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We study the probability oscillations of mixed particles in the presence of self-gravitational interaction. We

show a breaking of the CPT-symmetry due to the contemporary violation of the T-symmetry and the CP-

symmetry preservation. This violation is directly associated to the rising of the entanglement among the el-

ements of the system that can be seen as a pure many-body effect scaling with the number of the elements in the

system. This effect could have played a relevant role in the first stages of the Universe or in core of very dense

systems. Experiments based on Rydberg atoms confined in microtraps can simulate the mixing and the mutual

interaction and could allow to test the mechanism here presented.

PACS numbers:

I. INTRODUCTION

Particle mixing and oscillations have provided some of the

most direct and robust indications of physics beyond the stan-

dard model [1–3]. We have several examples of such phe-

nomenon both in the bosonic and fermionic sectors. In the

first sector we have mixing among axion–photon [4–6], η–

η′ [7], neutral kaons [8] and B meson [9]. In the second

one we can find the neutrino flavor oscillations [10, 11], the

neutron–antineutron oscillations that could be observed in the

next generation of experiments using slow neutrons with ki-

netic energies of a few meV [12], and the quark mixing [13].

Apart from the last one which involves particles confined in-

side hadrons, all the other mixing phenomena concern only

neutral particles. All of them are characterized by the fact that

the physical fields, called flavor fields, are superpositions of

free fields with definite different masses.

Since the difference between the masses is very small, also

weak perturbations can produce measurable deviations from

vacuum oscillation frequencies. The extreme sensibility to a

wide set of perturbations is at the basis of different experi-

ment proposals. For instance, many studies in recent years

have been devoted to the possibility to test the quantum na-

ture of gravity using concepts of quantum information the-

ory [14, 15]. These proposals are based on the idea of using

a system in which the intensity of the gravitational interaction

depends on some internal degrees of freedom [16]. The sen-

sibility of the oscillation frequency of neutral particles such

as neutrino provides a natural system where to analyze these

effects [17]. Indeed, it is well-known that neutrinos interact

exclusively via gravity and weak interaction. This last in-

teraction is stronger than gravity but has an extremely short

range [18] (about d = 10−16/10−18m) and, hence, it can be

neglected for distances bigger than d for which gravity sur-

vives.
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The effects of gravity on the oscillation of neutral particles

are not limited to a change in the frequency of flavor oscilla-

tions. Gravity is also considered as one of the possible sources

of decoherence in flavor oscillation [19–21] that leads to many

interesting effects like the CPT -symmetry violation in parti-

cle mixing [22–28]. In all these papers the non–unitary evo-

lution is introduced by considering a dissipator that generates

a completely positive dynamics [29, 30]. This dissipator sum-

marizes the effects of all possible sources of decoherence and

does not allow to analyze the origin and the relative weight of

the different sources of decoherence.

In the present paper we adopt a different approach to ana-

lyze the role of gravity in the particle mixing phenomena. In-

stead to consider a single particle as an open system affected

by several uncontrolled phenomena, we consider an ensem-

ble of self-interacting particles as a closed system where all

internal physical quantities are under control. Therefore, we

consider a system of N mixed neutral particles evolving un-

der the self-gravity and neglect all other possible interactions

acting between the system and the environment. We prove

that, because of the difference in mass of the free fields, the

self-gravity induces a violation of the T -symmetry whereas

the CP -symmetry is preserved. This implies a violation of

the CPT -symmetry. Such a violation represents an emerging

many-body effect associated to the rising of a non-vanishing

entanglement among the different fields.

Both the entanglement and the CPT violation are ex-

tremely small and difficult to be observed in laboratories.

However, being many-body effects, they are related to the

number N of elements of the system and to the density n of

the particles. Therefore, the CPT violation induced by the

gravity could play an important role in very dense astrophys-

ical objects and it could have affected the early stages of the

Universe [31].

The paper is organized as follows. In Sec. II, for the

reader’s convenience, we resume the main results of the quan-

tum mechanical approach to the particle mixing. In Sec. III

we consider the effects of gravitational interaction in a simple

model made of two interacting fields, and show the CPT -

symmetry breaking and the role played by the entanglement.

