, c) =
1

8

( m∏
i=1

Tr[Pjiρi] +

m∏
i=1

Tr[Pjiρi+1]

+ 2θ(1− c)(−1)cRe [□n′+m(j, ϱϱϱ)]

− 2θ(c− 2)(−1)cIm [□n′+m(j, ϱϱϱ)]
)
,

where we have used θ(t) to denote the Heaviside step
function, and c ∈ {0, 1, 2, 3} denotes the outcomes from
the POVM measurement R = {Rc}c of the auxiliary
qubit. The above generalizes the construction considered
in Ref. [69], that was reviewed in Sec. II C. Specifically,
we recover Eq. (8) by making m = 1 and j1 ≡ j.

If we have m observables Am with the corresponding
POVM decompositions

Am =
∑
j

xjmPjm , (12)

we can define a random variable X̃ that takes values

x̃j1,...,jm,c := 2xj1 . . . xjm (−1)c
[
θ(1− c)− iθ(c− 2)

]
(13)

with respect to the probability distribution p(j, c). Note
that the values xji are given by Eq. (12). The expectation
value of X̃ returns the value of □n′+m(j, ϱϱϱ) since

E[X̃] =

=
∑

j1,...,jm,c

2

m∏
i=1

xji (−1)c
[
θ(1− c)− iθ(c− 2)

]
p(j, c)

(14)

=
∑

j1,...,jm

xj1 . . . xjm

(
Re[□n(j, ϱϱϱ)] + iIm[□n(j, ϱϱϱ)]

)
(15)

=
∑

j1,...,jm

xj1 . . . xjm□n(j, ϱϱϱ). (16)

Above, we have used that n = n′ +m. The terms hav-
ing products of traces Tr[Pjiρi] cancel out going from
Eq. (14) to Eq. (15) due to the sum in c, since we get a
sum of contributions (−1)0+(−1)1+ i((−1)2+(−1)3) =
1 − 1 + i − i = 0. This means that Eq. (16) guarantees
we can estimate a quantity □n′+m(j, ϱϱϱ) given by Eq. (11)
by sampling from the distribution generated by perform-
ing controlled SWAPs on n′ systems and measuring ob-
servables {Ai}mi=1 on m ≤ n′ of these systems. We re-
mark that (see for instance Refs. [35, 68, 69]) estimating
such traces is exponentially better (in sample complex-
ity) than performing quantum state tomography of all
unknown quantum states n′.
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We now conclude by applying our test to the estima-
tion of Bargmann invariants. We do so by restricting
the POVMs to be such that Ai = {ρ̃i,1 − ρ̃i}. In this
case, selecting the specific case where the labels satisfy
(Pj1 , . . . , Pjm) = (ρ̃1, . . . , ρ̃m) ≡ ϱ̃ϱϱ we end up with

∆n′+m(ϱ̃ϱϱ,ϱϱϱ) = Tr[ρn′ . . . ρm+2ρm+1ρ̃mρm . . . ρ̃1ρ1]. (17)

This means that any n-th order Bargmann invariant can
be estimated by using a cyclic shift on n′ ≤ n quantum
states (hence, n′ − 1 controlled SWAPs) and measure-
ments on m ≤ n′ systems where n = n′ +m. Alterna-
tively, at least ⌈n/2⌉ systems and one auxiliary qubit, and
hence ⌈n/2⌉−1 controlled SWAPs, are necessary to esti-
mate n-th order Bargmann invariants using our sampling
protocol and the decomposition of CYCn as by Eq. (6).
Hence, the sampling protocol requires only half of sys-
tems and controlled SWAPs compared with the original
cycle test protocol of Refs. [17, 35].

IV. DESTRUCTIVE TESTS FOR ESTIMATING
BARGMANN INVARIANTS

So far, we have considered the situation where we have
generalized the cycle test to include classical information
of observables and investigated how this allows us to ac-
cess information of higher order multivariate traces. It is
natural to ask whether the destructive swap test can also
be generalized to estimate invariants (1) of order larger
than n = 2, provided we have access to prior classical
tomographic information of some of the states.

While in the last section the states in ρρρ where taken to
be generic quantum states on a finite-dimensional Hilbert
space, i.e. ρρρ ∈ D(Cd)n, in this section we restrict to the
case where d = 2, i.e., every state in the tuple is a single-
qubit quantum state.

