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Communications Goes: Superadditivity,
Superactivation and Causal Activation
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Abstract—In the theory of quantum communications, a deeper
structure has been recently unveiled, showing that the capacity
does not completely characterize the channel ability to trans-
mit information due to phenomena – namely, superadditivity,
superactivation and causal activation – with no counterpart in
the classical world. Although how deep goes this structure is
yet to be fully uncovered, it is crucial for the communication
engineering community to own the implications of these phe-
nomena for understanding and deriving the fundamental limits
of communications. Hence, the aim of this treatise is to shed light
on these phenomena by providing the reader with an easy access
and guide towards the relevant literature and the prominent
results from a communication engineering perspective.

Index Terms—Capacity, Quantum Capacity, Holevo Informa-
tion, Coherent Information, Quantum Switch, Superadditivity,
Superactivation, Causal Activation.

I. INTRODUCTION

TRANSMITTING data reliably over noisy communication
channels is one of the key applications of information

theory, and it is well understood for channels modelled by
classical physics. Initiated by Shannon’s seminal work [1], the
study of communication channels involving the exchange of
classical data led to over time the establishment of the field
of classical Shannon theory. The greatest achievement of the
latter is the realization that any noisy communication channel
can be modeled as a stochastic map connecting input signals
selected by a sender – say Alice – who operates at one end
of the channel, to the corresponding output accessible to the
receiver – say Bob. Shannon stressed that the performance of
this communication channel is gauged by a single quantity,
the so-called capacity of the channel.

Nevertheless, information is not just an abstract mathe-
matical notion. Instead, it exhibits an intrinsic relationship
with the physical channel nature, which poses fundamental
limits on the possibility of processing or transferring it. This
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is where quantum theory comes into play in the study of
communication channels [2]. As a matter of fact, any two
parties wishing to exchange information should encode it
in the state of some system acting as information carrier.
Whenever the system exhibits a quantum nature – such as
a photonic pulse propagating through an optical fiber – the
propagation of the information carrier as well as the overall
processing must follow the principles and the laws of quantum
mechanics. Accordingly, as a generalization of channels in
Shannon theory, quantum channels are introduced, linking the
initial states of quantum information carriers controlled by
Alice with their output states manipulated by Bob.

One surprising quantum effect, which can be resourceful for
this paradigmatic shift from classical to quantum communica-
tions, is quantum entanglement. This new type of correlations,
with no classical counterpart, can boost the communication
capabilities drastically. In fact, despite that an entangled state
shared between Alice and Bob – alone – does not provide
any communication possibilities [3], when used to assist a
quantum channel, it can enhance the performance by doubling
the classical capacity as in quantum superdense coding [4]. Or,
even more surprising, it can enable the transfer of quantum
information with the transmission of two classical bits as in
quantum teleportation [3, 4, 5].

However, quantum Shannon theory has more to offer, as
summarized in Table I and pictorially represented in Figure 1.
Indeed, a proper channel encoder allowed to encode the infor-
mation – either classical or quantum – into entangled states
enhances the performance achievable thorough a quantum
channel. This potential gain is referred to as superadditivity
of the quantum channel capacity, and such a topic constituted
a long and hot debate in the quantum communications com-
munity [6, 7, 8, 9].

Even more astonishing, there exists pairs of channels that,
although they do not have individually the ability to transmit
any amount of quantum information, are able to transmit
information when used together on entangled inputs. This is
known as the superactivation phenomenon [10, 11, 12], which
shows that the quantum capacity is a strongly non-additive
quantity.

Both the superadditivity and the superactivation phenomena,
which have no counterpart in the classical Shannon theory,
induce an yet to be solved question on how different noisy
channels interact and enhance each other’s capabilities, as we
will highlight and discuss in the following.
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Classical Communications Quantum Communications

non-zero-capacity
channels

n uses of a communication channel do not transmit
more than n times the amount of information that can
be transmitted with a single channel use (additivity)

- n uses of a communication channel can transmit more than n times
the amount of information that can be transmitted with a single channel
use (superadditivity)
- channels combined in a quantum trajectory can transmit more informa-
tion with respect to a classical placement of the same channels (causal
activation)

zero-capacity channels can not transmit information, regardless of the number
of uses and/or the placement of these channels

can transmit information either with a classical placement of different
channels (superactivation) or by combining the channels in a quantum
trajectory (causal activation)

Table I: Classical vs quantum communications. Superadditivity, superactivation, and causal activation can enable an unparalleled
boost of the capacity of a quantum channel, which is not achievable in classical communications.

But the marvels of the quantum realm are not by any
means limited to the unconventional phenomena of superad-
ditivity and superactivation. Indeed, quantum Shannon theory
deals with information encoded in quantum carriers, but still
considers the propagation of information through classical
trajectories, so that the path taken by messages in space is
always well-defined, i.e., where channels are in definite causal
order.

Counter-intuitively, quantum mechanics allows quantum
particles to propagate simultaneously among multiple space-
time trajectories. This ability enables a quantum information
carrier to propagate through a quantum trajectory [13, 14,
15, 16, 17]. An important setup is given by a quantum
trajectory where the constituting communications channels
are combined in a quantum superposition of different orders,
so that the causal order of the channels become indefinite.
This unconventional placement of the channels is theoretically
and experimentally implemented through the quantum switch,
which is a supermap resulted from an extension of quan-
tum mechanics under the name of process matrix formalism
[18, 19] or before this, quantum combs [20, 21].

The superposition of trajectories and the quantum switch
supermap have proved to be able to describe powerful setups
for the transmission of classical/quantum information [22].
As instance, whenever Alice and Bob are restricted to use
quantum channels with zero-classical-capacity, no classical
information can be sent throughout any classical configuration
of the channels, neither parallel or sequential. Conversely,
a causal activation1 of the classical capacity2 occurs when
the channels are placed in a quantum configuration through
the quantum switch, and non-vanishing information can be
transmitted from Alice to Bob.

The unconventional phenomenon of causal activation led
researchers to work toward the extension of quantum Shan-
non theory for modelling coherent superposition of quantum
channels [15] as well as superposition of their causal orders
[16] as a communication resource. This extension should
not come as a surprise. Indeed, also within the “classical”
quantum Shannon theory, phenomena such as superadditivity

1The term causal activation was coined in [14] to distinguish the phe-
nomenon of activating vanishing capacities of quantum channels with indefi-
nite causal order of channels from the known phenomenon of superactivation
[16].

2Indeed, causal activation occurs also for quantum capacities, as discussed
in Section VI.

and superactivation prove that the communication potential of
a channel strictly depends on the context in which it is used.
Hence, this shows that genuine quantum phenomena play a
paramount role for future communications, and they should
be fully understood and harnessed to achieve unprecedented
information transfer capacities.

A. Outline and Contribution

As mentioned above, superadditivity, superactivation, and
causal activation are all phenomena affecting the fundamental
notion of channel capacity – as introduced by Claude Shannon
with his seminal work [1] – in ways with no counterpart in the
classical Shannon theory. Unfortunately, the existing literature
is prepared by and prepared for the physics community. This
still leads to a fundamental gap between the literature and the
communications engineering community.