In Sec. IV we generalize the formalism to the case of many in-
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teracting particles. In Sec. V we discuss how to generalize our

results to the case in which the distance among the particles

changes in time and in Sec. VI we draw our conclusions.

II. NEUTRAL PARTICLE OSCILLATION IN VACUUM

For sake of completeness, in this section we review some

aspects of neutral particle oscillations. We consider the very

general case represented by the mixing of two flavor fields

named nA and nB . To fix the ideas, in case of neutrino oscil-

lations, the two flavor fields coincide with the leptonic flavors

as nA = νe and nB = νµ while, in the case of neutron–

antineutron oscillations we have nA = n and nB = n̄. Since

the flavor fields do not coincide with those of definite masses,

the mixing relations can be written as

|nA〉 = cos(θ) |m1〉+ eıφ sin(θ) |m2〉 ;

|nB〉 = −e−ıφ sin(θ) |m1〉+ cos(θ) |m2〉 , (1)

where θ is the mixing angle and φ is the Majorana phase which

is zero in case of Dirac fermions [2] and |mi〉 are the states

with definite masses mi.

Neglecting any interaction with the rest of the Universe, the

particle is a closed system which travels through space with

its energy E. Assuming that the masses mi are much smaller

than E, we can write the Hamiltonian of mixed fields as

H(1) = E +
c2

2E
(m2

1 |m1〉〈m1|+m2
2 |m2〉〈m2|) . (2)

Introducing the Pauli operator σz which discriminates be-

tween the mass eigenstates, σz = |m1〉〈m1|−|m2〉〈m2|, and

neglecting state-independent terms proportional to the iden-

tity operator in the Hamiltonian, eq. (2) becomes

H(1) = ω0 σ
z ; ω0 =

c2

4E
(m2

1 −m2
2) . (3)

The single-particle state, that at t = 0 is in one of the

two flavor states of eq. (1), for t > 0 evolves under the ef-

fect of H(1). Due to this evolution we have, for t > 0,

a non-vanishing probability to observe a change in the fla-

vor state of the particle. The time-dependent expression of

the flavor oscillation formula is than given by PnA→nB
=

| 〈nB| exp(−ıHt) |nA〉 |2 and is invariant under the exchange

of flavors states, i.e. PnA→nB
= PnB→nA

. Explicitly, we

have

PnA→nB
= PnB→nA

= sin2(2θ) sin2(ω0t) . (4)

This is the well-known Pontecorvo formula [10] that describes

the oscillation of a neutral particle in the vacuum.

III. OSCILLATION OF TWO INTERACTING NEUTRAL

PARTICLES

Let us now consider the case in which the system that we

analyze is composed not of a single particle but of two mixing

particles interacting gravitationally.

Before starting our analysis, let us discuss the basic hy-

pothesis we will use along the section. At first, we assume

the validity of the equivalence principle between inertial and

gravitational mass. Moreover, we represent the gravitational

interaction with the standard Newtonian potential. Replac-

ing it with ghost-free theories of gravity as the one showed

in Ref. [32] would induce quantitative but not qualitative

changes in the physical behavior. Furthermore, for the sake

of simplicity, we assume that the particles travel in space with

the same energy along the same direction, hence, keeping their

relative distance, that we denote with d, a time-independent

parameter. It is worth to note that this last assumption is made

only to simplify the explanation of our results. Indeed, as we

will show in Sec. V, it is possible to extend our results to the

case of time-dependent d.

Within the above assumptions the Hamiltonian of the sys-

tem made of two mixed particles that interact gravitationally

becomes

H(2) = H
(1)
i +H

(1)
j − Gm2

1

d
|m1,m1〉〈m1,m1|

−Gm1m2

d
(|m1,m2〉〈m1,m2|+ |m2,m1〉〈m2,m1|)

−Gm
2
2

d
|m2,m2〉〈m2,m2| , (5)

where G is the gravitational constant, d the distance between

the two particles and the indices in the two particles states

refer, respectively, to the i-th particle (the first) and to the j-th
particle (the second).