We start by discussing how a third-order Bargmann
invariant can be estimated under certain assumptions on
prior knowledge on the corresponding states using in-
stances of a deterministic swap test. First, we notice that
every third-order Bargmann invariant is quantum realiz-
able by single qubit pure quantum states [64]. Therefore,
without loss of generality, we consider |ψ1⟩, |ψ2⟩, |ψ̃3⟩ ∈
C2 to be pure single-qubit states, where |ψ1⟩ and |ψ2⟩ are
not necessarily known. The corresponding third-order
Bargmann invariant is given by:

∆3(ψ1, ψ2, ψ̃3) = ⟨ψ1|ψ2⟩⟨ψ2|ψ̃3⟩⟨ψ̃3|ψ1⟩, (18)

where we use the notation ψi := |ψi⟩⟨ψi| for pure states
in the argument of Bargmann invariants.

On the other hand, taking into account the unitary-
invariance of Bargmann invariants [18], for any triplet
|ψ1⟩, |ψ2⟩, |ψ̃3⟩ ∈ C2 we can always find some unitary U

such that U |ψ̃3⟩ = |0⟩ using the available tomographic

X/Y/Z

Z

|ψ1⟩ U H

|ψ2⟩ U

Figure 7. Circuit implementing a modified destructive
swap test for the estimation of third order Bargmann
invariants. The input state is |ψ1⟩ ⊗ |ψ2⟩. One then applies
a unitary operator U defined as U |ψ̃3⟩ = |0⟩, followed by
a combination of CNOT and Hadamard gates similarly to
destructive swap test. Finally, the second qubit undergoes a
Z measurement, while the first qubit is measured in X-, Y -,
or Z-basis. Assuming each system is a single qubit, the third
order Bargmann invariant is given by Eq. (25).

classical information of |ψ̃3⟩. In this case,

∆3(ψ1, ψ2, ψ̃3) = ⟨ψ1|U†U |ψ2⟩⟨ψ2|U†|0⟩⟨0|U |ψ1⟩
:= ⟨ψU |ϕU ⟩⟨ϕU |0⟩⟨0|ψU ⟩
= ∆3(ψU , ϕU , 0),

where |ψU ⟩ = U |ψ1⟩, and |ϕU ⟩ = U |ψ2⟩. Therefore, given
access to tomographic classical information of |ψ̃3⟩, esti-
mation of a generic Bargmann invariant (18) is equivalent
to estimation of Bargmann invariant on the triplet U |ψ1⟩,
U |ψ2⟩, and |0⟩.

Notice that the projector |0⟩⟨0| can be decomposed
into operators 1

2 (1±Z), where Z is the Z-Pauli operator.
Therefore, we can write

∆3(ψ1, ψ2, ψ̃3) =
1

2

(
∆2(ψU , ϕU ) + χ(ψU , ϕU )

)
,

where χ(ψU , ϕU ) := ⟨ψU |ϕU ⟩⟨ϕU |Z|ψU ⟩. Since
∆2(ψU , ϕU ) can be estimated via the destructive swap
test discussed in Sec. II A, the core challenge lies in es-
timation of χ(ψU , ϕU ). This can be achieved using the
quantum circuit shown in Fig. 3, where, in contrast to
estimation of second order Bargmann invariant, only the
second qubit is measured in computational basis, while
the first qubit is measured in X- and Y -basis in order to
obtain its real and imaginary parts, respectively. In or-
der to proof this, we take into account that, decomposing
the states as | ψU ⟩ = a|0⟩+ a′|1⟩ and |ϕU ⟩ = b|0⟩+ b′|1⟩,
with |a|2 + |a′|2 = 1 and |b|2 + |b′|2 = 1, we can write

χ(ψU , ϕU ) = |a|2|b|2 − |a′|2|b′|2 + 2iIm[ab∗a′∗b′]. (19)

On the other hand, the circuit in Fig. 3 produces a state

|Ψ⟩ = 1√
2

(
|0⟩
(
(ab+ a′b′)|0⟩+ (ab′ + a′b)|1⟩

)
+ |1⟩

(
(ab− a′b′)|0⟩+ (ab′ − a′b)|1⟩

))
. (20)
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before performance of local measurements. Then, a
straightforward calculation shows that a measurement of
the first qubit in X-basis and the second qubit in com-
putational basis yields the probabilities

p(+, 0) = |a|2|b|2, (21)
p(−, 0) = |a′|2|b′|2, (22)

while measuring the first qubit in the Y -basis provides

p(±i, 1) = |a|2|b′|2 + |a′|2|b|2 ∓ Im[ab∗a′∗b′], (23)

where p(±, 0) and p(±i, 1) are the corresponding prob-
abilities of finding the qubits in states |±⟩ ⊗ |0⟩ and
|±i⟩ ⊗ |1⟩, respectively. Therefore, we conclude that

χ(ψU , ϕU ) = p(+, 0)− p(−, 0)− i
(
p(+i, 1)− p(−i, 1)

)
,

(24)
In turn, measuring both qubits in computational basis re-
covers destructive swap test discussed in Sec. II A. There-
fore, taking into account unitary invariance of Bargmann
invariants, we conclude that the third order Bargmann
invariant can be estimated by

∆3(ψ1, ψ2, ψ̃3) =
1

2

(
1− 2p(1, 1) + p(+, 0)

− p(−, 0)− i
(
p(+i, 1)− p(−i, 1)

))
.