The aim of this paper is precisely to bridge this gap,
by introducing the most novel, astonishing and intriguing
properties of quantum communications, which can:
• provide a capacity gain for both classical and quantum

information through the superadditivity phenomenon,
• provide a non-null capacity for quantum information

through the superactivation phenomenon,
• provide both a capacity gain (when the individual chan-

nels exhibit non-null capacity) or a non-null capacity
(when the individual channels are zero-capacity channels)
for both classical and quantum information through the
causal activation phenomenon, by exploiting the genuine
quantum placement of quantum channels provided by
quantum trajectories.

Stemming from the discussion above, in the following
we shed the light on the notions of superadditivity and
superactivation of quantum channel capacities, as well as the
more recently discovered phenomenon of causal activation
of different capacities, that accompanies the propagation of
information along quantum trajectories, with the objective of
allowing the reader:

i) to own the implications of these phenomena for under-
standing and deriving the fundamental limits of commu-
nications;

ii) to grasp the challenges as well as to appreciate the mar-
vels arising with the paradigmatic shift from designing
classical communications to design quantum communi-
cations.
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Figure 1: Pictorial representation of non-zero vs zero-capacity channels highlighting the different phenomena – namely,
superadditivity, superactivation, and causal activation – affecting the fundamental notion of channel capacity in ways with
no counterpart in the classical Shannon theory.

Through the manuscript, the nature of these phenomena and,
in particular, the differences among the resources responsible
for these advantages are elaborated. In fact, the understanding
of these phenomena is a key to grasp how different resources
can be distributed through quantum networks [23] more effi-
ciently, and how they can be used optimally in the engineering
of a near-term Quantum Internet [24, 25, 26, 27, 28, 29, 30,
31, 32]. Indeed, due to the fast grow of both fields, such
an understanding will serve the quantum engineering and the
communications engineering communities alike to have an
easy access and guide towards the relevant literature and to
the prominent results, which will be of paramount importance
for designing efficient communication protocols.

To the best of authors’ knowledge, a tutorial of this type is
the first of its own.

The paper is structured as depicted in Figure 2. Specifically,
in Section II, we provide the reader – by assuming a basic
background of classical Shannon theory – with a concise
description of the preliminaries needed to understand and to
formally characterize these phenomena. Then in Section III,
we conduct an informal description of the three unconventional
phenomena – superactivation, superadditivity and causal acti-
vation – from a communication engineering perspective. In
Section IV, we first discuss the superadditivity phenomenon
for one-shot capacities – i.e., Holevo information and co-
herent information – and then we generalize our discussions
to regularized capacities. Continuing further our discussions,
in Section V we detail the superactivation phenomenon for
quantum capacities, and we point out the rationale behind
being it restricted to quantum information. In Section VI,

we discuss the causal activation phenomenon for different
capacities, ranging from Holevo information through coherent
information to classical and quantum regularized capacities.
Finally, we conclude our tutorial in Section VII. Specifically,
we first summarizing the differences and similarities between
the communication advantages of these three phenomena,
in terms of resources enabling these advantages. Then, we
discuss the challenges and open problems arising with the
engineering of these phenomena from a communication en-
gineering perspective. Supplementary material is included in
Appendices A-E with the aim of providing the reader outside
the specialty of the article with an easy-to-consult summary
of some definitions and results.

II. PRELIMINARIES

Ever since its almost 100-year history, quantum mechanics
has not only strikingly challenged our view of Nature. Its
novel counter-intuitive concepts without classical counterparts
[33] have found their applications in a plethora of branches
of science and engineering, and they revolutionized them.
This has turned quantum mechanics from a formalism built to
describe certain unexplained physical phenomena (e.g., black-
body radiation and photoelectric effect) and fit experimental
data to a machinery that can be used in developing technolo-
gies that rely upon quantum effects.

Here, we provide a concise introduction to concepts and
formalism needed to present and to discuss the phenomena
of superadditivity, superactivation and causal activation. The
basic notions and the notation adopted throughout the paper
are summarized in Table II and Table III, respectively, along
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Notion Appearance

Quantum bit Appendix A-1

Superposition Appendix A-1

Unitary transformation Appendix A-2

Projective measurement Appendix A-3

Mixed state Appendix A-4

Pure state Appendix A-4

Density matrix Appendix A-4

Positive operator-valued measure (POVM) Appendix A-5

Entangled state Appendix A-6

Quantum channel Appendix B

Completely positive trace-preserving (CPTP) map Appendix B

Kraus representation Appendix B-A

Isometric extension (Stinespring dilation) Appendix B-B

Choi state Appendix B-C

(Anti-)Degradability of a quantum channel Appendix C

Von Neumann entropy Appendix D

Entropy of exchange Appendix D

Holevo information Appendix D

Quantum mutual information Appendix D

Conditional von Neumann entropy Appendix D

Entropy of exchange Appendix D

Codeword Appendix E

Rate of the code Appendix E

Table II: Basic notions and sections of the manuscript where their formal mathematical definitions are defined or introduced.

with the indication of the section of the manuscript in which
the corresponding concept is formally defined or introduced.

A. Quantum background

A.1) The quantum bit: What makes quantum mechanics at-
tractive from a communications engineering perspective? First
of all, its very principles offer a novel way to treat information
when encoded in a quantum system. Classically, two mutually
exclusive states – i.e., 0 and 1 – can be encoded in a bit,
which is in only one of these states at any time. Conversely,
suppose now that two states |0〉 and |1〉 of a quantum two-
level system (for example, the polarization of a photon) are
used to encode them3. In this case, the superposition principle
– the corner-stone of quantum mechanics – allows to go
beyond bit’s classical behavior, since the system can be in both
states simultaneously. Hence, we can introduce the quantum
bit (qubit) whose state |ψ〉 encodes more than simply the states
|0〉 and |1〉, since it can be in a superposition of them as
follows:

|ψ〉 = α |0〉+ β |1〉 (1)

with α, β ∈ C, known as amplitudes, satisfying |α|2 + |β|2 =
1. Hence, a qubit can encode not only classical information

3Above we utilized the bra-ket notation usually adopted for quantum state.
For a proper introduction to this notation, we refer the reader to Appendix A.

(the states |0〉 and |1〉) but also quantum information mani-
fested in the coherence (carried by the complex amplitudes α
and β) it can possess. This type of information has no classical
counterpart. An important consequence of the superposition
principle is a new way of processing and encoding information
4, which can be exploited to significantly increase the security
of communications and even to exchange information without
actual transmission of the information carrier between the
parties [36, 37]. A rigorous definition of the qubit is given
in Appendix A.