It is useful to rewrite the Hamiltonian in eq. (5) in a more

compact form. By recalling the definition of σz
i and neglect-

ing all terms proportional to the identity, the Hamiltonian of

the system can be written as

H(2) = ω (σz
i + σz

j ) + Ωσz
i · σz

j , (6)

where ω = ω0 + g(m2
1 − m2

2), Ω = g(m1 − m2)
2, and

g = − G
4d . Comparing the above Hamiltonian with the one in

eq. (3) we can see that the presence of the gravitational inter-

action has two different effects. The first is that the interaction

changes the value of ω from ω0 to ω0 + g(m2
1 − m2

2) while

the second one is the appearance of a new term, with ampli-

tude equal to Ω = g(m1 −m2)
2, involving operators defined

on both the fields. It is worth to note that both of them will

disappear in the case in which m1 and m2 coincide.

Before going further, let us recall two basic results of quan-

tum information that can be found in all quantum information

books as, for example, that in Ref. [33]. The first result is

that, given a bipartite system, the evolution induced by Hamil-

tonian terms acting only on a single part of the system can

never affect the value of the entanglement between the two

parts. On the contrary, terms that act simultaneously on both

the parts usually modify the entanglement. The second result

is that when we project a pure state defined on a bipartite sys-

tem into one of its parts, the projection obtained in such a way

is still pure if and only if the state was not entangled.

In our case, the natural bipartition of the system under anal-

ysis is obtained by considering each part coinciding with one
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of the two particles. With respect to this partition the terms

proportional to ω are local, since each one of them acts on

one single particle. Therefore, they cannot create, or destroy,

entanglement inside the system. On the contrary, the term pro-

portional to Ω, induced by the presence of the state-dependent

gravitational interaction, is non-local respect to the natural bi-

partition. Hence, it can increase, or decrease, the value of the

entanglement [34].

At t= 0, i.e. when the two particles were created, we can

assume that there is no entanglement between them. Thus, the

initial state of the whole system is a two–body fully separable

(i.e. without any entanglement between the two particles) pure

flavor state of the form |ψ(0)〉 = |nη〉1 |nχ〉2, where η and χ
could assume all possible combinations of A and B.

Once fixed |ψ(0)〉, the state at t > 0 can be obtained as

|ψ(t)〉 = U(t) |ψ(0)〉, where the time evolution operator is

U(t) = exp(−ıtH(2)). The operator U(t) is unitary because

we assume that the system under analysis is closed, i.e. does

not interact with the surrounding world. Therefore, for any

time t ≥ 0, the state |ψ(t)〉 is still a pure state exactly as at

t = 0. But, if Ω 6= 0 the state |ψ(t)〉 holds, in general, a

non-vanishing entanglement between the two particles. This

implies that the projection of |ψ(t)〉 on any of the two particles

would be, in general, a mixed state.

It is possible to quantify how much a projection is pure us-

ing a quantity called purity defined as P(ρi(t)) = Tr(ρ2i (t)),
where ρi(t) = Trj(|ψ(t)〉 〈ψ(t)|) is the projection over the i-
th particle of the state |ψ(t)〉 [33]. The purity holds a relevant

role in the theory of entanglement for pure states defined in

bipartite systems. Indeed, it is also associated to the 2–Renyi

entropy, defined as S2 = − ln(P(ρi(t))), that represents a

proper measure of the entanglement between a particle and

the rest of the system [35–37]. Projection of fully separable

states holds a purity equal to 1 and a vanishing Renyi entropy

while entangled states are characterized by P(ρi(t)) < 1 and

a non-vanishing entropy.