(25)

We observe that a destructive cycle test can be intro-
duced to estimate Bargmann invariants and to explore
potential measurement-enhanced variants. Although the
analysis of the destructive swap test suggests that such
enhancements may offer limited benefit, destructive cy-
cle tests—extending the swap test case from Fig. 3—may
still be of independent interest. Motivated by this, we
now show that, in principle, a generic destructive cycle
test can be described in a conceptually straightforward
manner. Due to Eq. (4), n-th order Bargmann invari-
ants for a tuple of states ϱϱϱ = (ρ1, . . . , ρn) can be seen as
expectation values of the n-cycle unitary operator CYCn
with respect to the state ϱ = ρ1 ⊗ . . .⊗ ρn,

∆n(ρ1, . . . , ρn) = ⟨CYCn⟩ϱ. (26)

Therefore, a destructive cycle test can be constructed
using diagonalization of the unitary operator CYCn with
respect to an entangled basis.

Let us consider the case of qubit states ρ1, . . . , ρn ∈
D(C2) and the corresponding total Hilbert space H =
(C2)⊗n. The former can be spanned by computational
basis states that form a set Sn = {|x⟩}x∈{0,1}n , where x ∈
{0, 1}n is a string of n bits. Then H can be decomposed
into n+ 1 orthogonal subspaces

H =

n⊕
k=0

H(k)
HW, (27)

where H(k)
HW are spanned by sets S(k)

n ⊆ Sn of
(
n
k

)
states

|xk⟩ corresponding to bit strings xk of fixed Hamming
weight k, i.e., bit strings with k 1’s. For example, for
n = 3, this decomposition is given by

S(0)
3 = {|000⟩},

S(1)
3 = {|001⟩, |010⟩, |100⟩},

S(2)
3 = {|110⟩, |101⟩, |011⟩},

S(3)
3 = {|111⟩}.

The operator CYCn preserves the Hamming weight of
computational basis states, hence, it acts invariantly on
each subset S(k)

n and corresponding subspace of decom-
position in Eq. (27), so that CYCn(H(k)

HW) ⊆ H(k)
HW. More-

over, each subset S(k)
n can be further decomposed into

ck cyclic orbits {O(k,m)
n }ckm=0 with respect to the action

of CYCn. These are equivalence classes Sn/ ∼cyc under
an equivalence relation which, for any |x1⟩, |x2⟩ ∈ Sn, is
defined as follows:

|x1⟩ ∼cyc |x2⟩ ⇔ ∃j ∈ {0, . . . , n− 1}, |x1⟩ = CYCjn, |x2⟩.

Therefore, each cyclic orbit can be defined as

O(k,m)
n = [|x⟩]∼cyc =

{
CYCjn|x⟩

}r(k,m)
n −1

j=0
, (28)

where r(k,m)
n is the size of the cyclic orbit O(k,m)

n , i.e.,
the minimal period such that CYCr

(k,m)
n

n |x⟩ = |x⟩. There-
fore, each H(k)

HW can be further decomposed into r(k,m)
n -

dimensional invariant subspaces spanned by the corre-
sponding cyclic orbits.

For the sake of illustration, while in the case n =

3 the cyclic orbits O(k,m)
n coincide with entire sub-

sets S(k)
3 , the case n = 4 provides a non-trivial de-

composition of S(k)
4 . In particular, the subset S(2)

4 =
{|0011⟩, |0101⟩, |0110⟩, |1001⟩, |1010⟩, |1100⟩} can be split
into two cyclic orbits