A.2) Quantum measurement: In order to retrieve data from a
qubit, one has to perform a measurement of the corresponding
degree of freedom encoding the information (for example,
polarization of the photon). For a superposed state of a qubit,
the result of the measurement is probabilistic due to the Born’s
rule of quantum mechanics. For instance, for the qubit given

4An illustration of this feature is provided by the Elitzur-Vaidman bomb
testing problem: we are supposed to have a bunch of bombs that are activated
by a sensor absorbing a photon. Since some sensors have a defect and do
not absorb photons, we have to select the working bombs from the bunch.
Classically, there is no way to find out whether a bomb works properly without
making it actually explode by shining light on the sensor. However, if a
photon before reaching the sensor hits a half-silvered mirror, the superposition
principle allows to distinguish – probabilistically, with a success ratio as high
as 33% – between the working and faulty bombs and selects some of the
working ones without explosion [34, 35].
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Symbol Definition Appearance

C(N ) The classical capacity of the quantum channel N Section II-D

Q(N ) The quantum capacity of the quantum channel N Section II-E

H Hilbert space Appendix A

|ψ〉 Pure state Appendix A

A† Conjugate transpose of an operator A Appendix A

{Mi} Elements of a measurement setup POVM Appendix A

ρ Density operator Appendix A

⊗ Tensor product Appendix B

L(H) The set of density operators on the Hilbert space H Appendix B

N (·) A quantum channel Appendix B

N (·) =
∑
iKi ·K

†
i Kraus decomposition of the channel N Appendix B

UN The isometric extension of the channel N Appendix B

N c The complementary channel of the channel N Appendix B

Φ̃BA
′

N The Choi state of the channel N Appendix B

S(ρ) The von Neumann entropy of the density operator ρ Appendix D

H(X) The Shannon entropy of the random variable X Appendix D

{px, ρx} An ensemble of quantum states Appendix D

χ({px, ρx},N ) The Holevo information of the channel N with the input ensemble {px, ρx} Appendix D

I(X : Y ) The mutual information between the random variables X and Y Appendix D

I(ρ,N ) The quantum mutual information between the output of the channel N and the input state ρ Appendix D

Ic(ρ,N ) The coherent information of the channel N with respect to the input state ρ Appendix D

S(A|B) The conditional von Neumann entropy between quantum systems A and B Appendix D

Table III: Adopted notation and section of the manuscript where the notation is defined or introduced.

in (1), one obtains state |0〉 with the probability |α|2 and
state |1〉 with the probability |β|2, hence retrieving at most
one bit of information. Crucially, the measurement causes the
state of the qubit to collapse to the measured state. Indeed,
if the measurement of the qubit given in (1) has revealed
the state |0〉, any further measurement will reveal the same
outcome regardless of the initial superposition. This means
that the measurement irreversibly alters the state of the qubit,
which loses thus the coherence previously existing between
the two states |0〉 and |1〉. A formal definition of quantum
measurements is given in Appendix A.

A.3) No-cloning: Classical communication protocols rely
on the ability to copy the information and to transmit it to
many different users. This fundamental assumption is widely
exploited through the whole protocol stack [38]. Conversely,
quantum information cannot be copied or cloned, as stated
by the no-cloning theorem [39]. In simpler terms, quantum
information cannot be multicasted or broadcasted, in contrary
to classical information. Consequently, the no-cloning theorem
poses drastic unconventional challenges for the design of
quantum networks, as most of the known classical protocols
fail to be extended to the quantum paradigm [38]. Fortunately,
a non-trivial caveat to some of the restrictions would rely on
the notion of entanglement and its astounding advantages.

A.4) Entanglement: The superposition principle leads to a
number of intriguing genuinely quantum phenomena, includ-
ing the celebrated entanglement [40]. Entanglement is a sort
of correlations between parties of some (joint) system, which
have no classical counterpart. In his seminal paper [41], John
Bell has established constraints on correlations between two
systems that cannot be broken by classical correlations. These
constraints can be formalized in a form of inequalities for the
statistical properties of outcomes of measurements performed
on the joint system (the most famous form of Bell inequalities
is also known as the CHSH inequalities). It has been shown
that quantum entanglement can violate such inequalities. This
makes entanglement a invaluable resource that might beat clas-
sical resources in different communications contexts. Although
it remained until the end of the last century the question
of what entanglement is useful for, eventually entanglement
has been harnessed to outperform classical communication
protocols and to provide security for quantum key distribution
[42, 43]5. Specifically, quantum superdense coding [5] came
against what was previously known in information theory to
be a coding bound for classical information. Classically, if a
sender – say Alice – wants to communicate a two-bit message
to a receiver – say Bob – she has to use twice a single-bit
classical channel. The same still holds even if Alice and Bob

5See Appendix A for an overview of the basic quantum-informational
notions.
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Figure 2: Paper Structure

are connected by a quantum channel transmitting classical bits
encoded within qubits. Conversely, if Alice and Bob share a-
priori entanglement, a two-bit classical message can be sent
through a single use of a quantum channel. Furthermore, this
protocol has proved not to just outperform the performance of
classical communication protocols, but also to be extremely
secure [5, 42, 43]. But there is more to it. A qubit can never
be transmitted using only classical channels, as these latter

can not preserve the genuine quantum coherence [44]. Luckily,
the quantum teleportation protocol – the dual of superdense
coding – allows for the transmission of an unknown qubit
state using a two-bit classical channel [4], by exploiting again
entanglement as a fundamental resource. The design of these
two protocols challenged the classical notions of information
theory and classical communications, and it opened the door
towards a new era of quantum communications.

A.5) Quantum channels: In communications engineering,
information is usually encoded according to the physical
medium that carries it. This physical medium is usually
modeled as a classical channel, which does not take into
account the quantum mechanical properties of the physical
system carrying the information. Conversely, in quantum com-
munications, quantum channels model the physical medium by
considering the quantum mechanical properties of the physical
carrier as well as its quantum interactions with the physical
environment. The rationale for this is to keep track of the
coherence present in the physical carrier, and to harness its
advantages in encoding classical and quantum information
alike. Indeed, quantum channels – with particular instances
given by optical fibers and free-space carrying quantum light
– might be seen as transformations of a given quantum
mechanical system state, inducing its evolution from an initial
state (input of the channel) to the final state (output of
the channel). Accordingly, classical channels might be seen
as a particular class of quantum channels where quantum
coherences are completely absent. This paradigm shift from
classical to quantum channels affects the very same concept of
capacity, the quantity characterizing communication channels
performance, as introduced in the following paragraph.

A.6) Channel Capacity: Capacity is an intrinsic property
of communication channels – be them classical or quantum –
which measures the maximum rate at which information can
be reliably transferred between Alice and Bob. The capacity
establishes the ultimate boundary between communication
rates that are achievable in principle and those which are not.
Indeed, when quantum effects are involved, there does not
exist a single notion of capacity to evaluate the performance of
a quantum channel. Rather, there exist multiple, nonequivalent
definitions of capacities [45, 46], as introduced in Section II-B
and described in details with Sections II-D and II-E.

B. From Classical Capacity to Quantum Capacities

When a communication channel is used to communicate
messages between two parties, Alice and Bob, it is funda-
mental to assess the channel capacity – namely, the maximal
amount of information Alice and Bob could reliably transfer
by choosing appropriate encoding and decoding operations6.

What is meant by reliable is that there is an infinitesimally
vanishing probability that the message, sent by Alice, arrives
with any alteration to Bob [47]. The condition of vanishing

6See Appendix E for a concise overview and a formal description of the
encoding/decoding operations.