In our case it is easy to verify that the time-dependent ex-

pression of purity is, independently on the initial state, equal

to

P(ρi(t)) = 1− 1

2
sin4(2θ) sin2(2tΩ) . (7)

In the presence of flavor mixing, i.e. for θ 6= nπ
2 , and for

any time t 6= n π
2Ω (with n integer), we have P(ρi(t)) < 1

and, thus, the single particle state is not a pure state, hence,

implying that |ψ(t)〉 is entangled. The expression of purity is

also a proof of the fact that the entanglement between two

flavor fields is a direct consequence of the presence of the

gravitational interaction and vanishes if Ω is neglected, i.e.

if m1 = m2. This fact can be also considered a proof of

the quantum nature of gravity since quantum correlations and

entanglement, can be created only through a quantum chan-

nel [38].

Let us now show that, in the system we are analyzing, the

presence of the entanglement induces also a violation of T -

and CPT -symmetry. In order to provide this proof, we con-

sider a simple conceptual experiment. We take into account

two copies of the system already described. We assume that

the two copies are identical except for the fact that, in the ini-

tial state of the first, both particles are in the state |nA〉, i.e.

|ψ0〉 = |nA〉 |nA〉 while in the second one are both in |nB〉
and, hence, |ψ0〉 = |nB〉 |nB〉. At the same time t > 0, we

observe, in both copies, one of the two particles and analyze

the oscillation probabilities.

Let us name ρA(t) the projection obtained in the first copy

of our system and ρB(t) the one obtained in the second copy.

In these two cases, the probability of flavor transitions are

given, respectively, by PnA→nB
= Tr(ρA(t) |nB〉〈nB |) and

PnB→nA
= Tr(ρB(t) |nA〉〈nA|). Explicitly, we obtain

PnA→nB
=

1

2
sin2(2θ)[1− cos(2ωt) cos(2Ωt)

+ cos(2θ) sin(2ωt) sin(2Ωt)] ;

PnB→nA
=

1

2
sin2(2θ)[1− cos(2ωt) cos(2Ωt) (8)

− cos(2θ) sin(2ωt) sin(2Ωt)] .

It is easy to note that the probabilities in eqs. (8) are indepen-

dent on the Majorana phase φ, and, hence, the CP -symmetry

is preserved, ∆CP = 0. On the contrary, since the probability

is not invariant under the exchange of the two flavors, we have

a violation of the time-reversal symmetry

∆T = PnA→nB
− PnB→nA

= sin2(2θ) cos(2θ) sin(2ωt) sin(2Ωt) . (9)

For m1 6= m2 we have ∆T = 0 only if t = kπ
2Ω , or θ =

kπ
4 , k ∈ Z. Since ∆T 6= ∆CP we also have the violation

of the CPT -symmetry. Therefore, the entanglement between

the two particles induces a CPT -symmetry breaking.

It is worth to note that, even if in the system that we have

analyzed, the presence of the entanglement induces a viola-

tion of the T –symmetry, this is not a general result. Indeed, it

is possible to find several Hamiltonians that can induce entan-

glement without breaking the T -symmetry, or breaking both

the T - and the CP -symmetry etc. To provide a simple exam-

ple, if we consider an interaction that can be summarized by a

Hamiltonian as H = Ωσz
i · σz

j , that can be obtained from the

one in eq. (6) assuming ω = 0, we can immediately recover

from eq. (7) and eq. (9) that ∆T = 0 even in the presence of a

non-vanishing entanglement.

A simple numerical analysis of the above model shows that,

for many mixed particle systems, the non-unitary evolution

effect is negligible. However, as we will show in the next sec-

tion, this effect is a many-body effect and, hence, its relevance

increases proportionally to the number of particles in the sys-

tem.

IV. OSCILLATION OF N INTERACTING NEUTRAL

PARTICLES

We now generalize the scheme presented above to the case

where each copy of the analyzed system is made of a large

number N of particles. We consider the same assumptions

used in the previous section: 1) we assume that the system is
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closed; 2) we take into account only the gravitational interac-

tion among the particles; 3) we assume the identity between

inertial and gravitational masses; 4) we consider the Newto-

nian potential valid; 5) we assume the invariance of the rela-

tive distances among the fields during the time evolution.