O(2,0)
4 = {|0011⟩, |0110⟩, |1100⟩, |1001⟩},

O(2,1)
4 = {|1010⟩, |0101⟩},

of periods r(2,0)4 = 4 and r(2,1)4 = 2, respectively.
The n-cycle operator CYCn can be diagonalized in the

basis obtained by using the quantum Fourier transform
unitary on each cyclic orbit, defining hence the vectors

|ψ(k,m)
n,ℓ ⟩ = 1√

r
(k,m)
n

r(k,m)
n −1∑
j=0

(ω
(k,m)
n,ℓ )j |x(k,m)

n,j ⟩ ,

where {|x(k,m)
j ⟩}r

(k,m)
n −1

j=0 = O(k,m)
n , and ω

(k,m)
n,ℓ is an

r
(k,m)
n -th root of unity ω

(k,m)
n,ℓ = e2πiℓ/r

(k,m)
n , with ℓ =

0, . . . , r
(k,m)
n −1, associated to the size of the correspond-

ing cyclic orbit O(k,m)
n . Then, by construction, these
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states are eigenstates of the CYCn with the corresponding
eigenvalues ωℓ,

CYCn |ψ(k,m)
n,ℓ ⟩ = ω

(k,m)
n,ℓ |ψ(k,m)

n,ℓ ⟩ ,

for all ℓ. The complete set of vectors {|ψ(k,m)
n,ℓ ⟩}ℓ,k,m

provided by all cyclic orbits describes an orthonormal
eigenbasis of H = (C2)⊗n with respect to CYCn. There-
fore, from Eq. (26), n-th order Bargmann invariant can
be estimated by preparing n qubits in the product state
ϱ = ρ1⊗ . . .⊗ ρn and performing the measurements with
respect to this eigenbasis:

∆n(ρ1, . . . , ρn) =
∑
ℓ,k,m

ω
(k,m)
n,ℓ Tr

[
ϱ|ψ(k,m)

n,ℓ ⟩⟨ψ(k,m)
n,ℓ |

]
.

(29)
We refer to this method of estimating Bargmann in-

variants as the destructive cycle test. For concreteness,
let us restrict our attention to the case n = 3. The oper-
ator CYC3 is diagonal in the orthonormal basis composed
of two product states

|ψ(0)
3,0⟩ = |000⟩ , |ψ(3)

3,0⟩ = |111⟩ ,
and six W -like states with complex phases

|ψ(1)
3,0⟩ =

1√
3
(|001⟩+ |010⟩+ |100⟩),

|ψ(2)
3,0⟩ =

1√
3
(|110⟩+ |101⟩+ |011⟩),

|ψ(1)
3,1⟩ =

1√
3
(ω2 |001⟩+ ω |010⟩+ |100⟩),

|ψ(2)
3,1⟩ =

1√
3
(ω2 |110⟩+ ω |101⟩+ |011⟩),

|ψ(1)
3,2⟩ =

1√
3
(ω |001⟩+ ω2 |010⟩+ |100⟩),

|ψ(2)
3,2⟩ =

1√
3
(ω |110⟩+ ω2 |101⟩+ |011⟩),

where ω = e2πi/3 is a cube root of unity, and the index m
is omitted since, for n = 3, each subset S(k)

n has a unique
cyclic orbit. Therefore,

CYC3 =

3∑
k=0

Π
(k)
3,0 + ω(Π

(1)
3,1 +Π

(2)
3,1) + ω2(Π

(1)
3,2 +Π

(2)
3,2),

where Π(k)
3,ℓ = |ψ(k)

3,ℓ ⟩⟨ψ
(k)
3,ℓ |. This means that ∆3(ρ1, ρ2, ρ3)

can be estimated by preparing three qubits in the prod-
uct quantum state ϱ = ρ1 ⊗ ρ2 ⊗ ρ3 and performing a
projective measurement in this basis, collecting the cor-
responding probabilities,

∆3(ρ1, ρ2, ρ3) = 1− (1− ω)(p
(1)
1 + p

(2)
1 )

− (1− ω2)(p
(1)
2 + p

(2)
2 ), (30)

where p(k)ℓ = Tr[(ρ1⊗ρ2⊗ρ3)Π(k)
3,ℓ ]. Similarly to destruc-

tive swap test, due to the cyclic property of trace, mea-
surement in the eigenbasis of CYC3 can be substituted by

(1)

ρ1 X P (ω−ℓ) Ry(θ)

ρ2 P (ω−ℓ) H

ρ3

(2)

ρ1 P (ω−ℓ) Ry(θ)

ρ2 X P (ω−ℓ) H

ρ3 X

Figure 8. Circuits for implementing a destructive 3-
cycle test. The input state is ρ1 ⊗ ρ2 ⊗ ρ3. The circuits
start with application of a Pauli X-gate that depends on the
circuit index (k): in the circuit (1), it is applied to the first
qubit, while the circuit (2) applies it to the second and third
qubits. They are followed by two CNOT gates, controlled
phase gate, and controlled Hadamard gate. The circuits are
concluded by application of a phase gate and a Y -rotation
gate on angle θ on the first qubit, where θ = −2arccos(1/