7

Classical
channel

Quantum
channel

Quantum
information

Classical
information

Classical capacity
of classical channel

Classical capacity

of quantum
channel

Quantum capacity
of quantum channel

Figure 3: Classical vs Quantum Capacity. The capacity of a
channel measures the maximum rate at which information
can be reliably transferred between communication parties
through such a channel. A classical channel can be used
to send classical information only and, therefore, it is fully
characterized by its classical capacity. A quantum channel
can transmit either classical or quantum information, and the
corresponding rates are bounded by its classical and quantum
capacities, respectively.

error probability is generally imposed in the asymptotic limit
where infinitely long codes are allowed. In this setup, an
explicit closed-form expression for classical channel capacities
exists, which depends on the noise model given through
the conditional probability p(y|x) characterizing the channel,
where x and y denote the input and the output messages,
respectively. Accordingly, the classical capacity is expressed
as [47]:

C = max
p(x)

I(X : Y ) (2)

where the maximization is over all probability distributions
on x, and where I(X : Y ), defined in (111) reported in
Appendix D, denotes the mutual information between the input
and output random variables X and Y .

Surprisingly and contrary to the classical case, extending
this framework to quantum channels leads to the introduction
of different capacities, depending on which context – i.e.,
depending on whether Alice and Bob are exchanging classical,
private or quantum information – the quantum channel is used
for [45, 46], as shown in Figure 3.

In the following, we will restrict our attention on: i) the clas-
sical capacity C(·) over quantum channels, and ii) the quantum
capacity Q(·) over quantum channels. A general scheme for
classical/quantum capacity is shown in Figure 4. Specifically,
the former capacity C(·) deals with the transmission of clas-

k (qu)bits

Input Codeword

n qubits

message

n qubits k (qu)bits

Output
message

E N⊗n D

Figure 4: Operational scheme for the capacity over quantum
channel N , with the encoder Ek→n and the decoder Dn→k
depending on the nature of the message, i.e., classical or
quantum. The tensor product N⊗n denotes n uses of channel
N , achievable either with a parallel placement (in space) of
n-times channel N or, equivalently, with n independent uses
of such a channel in time.

sical information through a quantum information carrier, by
assuming the presence of proper classical-to-quantum encoder
E and decoder D, whereas the latter capacity Q(·) requires
the availability of quantum-to-quantum encoder/decoder for
allowing the transmission of quantum information.

Furthermore, for each of the mentioned capacities, we are
going to distinguish between one-shot capacities χ(·) and Ic(·)
and (regularized) capacities C(·) and Q(·). Specifically, the
one-shot capacity restricts the encoder E to generate states that
are separable7 over multiple uses of the channel, whereas the
(regularized) capacity is achieved by relaxing this constraint
and hence allowing the encoder to generate entangled states.
Clearly, it results χ(N ) ≤ C(N ) and Ic(N ) ≤ Q(N ) for any
quantum channel N [46].

In what follows, we are going to give in Section II-C
the operational definitions of the quantum capacities used in
Section IV, without making reference to the explicit structure
of the channels. Afterwords, in Section II-D and II-E we are
going to review the important quantum coding theorems for
memoryless channels, which express the capacities in terms
of explicit entropic quantities.

C. Operational Capacity Definition for a Quantum Channel

The classical/quantum capacity of a quantum channel8 N is
the maximum achievable rate at which information encoded in
quantum carriers can be transferred reliably from Alice to Bob.
As in classical Shannon theory, the ratio k

n is what measures
the rate, where k is the number of exchanged bits/qubits of
information between the sender and the receiver, and n is the
number of uses of the communication channel.

Similarly to classical Shannon theory, the reliability con-
dition requires that, at the asymptotic use of the channel
(i.e., when n → ∞), the fidelity9 operator. F between the
channel input/output – or, correspondingly when it comes to

7We refer the reader to Appendix A for a proper definition of separable
states.

8We refer the reader to Appendix B for a concise introduction to quantum
channels, and to [45, 48, 49, 50] for an in-depth treatise of quantum channel
capacities.

9In a nutshell, the fidelity F is a measure, with values between 0 and
1 of the distinguishability of two arbitrary quantum states ρ and σ, and it
is generally defined as [49, 46] F (ρ, σ) = Tr(

√√
ρσ
√
ρ)2 with Tr(·) =∑

i(·)ii denoting the trace.
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classical communications, the error probability10 – can be
made arbitrarily close to one – or, correspondingly, arbitrary
close to zero.

Henceforth, the classical/quantum capacity of a quantum
channel can be given in an operational way, depicted in
Figure 4, as:

lim
ε→0

lim sup
n→∞

{k
n

: ∃Ek→n, ∃Dn→k,

min
m∈M

F
(
|m〉 ,Dn→k ◦ N⊗n ◦ Ek→n(|m〉)

)
> 1− ε

}
(3)

with the fidelity measuring the distinguishability between the
input symbol |m〉 and the output symbol Dn→k ◦ N⊗n ◦
Ek→n(|m〉). Ek→n and Dn→k denote the encoder and the
decoder, mapping the11 k-qubits/bits message that Alice wants
to share with Bob into a n-qubits code-word sent through the
quantum channel as described in Appendix E.

Importantly, classical information could be encoded in the
orthogonal basis of the Hilbert space, whereas quantum infor-
mation must be encoded in the span of the orthogonal basis
of the Hilbert space due to the genuine quantum coherence.
Intuitively, when decoding information encoded in the Hilbert
space, we can retrieve more classical information than quan-
tum. By oversimplifying, the rationale for this can be under-
stood in terms of no-cloning theorem, which allows classical
information to be copied whereas quantum information cannot.
Accordingly, for any given channel N , the quantum capacity
Q(N ) is upper bounded by the classical capacity C(N ) [51].

Expressions for capacities of quantum channels, in terms of
entropic functions, have been provided by sophisticated coding
theorems. While we refer the reader to [45, 46, 49, 52, 53, 54,
55, 56, 57] for detailed review of different notions of quan-
tum channel capacities, for both channels with and without
memory, and entanglement-assisted capacities, we focus here
on memoryless channels and their unassisted capacities.

D. Classical Capacity of Quantum Channels

The expression of the classical capacity of an arbitrary
quantum channel N has been formalized by the Holevo-
Schumacher-Westermoreland (HSW) coding theorem with ref-
erence to the one-shot capacity12 χ(N ) [58, 59]. The ex-
pression resembles Shannon’s formula given in (2) for the
classical capacity of classical channels, as it can be expressed
in terms of a maximization of the Holevo information13

χ
(
N , {px, ρx},N

)
over the set of input ensembles {px, ρx}

encoding the classical messages. Formally, it is given by:

χ(N ) = max
{px,ρx}

χ
(
{px, ρx},N

)
(4)

and the maximization can be taken always over pure input
states, restricting so the search space.

10In this case, the fidelity and the probability of error are linked through
the probability of successfully decoding the message, which is expressed in
terms of the trace distance between the input and output states of the noisy
channel N [49].