Within the above hypothesis, the system evolves with time-

independent Hamiltonian which generalize that in eq. (6), i.e.

H(N) =
∑

i

ωiσi +
1

2

∑

i,j

Ωi,jσi · σj . (10)

The main difference between eq. (6) and eq. (10) is that, now,

all parameters of the Hamiltonian depend on the index running

on the set of particles. Indeed, ωi and Ωi,j are now given by

ωi = ω0 +
∑

j gi,j(m
2
1 − m2

2) and Ωi,j = gi,j(m1 −m2)
2,

where gi,j = G
4di,j

and di,j is the relative distance between

the i-th and the j-th fields. Despite this loss of symmetry,

the Hamiltonian in eq. (10) still holds the fundamental prop-

erty that it can be seen as a sum of mutual commuting terms.

This property plays a key role in the rest of our paper. Indeed,

usually the dynamic of a quantum many–body system is ex-

tremely complex to be analyzed exactly and numerical and/or

approximate approach are needed. However this is not the

case. In fact, exploiting such a property, we have that the time

evolution operator can be written as the product of several op-

erators each one of them accounts for the evolution induced

by a single term of the Hamiltonian in eq. (10). Hence, col-

lecting all the terms it is possible to obtain an exact expression

of the state at a time t > 0 and, more important for our analy-

sis, of its projection into the Hilbert space defined on a single

particle.

As in the previous section we consider, at time t= 0, that

the system is described by a fully separable state. We as-

sume that the first M particles are created in the state |nA〉
and the rest is in the state |nB〉, so that the initial state is

|ψ(N)(0)〉 =⊗M
α=1 |nA〉α

⊗N
β=M+1 |nB〉β . Soon after t=0

the system will start to evolve under the influence of the self-

gravity and for any t > 0, the whole system is represented

by the pure state (because we are assuming that the system is

closed) |ψ(N)(t)〉 = U(t) |ψ(N)(0)〉, where the unitary time

evolution operator is U(t) = exp(−ıtH(N)). Knowing the

initial state, the reduced density matrix on the selected k-th

particle can be obtained in terms of the Pauli matrix [39] as

ρk(t)=
1

2

(

1+
∑

α

〈ψ(N)(0)|U †(t)σα
kU(t)|ψ(N)(0)〉σα

k

)

,(11)

where α runs over the ensemble {x, y, z}. Since all terms in

the Hamiltonian commutes with each other, the operator U(t)
can be arranged as the product of three different terms, i.e.

U(t) = uk(t)uk,r(t)ur(t). Here uk(t) = exp(−ıωkσ
z
kt) is

the part of the unitary evolution that acts only on the selected

k-th particle, uk,r(t) = exp(−ıt
∑

j Ωk,jσk · σj) while ur(t)
includes all the other Hamiltonian terms that do not involve

directly the k-th field.

Taking into account the fact that Pauli operators on different

particles commute with each other, we have that in the eval-

uation of ρk(t) the operator ur(t) can be neglected. Hence,

ρk(t) depends only on uk(t) and uk,r(t). Moreover, since

both uk(t) and uk,r(t) depend only on σz
k , we have that the

coefficient of σz
k , and, hence, the elements on the diagonal of

the reduced density matrix are time-independent. On the con-

trary, the coefficients of σx
k and σy

k depend on time and their

derivation is long but straightforward. Substituting the expres-

sion of the flavor fields in eq. (1) in |ψ(0)〉, we have that the

initial state can be written as

|ψ(0)〉 =
∑

{l}

Rl (ak |m1, l〉+ bk |m2, l〉) , (12)

where |m1, l〉 (|m2, l〉) is a generic tensor product of mass

states in which the state in the k-th field is equal to m1

(m2). For the different parameters, ak (bk) is equal to cos(θ)
(eıφ sin(θ)) for k ≤ M and to e−ıφ sin(θ) (cos(θ)) for

k > M . On the other hand, Rl =
∏

s cl,s, where cl,s is equal

to al (bl) if in |l〉 the s-th field in the mass state m1 (m2).