√
3),

so that Ry(θ) = 1/
√
3(1 + i

√
2Y ). The phase gate is defined

as P (ω−ℓ) = |0⟩⟨0| + ω−ℓ|1⟩⟨1|, corresponding to estimation
of probabilities p(k)ℓ in (31), and ω = e2πi/3. Finally, all qubit
get locally measured in the computational basis, providing
the necessary statistics for Eq. (30).

local measurements in computational basis using unitary
transformations defined via |ψ(k)

3,ℓ ⟩ = U
(k)
3,ℓ |000⟩,

p
(k)
ℓ = Tr[U (k)†

3,ℓ (ρ1⊗ρ2⊗ρ3)U (k)
3,ℓ |000⟩⟨000|] := p̃

(k)
ℓ (0, 0, 0),

(31)
which can be realized via quantum circuits given in Fig. 8.
Therefore, third order Bargmann invariant can be esti-
mated in a destructive 3-cycle test by collecting probabil-
ities p̃(k)ℓ (0, 0, 0) of obtaining the outcomes 0 in all local
measurements in computational basis in circuit (k) with
the choice of phase ω−ℓ in the corresponding phase gates.

To the best of our knowledge, a destructive cycle test
had not been introduced before. Nonetheless, Ref. [83]
had previously observed that ⟨CYC3⟩ϱ can be written as
the average of two measurements, arriving at a conclusion
that is similar in spirit to ours.
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V. DISCUSSION AND OUTLOOK

In this work, we have generalized the quantum circuits
proposed by Chiribella et al. [69] to estimate multivari-
ate traces of quantum states, introducing a measurement-
enhanced cycle test. By leveraging prior classical infor-
mation about observables, our protocol reduces the quan-
tum resources required to estimate Bargmann invariants
of order n, cutting the number of qubits and Fredkin
gates by up to half compared to the standard cycle test.
This trade-off—exchanging classical descriptions of m
states for reduced quantum hardware demands—makes
our protocol particularly suitable for near-term quantum
devices, where qubit counts and gate fidelities are limit-
ing factors.

The ability to estimate higher-order invariants with
limited quantum resources opens new opportunities
for practical applications. For instance, in extended
Kirkwood-Dirac (KD) quasiprobability distributions [34–
37] the defining bases are often classically known. Our
protocol allows for the efficient estimation of extended
KD distributions even when only a small quantum pro-
cessor is available. As another example, in the context of
sequential weak values [59, 84, 85] one estimates high-
order multivariate traces of states where two states—
namely the pre- and post-selected states—are assumed
to be classically known. Yet another example might be
that of estimating geometric phases. It is conceivable
that one’s goal is to estimate the geometric phase with
respect to a closed path of n = n′ +m points in projec-
tive space, where n′ of these are unknown vector states
while m are classically known by the experimenter. Our
protocol allows, in such situations, for the estimation of
all the relevant Bargmann invariant phases.

The usefulness of enhancing generic Hadamard tests—
not only cycle tests—by also measuring subsystems that
are usually left unmeasured was also recently investigated
in Ref. [86]. Although the authors do not focus on the
problem of multivariate trace estimation, their analysis
shows that the Hadamard test can be powered by lo-
cal (or global) classical shadows of the quantum system
usually left unmeasured to extract additional useful in-
formation.

We have also shown how to estimate third-order in-

variants of pure states using multiple instances of the
destructive swap test. However, we find limited practi-
cal relevance for this approach, as the required number
of circuit implementations is comparable to performing
full state tomography on the two unknown, given qubit
states. This represents evidence that variations of the de-
structive swap test—unlike its non-destructive counter-
part, the standard swap test—may not efficiently lever-
age the trade-off between classical prior information and
quantum resources for estimating higher-order invariants.
Still, we have described how to implement destructive cy-
cle tests, and presented a quantum circuit implementa-
tion for estimating third-order invariants.

Future work could explore experimental implementa-
tions on existing hardware (e.g., superconducting or pho-
tonic platforms) and extend the protocol for the destruc-
tive swap test to mixed states of arbitrary dimension.
Another interesting direction concerns protocols exploit-
ing controlled causal order of measurements, for exam-
ple, in a experimentally implementable setup known as
the quantum SWITCH [87, 88], which has found various
applications in quantum theory [89–105]. In this setup,
quantities like out-of-time-correlators [106] and incom-
patibility of quantum observables [55] can be efficiently
estimated. These advances would further solidify the role
of Bargmann invariants as versatile tools for the certifi-
cation of quantum resources in a basis-independent way.
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