11Where k = log2 d, with d being the dimension of the message Hilbert
space, in case of quantum capacity.

12Also known as Holevo information of channel N in the literature [46, 51,
49]. Accordingly, the two terms will be interchangeably used in the following.

13See Appendix D for a concise definition of Holevo information.

The operational meaning of the HSW theorem is that,
given an ensemble {px, ρx} and an integer satisfying N ≤
2nχ
(
{px,ρx},N

)
, one can choose N n-qubits codewords

ρ1, ρ2, . . . , ρN in separable product form ρi = ρi1⊗ · · · ⊗ ρin
and an associated decoding measurement setup, allowing Bob
to discriminate between the N output states N⊗n(ρi) =
N (ρi1) ⊗ · · · ⊗ N (ρin) arbitrarily well in the asymptotic
limit of n. The positive operator-valued measure (POVM)14

assigned for the measurement setup is allowed to be an
entangling measurement that operates collectively on the n-
qubits output of each codeword.

As mentioned in Section II-B, if we unrestrict the encoder E
from mapping messages only to product states as in Figure 5a,
and we rather allow it to produce entangled codewords as
in Figure 5b, we obtain the classical capacity C(N ) of the
quantum channel N .

In the HSW coding theorem, this is achieved by adopting
a block coding strategy, which, for any n > 1, allows Alice
to use n copies of the channel as a single extended channel
N⊗n with associated Holevo information χ(N⊗n), where
the maximum is taken over all input ensembles, including
entangled states15, for the n elementary channels. As a result,
the capacity C(N ) of N can be obtained by taking the limit
n → ∞ over the associated rate χ(N⊗n)

n . This is known as
the regularization procedure of the capacity, and it allows the
capacity C(N ) to be written as:

C(N ) = lim
n→∞

1

n
χ(N⊗n) (5)

As it appears, the capacity C(N ) is not easily computed in
general [58], as it requires a maximization over an unbounded
number of uses of the channel. Indeed, a single-letter formula
of the capacity is known only for few types of quantum
channels, e.g., the depolarizing channel [60].

E. Quantum Capacity of Quantum Channels

Similarly to the HSW theorem, the quantum capacity theo-
rem – widely known as the LSD theorem [49, 51] – expresses
the quantum capacity Q(N ) in terms of a regularization of the
one shot capacity16 Ic(N ). The latter quantity expresses the
maximal achievable rate through the quantum channel when
the quantum-to-quantum encoder is constrained to generate
separable codewords only.

Formally, the one-shot quantum capacity Ic(N ) is expressed
in terms of the coherent information17 of channel N with
respect to the arbitrary state ρ as:

Ic(N ) = max
ρ

Ic(ρ,N ) (6)

where the maximization is taken over all possible input
quantum states.

14See Appendix A for the definition and an example of POVM.
15Since product states are allowed as well, it is clear that χ(N⊗n) ≥

nχ(N ) and, hence, C(N ) ≥ χ(N ) as discussed in Section IV-A.
16Also known as coherent information of channel N in the literature

[46, 51, 49]. Accordingly, the two terms will be interchangeably used in the
following.

17See Appendix D for a concise definition of the coherent information.
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k bits

Input
n qubits

Codeword

ρi=ρi1⊗...⊗ρin

message

n qubits k bits/qubits

Output
message

EC-Q N⊗n DQ-C

(a) A scheme for the one-shot capacity χ(N⊗n) of the quantum chan-
nel N through n uses of the channel N . A set of classical messages
in an alphabetM is encoded by a classic-to-quantum encoder EC−Q
constrained to separable codewords, namely, ρi = ρi1⊗· · ·⊗ρin for
the i-th codeword. After transmission, a quantum-to-classic decoder
DQ−C is applied to retrieve the classical message. The decoder is
a measurement given by the optimal POVM, which is allowed to
act collectively on the joint output state in order to obtain a set of
classical messages.

k bits

Input
n qubits

Codeword

ρi 6=ρi1⊗...⊗ρin

message

n qubits k bits/qubits

Output
message

EC-Q N⊗n DQ-C

(b) A scheme for the classical capacity C(N ) of quantum channel N
through n uses of the channel N . The encoder EC−Q is not restricted
to separable codewords, rather, it is allowed to encode the classical
information into entangled input states ρi 6= ρi1⊗· · ·⊗ρin. Similarly
to the scheme of the one-shot capacity, the decoder is allowed to
perform entangling measurements.

Figure 5: One-shot vs. regularized classical capacity from the encoder perspective.

As already mentioned, the one-shot capacity Ic(N ) does
not fully characterize the quantum capacity Q(N ), which is
the maximum achievable rate, for which the fidelity of the
transmitted state is arbitrarily large, i) over asymptotically
many uses of the channel N , and ii) with the encoder allowed
to generate entangled codewords. Likewise to the classical
capacity, when a block coding strategy is used the quantum
capacity can be expressed as [61, 62, 63]:

Q(N ) = lim
n→∞

1

n
Ic(N⊗n) (7)

Of course, the quantum capacity Q(N ) is a non-tractable
quantity in general. The rationale for this is because (7)
involves maximizing the coherent information over an un-
bounded number of channel uses. In fact, entanglement across
channel uses can even increase the coherent information from
zero to non-zero. One might think that only a finite number
of channel uses might be sufficient to calculate the capacity,
as imposing a cut-off in the number of uses of the channel.
It turns out this is completely wrong, as it has been shown
that whatever value of n we fix, we can always find a channel
with vanishing coherent information Ic(N⊗n), nonetheless,
the quantum capacity Q(N ) is non-vanishing [64].

F. Bibliographic Notes

One of the earliest uses of quantum information is classical
communications over quantum channels. This research was
initiated by the early work of Holevo [65], in which the Holevo
bound on classical capacity was established. Later on, a lower
bound on the Holevo information of a channel was provided
independently by Schumacher and Westmoreland [58], and
Holevo [59]. Classical communications in one shot setting
has been studied by a number of authors, including Hayashi
[66, 67], Renes and Renner [68], Wang and Renner [69], Datta
et al. [70], Mathews and Wehner [71], Wilde [72].

The quest for determining a quantum capacity in the
Shannon’s sense was raised by Shor [73]. Different notions
of quantum communications were established since then.
The one adapted in this tutorial is based on entanglement
transmission which was defined by Schumacher [74]. The
notion of subspace transmission was proposed by Barnum

et al. [75]. Devetak [62] gave the definition of entangle-
ment generation. Kretschman and Werner [76] showed that
the capacities derived from these variations are all equal.
The coherent information of asymptotic uses of a quantum
channel was derived by Schumacher [74] as an upper bound
on quantum capacity, Barnum et al. [77], Schumacher and
Nielsen [78]. The coherent information as a lower bound on
the quantum capacity was established by Loyd [61], Shor
[63], Devetak [62]. Another proof for the achievability of the
coherent capacity was provided by Hayden et al., using the
decoupling lemma [79], which was initiated by Schumacher
and Westmoreland [80]. The one-shot setting of quantum
capacity was treated in many papers, including Buscemi and
Datta [81], Datta and Hsieh [82], Wang et al. [83], Kiavansh
et al. [84].