From this expression, it is immediate to obtain the expres-

sion of |ψ̃(t)〉 = uk(t)uk,r(t) |ψ(0)〉,

|ψ̃(t)〉=
∑

{l}

Rl

(

ake
−ı(ω+Γk)t |1, l〉+ bke

ı(ω+Γk)t |2, l〉
)

,

(13)

where Γk =
∑

s(−1)λsΩs,k with λs = 1 (λs = 2) if in |l〉
the mass state of the s-th particle is m1 (m2).

The knowledge of |ψ̃(t)〉 allows us to construct

the reduced density matrix taking into account that

〈ψ(N)(0)|U †(t)σα
kU(t) |ψ(N)(0)〉 = 〈ψ̃(t)|σα

k |ψ̃(t)〉.
After some algebras we obtain the following general exact

expression for the reduced density matrix,

ρk(t)=
1

2

(

1 + ζk cos(2θ) ζke
−ıφ sin(2θ)a∗k(t)

ζke
ıφ sin(2θ)ak(t) 1− ζk cos(2θ)

)

,(14)

where ζk is a function that is equal to +1 for k ≤ M , and to

−1 for k > M , ak(t) is given by

ak(t)=e
ı2ωkt

N
∏

j=1

(cos(2Ωk,jt)+ıζk cos(2θ) sin(2Ωk,jt)),(15)

and we assume, as definition, that Ωk,k = 0. It is worth to note

that the expression of the reduced density matrix in eq. (14) is

exact and obtained, once given the set of the relative distances,

without any approximation and without the necessity to use

any master equation approach.

As we have already said, since we are neglecting any in-

teraction among the elements of the system and the surround-

ing world, the time evolution is unitary. As a consequence,

|ψ(N)(t)〉 is always a pure state. Therefore, it is possible to

use the 2–Renyi entropy defined as S2 = − ln(P(ρi(t))) to

quantify the total entanglement that any single particle shares

with the rest of the system. From eq. (14), we obtain for the

time-dependent purity

P(ρk(t)) = 1− sin2(2θ)
(

1− |ak(t)|2
)

. (16)

Now the couplings Ωk,j are not invariant under the change of

fields. Thus, we have |ak(t)|2 < 1, ∀t > 0, which reduces to
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1 only at t = 0. Therefore, for t > 0, any single particle is

entangled with the rest of the system.

By means of eq. (14) we can generalize the result presented

in eqs. (8) and eq. (9) by analyzing the oscillation probability

in two copies of the system in which the first one has M = N
and the second one has M = 0. Differently from the previous

case, now the reduced density matrices at t > 0, and, hence,

also the oscillation probabilities, are site-dependent. Thus, we

have to consider the average over all elements of the system.

Explicitly we obtain

PnA→nB
=

1

2
sin2(2θ)

(

1− 1

N

N
∑

k=1

Re(a
(A)
k (t))

)

;

PnB→nA
=

1

2
sin2(2θ)

(

1− 1

N

N
∑

k=1

Re(a
(B)
k (t))

)

,(17)

where Re(a
(A)
k (t)) (Re(a

(B)
k (t))) is the real part of a

(A)
k (t)

(a
(B)
k (t)) that are the functions ak(t) whenM = N (M = 0).

As well as in eq. (8), also the transition probability in eq. (17)

does not depend on the CP -violating Majorana phase, so that

∆CP = 0. On the other hand, PnA→nB
6= PnB→nA

because

of a
(A)
k (t) 6= a

(B)
k (t) and, hence, ∆T 6= 0. In order to make

this violation more evident, let us assume that Ωk,jt ≪ 1. In

this case ak(t) becomes

ak(t)≃eı2ωkt



1± 2ı cos(2θ)
N
∑

j=1

Ωk,jt



 , (18)

where the sign + is for the system composed at t = 0 only of

nA-particles, i.e. a
(A)
k (t), and the sign − is for systems com-

posed at t = 0 only of nB-particles, i.e. a
(B)
k (t). Substituting

eq. (18) in eqs. (17), we have the time-reversal symmetry vio-

lation becomes

∆T = PnA→nB
− PnB→nA

= sin2(2θ) cos(2θ)
2t

N

N
∑

k,j=1

sin(2ωkt)Ωk,j . (19)

Since ∆CP 6= ∆T , the CPT -symmetry is broken.