III. QUANTUM MARVELS

In this section we present the three dazzling phenomena of
superadditivity, superactivation and causal activation. An easy-
access guide towards the literature related to these phenomena
and the prominent results as timeline of the milestones is
provided with Figure 6.

A. Superadditivity
As mentioned above, entanglement has no longer been

considered only as a foundational concept that breaks the
operational causal explanations of correlations formulated in
terms of Bell inequalities [41]. It started rather to be consid-
ered as a tool with wider applications in different areas of
communication engineering. And researchers are continuing
to dig for other surprises of quantum phenomena within the
field.

Astoundingly, it was found that – contrary to classical
communications18, when a quantum channel is used indepen-
dently multiple times, its performance in terms of coherent
information19 [45, 46, 101] can be non additive on the number

18In the following and in agreement with the literature [101], we refer
to communications through classical channels as classical communications,
whereas we denote communications through quantum channels as quantum
communications. In the latter case, whether the quantum channels will be used
to transmit quantum or classical information will be specified in the context.

19See Section II for a proper introduction to the different definitions of
capacities, including the coherent information – through a quantum channel.
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1992

2021

Quantum superdense coding [5]

Quantum teleportation [4]1993

Holevo information as achievable rate for one-shot classical capacity through the class of classical-quantum channels [85]
1995

Coherent information as an upper bound to one-shot quantum capacity [74, 78]
1996

HSW theorem: one-shot and regularized classical capacity [86, 58]1997
LSD theorem: one-shot and regularized quantum capacity [61]

Existence of the limit in the regularization of the classical capacity [77]

1998

Superadditivity of coherent information [87]

Additivity of the Holevo information for quantum erasure channels [88]

1999

Additivity of the Holevo information for entanglement breaking channels [89]
2002

Notion of complementary quantum channel and degradable quantum channel [90]
2003

Additivity of the Holevo information for the depolarizing channel [91]

Additivity of the Holevo information for Hadamard channels [92]

2005

Additivity conjecture [93]

Quantum controlled trajectories for error filtration and entanglement purification [13]

Notion of anti-degradable quantum channel [94]

2006

Hasting’s counterexemple establishing the superadditivity of the Holevo information [6]

2007

Superactivation of the quantum capacity [10]

2008

Superadditivity of the quantum capacity for the Rocket and the quantum erasure channel [9]

2009

Quantum switch: theoretical framework [95]

2013

Superadditivity of the coherent information [64]
2015

Quantum switch: experimental realization [96]

Quantum switch: bottleneck inequality violation for the Holevo information of the fully depolarizing channel [14]2018

Superadditivity of the dephrasure channel [97]

Quantum switch: bottleneck inequality violation for the coherent information of the fully depolarizing channel [98, 99]
2020

Quantum switch: bottleneck inequality violation for the coherent information of the entanglement breaking channel [22]
Quantum switch: experimental verification of the bottleneck inequality violation for Holevo and coherent information
[100]

Figure 6: Timeline for milestones on superadditivity, superactivation and causal activation of quantum channels.

of uses [6, 87].
In other words, in classical communication scenarios, if a

channel is able to transmit a bit of information, when it is used
n times, the amount of information that can be transmitted is
no more than n bits. Formally, the mutual information between
the output Yn and the input Xn random variables on n uses
of a classical channel {pi(y|x)}ni=1 is always bounded by n
times the single letter capacity of the channel:

I(Xn,Yn) ≤
n∑
i=1

I(Xi, Yi) (8)

In other words, the use of correlated codewords, jointly

sampled, in transmitting information does not provide any
communication benefit with respect to the use of uncorrelated
codewords, sampled from a product distribution.

In contrast, in quantum communication scenarios, a quan-
tum channel that can transmit a certain amount of information
(classical or quantum), when used n-times it can send more
than n times that amount of information. This is extremely
against classical additive logic of 2 = 1 + 1. Indeed, in the
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(a)

Ic(N⊗2) = Ic(N )+ Ic(N )

(b)

Ic(N⊗2) > Ic(N )+ Ic(N )

|0〉 N

|0〉 N

|Ψ〉
N

N

Figure 7: A scheme showing superadditivity of the one-shot
quantum capacity of channel N . (a) When two instances of
the channel (this is formally given by the tensor product
N⊗2 4

= N ⊗ N ) are used on separable inputs such as
|0〉⊗|0〉, the coherent information of the two channels together
Ic(N⊗2) is the sum of the two individual coherent information
Ic(N )+Ic(N ). (b) Conversely, when the two instances of the
channel are used on an entangled state |Ψ〉, superadditivity
of the coherent information occurs and the joint coherent
information Ic(N⊗2) exceeds the sum of individual coherent
information Ic(N ) + Ic(N ).

quantum domain, superadditivity can happen and it results20:

2 > 1 + 1

This unconventional phenomenon requires the use of en-
tanglement to encode messages, which in turn can be either
classical or quantum. This is known in the literature as
the superadditivity of quantum channel capacities, and it is
depicted in Figure 7. The figure illustrates that when Alice
and Bob use multiple instances of a quantum channel N 21 to
communicate messages encoded in separable input states, the
coherent information of the two channels together Ic(N⊗2) is
equal to the sum of the two individual coherent information
Ic(N ) + Ic(N ). This is trivial in classical communications22.
On the contrary, when Alice and Bob use the channel the same
way as before – but encoding messages in entangled states –
the overall coherent information Ic(N⊗2) exceeds the sum of
the coherent information of individual channels, in the form

Ic(N⊗2) > Ic(N ) + Ic(N ) (9)

Indeed, a similar behaviour has been observed for the Holevo
information χ(N⊗2) > χ(N ) + χ(N ) [6].

This phenomenon shows how entanglement can be consid-
ered as a key factor for unravelling the unconventional poten-
tial of quantum theory when it comes to quantum communica-
tion. Equally, it highlights that this potential is not limited to

20We adopted – in analogy with the superactivation literature [10, 102] –
such an expression to better summarize the superadditivity phenomenon.

21In this paper, we focus on channels that do not exhibit memory effects
over many uses. In other words, we are interested in noisy channels where
multiple uses of the same channel over time or the use of multiple copies of
the same channel in parallel are equivalent. This is due to the assumption of
noise between different uses being independent.

22Multiple uses of classical channels allow error correction/diversity strate-
gies, but not superadditivity of the channel capacity.

(a)

Ic(N⊗M) = 0+0

(b)

Ic(N⊗M) > 0+ 0

|0〉 N

|0〉 M

|Ψ〉
N

M

Figure 8: A scheme showing superactivation of the one-shot
quantum capacity of two zero capacity quantum channels N
and M. (a) When the two channels are used on separable
inputs such as |0〉 ⊗ |0〉 encoding the quantum message, the
coherent information of the two channels together Ic(N ⊗M)
is the sum of the two individual capacities Ic(N ) and Ic(M),
and hence it is identically zero. (b) When the two channels are
used on an entangled state |Ψ〉 properly encoding the quantum
message, superactivation of the capacity occurs and the joint
coherent information Ic(N ⊗M) can be greater than zero,
allowing the two channels to transmit a non-vanishing amount
of quantum information.

quantum messages, given that quantum communications can
boost the classical information transmission rates as well, as
shown in Section IV-A.

B. Superactivation

More surprisingly, our rather simplistic understanding of
nature is broken by quantum logic, when it comes to the
phenomenon of superactivation [10]. This is when two dif-
ferent quantum channels that cannot transmit any amount of
information separately – i.e., zero capacity channels [103] –
when properly used together, they can transmit information.
In classical information logic the relation 2 · 0 = 0 + 0
holds, whereas this is not the case when it comes to quantum
information, where the relation23:

2 · 0 > 0 + 0

is possible.
The superactivation phenomenon, as we discuss in more

details in Section V, relies on entanglement [10]24. This
is depicted in Figure 8. This scheme shows that when the
two zero capacity channels N and M – with no ability of
transferring quantum information – are used on separable
inputs encoding a quantum message, the coherent information
of the two channels together is the sum of the two individual
coherent information. Hence, the overall channel N⊗M does

23Also denoted as 0 + 0 > 0 in the relevant literature [10, 102], meaning
that a proper use of two different zero-capacity channels gives a non-null
capacity.

24We must note that there exist protocols achieving superactivation by
exploiting shared randomness between sender/receiver rather than entangled
codewords [104, 105].
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not allow transmission of any quantum information. On the
other hand, if the quantum message is wisely encoded in
an entangled state given as joint input to the channels, the
overall channel N ⊗M gains potential for the transmission
of quantum information. Accordingly, the overall coherent
information Ic(N ⊗M) satisfies the following inequality:

Ic(N ⊗M) > Ic(N ) + Ic(M) = 0 (10)

We note that – as for superadditivity – entanglement plays
a fundamental role in enabling unparalleled phenomena in
quantum communications. We further note that – conversely
to superadditivity – no superactivation phenomenon is known
to exist for quantum channels conveying classical information
[106], as discussed in Section V. This shows that quantum
communications represent an heterogeneous communication
paradigm, where the communication potential of a channel
depends on the information nature of the message.

C. Causal activation

Although the inception of the quantum formalism has been
initiated more than a century ago [101], its surprises are still
coming out to this day, and there is much more out there to
be discovered.

Recently, quantum information theorists, investigating
causality in the quantum realm, have discovered that quantum
mechanics allows for causal order to be indefinite [18, 95].
In simpler terms, causality between events – channels from a
communications engineering perspective – might be not fixed,
as shown in Figure 9. If so, two communication channels,
say N and M, instead of affecting the information carrier
in a definite causal order – i.e., either M ◦ N or N ◦M –
they act on the carrier in a genuinely quantum superposition
of causal ordering. Hence, the information carrier evolves
through a quantum trajectory [107]. One example of quantum
trajectories is the quantum switch [96, 108], which is a
supermap acting on a set of channels and places them in a
coherent superposition of different orders, which is a genuinely
quantum placement setup.

It has been both theoretically [14, 22, 109] and experimen-
tally [100] verified that the quantum switch can be used for
communications, in an outperforming way, even when it is
compared to known quantum protocols.25 Indeed, it has been
shown that there are zero capacity channels that cannot transfer
any information in the usual setups, i.e., parallel or sequential
setups where the order of channels is well definite. But,
when used in a quantum superposition of causal orders, these
channels transmit non vanishing information (either classical
or quantum, depending on the setup). This phenomenon, also
termed as causal activation in literature [111], as astounding

25The notion of indefinite causal ordering is still debated in the community
of causal modelling. In particular it can explain some observed phenomena
differently from our usual causal models, but it cannot be explained in the
framework of process tensors alone even by the most general temporal process
tensor [110]. This makes it rather genuinely different from the usual temporal
processes that we can account for, including quantum channels with memory,
be it Markovian or non-Markovian [107]. Most importantly, the quantum
switch itself does not violate any causal inequality formulated in a theory-
independent manner [18].

as it is, harnesses its advantage from a genuinely quantum
coherence between causal orders.

Indeed, causal activation should be regarded as a new way
of placing communication channels [15], with no similarity
with classical placement, such as parallel or sequential ones.
In fact, as we discuss in more details in Section VI, whereas
superadditivity and superactivation exploits quantum channels
combined in a classical way, causal activation exploits a new
degree of freedom, namely, the quantum placement of quantum
channels.

IV. SUPERADDITIVITY OF QUANTUM CHANNEL
CAPACITIES

Here we detail one of the quantum marvel phenomena
introduced in Section III, namely, the superadditivity.

The additivity notion is very important as many questions
in quantum information theory reduces to the additivity prop-
erties of some key functions [93]. In this section, we are going
to discuss the additivity properties of the Holevo information
and the coherent information, which are the essential elements
for characterizing the capacities of quantum channels.

A. Superadditivity of Holevo information

Originally, the Holevo information was believed to be
additive for all quantum channels [93], that is

χ(N⊗n) = nχ(N ) (11)

This would imply that the Holevo information would be a
good characterization of the classical capacity in the general
case, i.e., χ(N ) = C(N ). This conjecture, known as the
additivity conjecture, was proved to hold for some classes of
quantum channels, e.g., entanglement breaking channels [89]
or depolarizing channel [91].

Surprisingly, Hastings found the existence of a counterex-
ample to the additivity conjecture [6], demonstrating that it
does not hold in the general case. He showed that, when
entangled input states are used, the Holevo information is
not only weakly superadditive, instead, it exhibits a strong
superadditivity property. The counterexample relies on the use
of two random channels N and N̄ :

N (ρ) =
∑
i

piU
†
i ρUi

N̄ (ρ) =
∑
i

piŪ
†
i ρŪi (12)

which are complex conjugate to each other. Specifically, the
channels have unitary Kraus operators {Ui}i∈{1,...,D} and their
complex conjugates {Ūi}i∈{1,...,D}. Moreover, each unitary Ui
is randomly sampled from a certain given random distribution.
Finally, the coefficients pi in (12) are chosen randomly from
another particular distribution, in such a way the minimum
output entropy of the tensor product N ⊗ N̄ of the two
channels is strictly smaller than twice the minimum entropy
of one of the channels alone. Formally, this is given by the
following inequality:

Hmin(N ⊗ N̄ ) < 2Hmin(N ) (13)
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Ic(M◦N ) ≤ min{Ic(N ), Ic(M)}

|ψ〉 N M

(a) A classical sequential trajectory where the information carrier
prepared in a certain state |ψ〉 undergoes the transformation M◦N ,
in which channel N is acting on the carrier before channelM. Both
the quantum and classical capacity of this scheme are upper bounded
by the bottleneck inequality given in (115), i.e., by the minimum of
the capacities of each of the two concatenated channels.