The exact value of the violation of the time-reversal sym-

metry in eq. (19)depends on the whole set of relative distances

among the particles in the system. For system with large N
this set is not known but we can express ∆T in terms of av-

erage values. Indeed, since the gravity has a very long range,

then the sum in eq. (19) contains N(N − 1) non–zero terms

(we assumed Ωi,i = 0 ∀i). Moreover, all these terms have

the same sign. In fact, since gravity is attractive, all Ωk,j are

negative regardless of the particular choice of k and j. On

the other hand, the sign of ωk depends on the difference be-

tween m1 and m2 and, hence, the sign does not depend on

k. Therefore, inside the sum, for time short enough such that

max(ωkt) < π/4, all the terms have the same sign. In other

words, by defining fk = sin(2ωkt)
N

∑

j Ωk,j we have that fk is

of the order of unity and all fk ∀k have the same sign. There-

fore, defining F as the average of fk, i.e. F = 1
N

∑N
k=1 fk

we have

∆T = sin2(2θ) cos(2θ)2NtF , (20)

where we see explicitly that ∆T is proportional to the number

of particles of the system.

Similar CPT violation can be obtained for all configura-

tions in which the difference M and N −M is of the same

order of magnitude of N . Indeed, when this does not happen,

as in the case in which at t = 0 we have N/2 particles in the

flavor state |nA〉 andN/2 in |nB〉, it is possible to show, using

the Lindeberg–Lévy theorem [40], that ∆T is proportional to√
N .

V. TIME-DEPENDENT RELATIVE DISTANCES

All the results obtained up to now were derived assuming

constant the relative distances among the particles of the sys-

tem. However, this assumption is not crucial. In this section

we extend our analysis also to the more realistic case in which

the distances change in time.

Removing the constraints of the independence of the dis-

tances on time, for any t > 0, the Hamiltonian of the gravita-

tional self-interacting system can be written as

H(N)(t) =
∑

k

ωk(t)σk +
1

2

∑

k,j

Ωk,j(t)σk · σj . (21)

Differently from eq. (10), now the parameters ωk(t) and

Ωk,j(t) depend explicitly on time. Indeed, they are, re-

spectively, ωk(t) = ω0 +
∑

j gk,j(t)(m
2
1 − m2

2) and

Ωk,j(t) = gk,j(t)(m1 −m2)
2, where gk,j(t) = − G

4dk,j(t)

and dk,j(t) is the relative time-dependent distance between

the k-th and the j-th fields.

The time dependence of the Hamiltonian affects the evalu-

ation of the time evolution unitary operator. Indeed, this op-

erator, that is obtained as solution of the Schrödinger equa-

tion can be, in general, written in terms of Magnus expan-

sion [41, 42] as

U(t) = exp

(

∑

l

1

l!
Λl

)

, (22)

where the first terms of the expansion are

Λ1 = −ı
∫ t

0

H(N)(τ)dτ ; (23)

Λ2 = (−ı)2
∫ t

0

∫ τ1

0

[H(N)(τ1), H
(N)(τ2)]dτ1dτ2,

where the square brackets denote the commutator between

the Hamiltonian at diffferent times. Moreover, all the other

terms of the Magnus expansion depend on a combination of

commutators between the Hamiltonian in eq. (21) at different

times [42].
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However, in the case that we are analyzing, it is easy to

check that [H(τ1), H(τ2)] = 0 ∀τ1, τ2 and, hence, we have

that Λl = 0 ∀ l ≥ 2. Therefore, from eq. (22) we obtain that

U(t) =exp

(

−ı
∫ t

0

H(τ)dτ

)

=exp



−ı
∫ t

0





∑

k

ωk(τ)σk+
∑

k,j

Ωk,j(t)

2
σk · σj



dτ





=exp



−ıt
∑

k

ω̃k(t)σk−
ıt

2

∑

k,j

Ω̃k,j(t)σk · σj





=exp
(

−ıtH̃(t)
)

, (24)

where

H̃(t) =
∑

k

ω̃k(t)σk+
1

2

∑

k,j

Ω̃k,j(t)σk · σj ;

ω̃k = ω0 −
1

t

G

4
(m2

1 −m2
2)
∑

j

∫ t

0

1

dk,j(τ)
dτ ;

Ω̃k,j = −1

t

∫ t

0

G

4dk,j(τ)
(m1 −m2)

2dτ . (25)

The time evolution operator in eq. (24) is, formally, equiva-

lent to that obtained in Sec. IV. Therefore, independently on

N and M , we can use the relations in eq. (25) to generalize

the results obtained in Sec. IV to the case of time-dependent

relative distances.

Before to conclude, it is worth to underline that this surpris-

ing result holds only because [H(τ1), H(τ2)] = 0 ∀τ1, τ2. In

the general case this is not true and, hence, the generalization

to time-dependent relative distances cannot be evaluated ex-

actly. In these cases we are forced to use different approaches,

such as master equations, Dyson series expansions, etc.

VI. CONCLUSIONS

We have shown that the gravity in a self-interacting parti-

cles mixing system leads to theCPT violation. This violation

is related to the emergence of a non-zero entanglement among

the elements of the system induced by a difference of mass of

the free fields. Moreover, since the gravitational interaction

is additive, the CPT violation is proportional to the number

of elements of the system and its density. Therefore, this ef-

fect could play a crucial role in galactic objects and in the first

stage of the Universe where the densities and the number of

particles are very high.

TheCPT -symmetry violation presented in this paper is not

the first one discovered in the context of neutral particle oscil-

lations. In neutrino physics, several studies have been devoted

to the analysis of symmetry violations induced by dissipative

dynamics [25–27]. However, our work presents several as-

pects of novelty. In fact, instead to consider a single particle

as an open system affected by several uncontrolled phenom-

ena, we consider an ensemble of self-interacting particles as a

closed system with all the physical quantities being under con-

trol. As a consequence we have a difference CPT violation.

In fact, in the previous works, CPT violation was generated

by a CP -symmetry breaking and not, as in our case, by a vi-

olation of the T -symmetry.

However, our results must not be considered in contrast

with the ones presented in Refs. [25–27]. Indeed, the non-

unitary dynamics includes a wide family of physical sources

of decoherence. On the contrary, we have limited our anal-

ysis to the effects due to the self-gravitational interaction so

neglecting all other possible sources of decoherence [43–47].

Nevertheless, our work paves the way to several other works,

in which a detailed analysis of each individual contribution to

decoherence can be realized.

Moreover, it is worth to note that the mechanism here pre-

sented is not only limited to gravitational interaction. In fact,

the two main requirements are: 1) the presence of neutral par-

ticles whose flavor states are superpositions of the eigenstates

of a free field Hamiltonian; 2) The presence of an interaction

depending on the eigenstates of the free Hamiltonian. Within

this hypothesis the interaction, not necessarily of gravitational

origin, among two or more of these particles will generate en-

tanglement and, hence, induce a CPT -symmetry violation in

the flavors oscillations.

Table-top experiments, based on Rydberg atoms confined

in microtraps and optically manipulated [48], can simulate the

mixing and the mutual interaction. In this system, the two in-

ternal states, i.e. the ground state and the excited Rydberg

level can represent the mass eigenstates, whereas two particu-

lar orthonormal superpositions can simulate the flavor states,

and the dipole-dipole interaction can play the role of the grav-

ity [49–51]. Thus, next experiments on atomic physics could

allow to test the fundamental laws and symmetries of nature.
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[43] V. A. Kostelecký and R. Potting, Phys. Rev. D 51, 3923 (1995).

[44] D. Colladay and V. A. Kostelecký, Phys. Rev. D 55, 6760
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