Ic(Sρc (N ,M)) > min{Ic(N ), Ic(M)}

N

|ψ〉

M

(b) A quantum trajectory, which is a coherent superposition of the two
classical sequential trajectories N ◦M andM◦N . This placement of
channels is neither equivalent to a sequential trajectory in which the
channels are timelike separated, nor equivalent to a parallel placement
where the channels are spacelike separated. The overall coherent
information Ic

(
Sρc(N ,M)

)
of the equivalent channel Sρc(N ,M)

– with ρc denoting the quantum system controlling the causal order
between the two channels – can violate the bottleneck inequality.

Figure 9: A scheme showing causal activation of the coherent information for two quantum channels N and M.

under the use of entangled input states to the channel N ⊗N̄ .
This inequality proved26 the superadditivity phenomenon of

the Holevo information, demonstrating that one of the most
basic questions in quantum Shannon theory still remains wide
open, i.e., there exists no general closed formula for classical
capacity. This in turn shows our lack of deep understanding
about classical information transmission over quantum chan-
nel.

Furthermore, it also implies that if Alice encodes the classi-
cal message she wants to communicate to Bob in an entangled
state, this can help in increasing the classical capacity over the
quantum channel linking Alice and Bob. This phenomenon has
no counterpart in classical communications, where the capacity
– quantified by the mutual information between input and
output of the channel – cannot be increased even if classical
correlations between subsequent input bits are exploited.

B. Superadditivity of Coherent Information

It was shown that the quantum capacity of a quantum chan-
nel is well-behaved and completely understood for the class

26Indeed, the minimum entropy of a quantum channel N is defined as
Hmin(N ) = minρ S(N (ρ)) [49], where S(ρ) denotes the von Neumann
entropy of the state ρ as detailed in Appendix D. The minimum output
entropy is related to the Holevo information for irreducibly covariant quantum
channels by χ(N ) = S(N (I

d
)) − Hmin(N ) where I

d
is the maximally

mixed input state, with d being the dimension of the input of the channel
and I being the identity operator. Hence, for irreducibly covariant quantum
channels, the subadditivity of the minimum entropy implies the superadditivity
of the Holevo information.

of degradable channels, over which the coherent information
is additive [90], that is:

Ic(N⊗ndegradable) = nIc(Ndegradable) (14)

Hence the regularization could be removed and the quantum
capacity could be computed by a single optimization, similarly
to classical channels.

However this is not true in general, as it was proven that
for some channels – e.g., the depolarizing channel [87, 112] –
the coherent information for multiple uses of the channel for
some given value of n is greater than n times the coherent
information provided by a single use of the channel. Hence,
coherent information is superadditive [7, 87, 64]. To illustrate
this concept, let us consider the depolarizing channel ND,
which transmits faithfully its input with probability 1− p and
replaces it with probability p by a maximally mixed state π =
I
2 , where I is the 2×2 identity matrix. Formally, this channel
is given by:

ND(ρ) = (1− p)ρ+ pπ

= (1− q)ρ+
q

3
(XρX + Y ρY + ZρZ) (15)

with q
4
= 3p

4 as in [46]. To check whether the coherent
information is superadditive for this channel, it suffices to
calculate the coherent information for a single use of the
channel, and then to find a code for multiple uses of the
channel whose coherent information out-passes the single use
case.

To this end, we note that the state maximizing the coherent
information Ic(ρ,N ) in (6) for the depolarizing channel is the
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ΦAA
′

ND

(ND ⊗ I)(ΦAA
′
) = Φ̃BA

′

I

Figure 10: The figure shows the scenario used to derive the
coherent information Ic(ND) for the depolarizing channel
ND. The quantum information is encoded into the maximally-
entangled input state ΦAA

′
, whose part A is sent through the

noisy channel ND and the other part A′ is kept as a reference,
by sending it through the ideal channel I.

maximally entangled state |Φ〉AA
′

= 1√
2
(|00〉+ |11〉) [46, 87,

112]. Equivalently, this means that the coherent information of
the depolarizing channel ND can be obtained – by following
the scheme depicted in Figure 10 – over the output state Φ̃BA

′
,

where:

Φ̃BA
′

= (ND ⊗ I)(ΦAA
′
)

= (1− p)ΦBA′ + p(πB ⊗ πA′) (16)

where ΦAA
′ 4

= |Φ〉AA
′
〈Φ|AA

′
and ΦBA

′ 4
= |Φ〉BA

′
〈Φ|BA

′

denote the density matrices of the maximally entangled states.
Accordingly, from (114) and (108) reported in Appendix D,
the coherent capacity Ic(ND) of the depolarizing channel for
a single use is given by:

Ic(ND) = [S(B)− S(BA′)]Φ̃BA′ =

=

{
1−H(~q) whenever H(~q) ≤ 1

0 otherwise
(17)

with ~q = (1 − q, q3 ,
q
3 ,

q
3 ) denoting the vector of probabilities

and H(~q) = −(1−q) log2(1−q)−q log2 q+q log2 3 denoting
the Shannon entropy – defined in (102) – of the distribution
~q.

A plot for the single-shot coherent capacity Ic(ND) of the
depolarizing channel is given in Figure 11, where we see
that it vanishes from a critical value of q ≈ 0.1893. It is
known that for antidegradability reasons, the quantum capacity
C(ND) of the depolarizing channel vanishes when the channel
parameter q satisfies q ≥ 1

4 = 0.25 [113] and, hence, the
coherent information fully characterizes the quantum capacity
of the channel. Conversely, whenever q < 1

4 , the coherent
information does not fully characterize the quantum capacity
of the channel. Consequently, the coherent capacity of multiple
uses of the channel must be computed and, in the following,
we will focus on a specific scenario where three uses – instead
of five as in [46, 87, 112, 114] – of the channel are sufficient
to prove the superadditivity of the coherent information.

Specifically, we focus on a (3, 1) repetition code where each
qubit is transmitted with three uses of the channel ND, and
we will show that there exist a state ρ and some parametric
region of the depolarizing channel ND so that:

1

3
Ic(ρ,D ◦ N⊗3

D ◦ E) > Ic(ND) (18)
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Figure 11: Coherent information for a depolarizing channel
ND vs. channel parameter q, where: i) the straight-blue line
denotes the coherent information Ic(ND) achievable with a
single use of depolarizing channel, and ii) the dotted-green
line denotes the coherent information achievable with three
uses of the channel for the encoder output given in (19) with
proper choice of the encoder and the decoder. The plot is an
illustration of the results derived in [46, 87]

where E and D are the encoder and decoder, respectively.
Let us consider as output state of the encoder E(ρ) and,

hence, as input to the equivalent channel, the following state:

|Φ〉A1A2A3A
′

=
1√
2

(|0000〉+ |1111〉) (19)

where Ai is the input to the i-th use of the channel and A′ is
the reference system as in Figure 10.

Furthermore, let us assume we post-process the resulting
state at the level of receiver with the decoder D shown in
Figure 12. Clearly, we have that:

1

3
Ic(N⊗3

D ) ≥ 1

3
Ic(Φ

A1A2A3A
′
,D ◦ N⊗3

D ) (20)

as a result of the quantum data processing inequality [46],
where ΦA1A2A3A

′ 4
= |Φ〉 〈Φ|A1A2A3A

′
.

Due to the convexity property of the coherent information
on the receiver over classical variables [46, 49], the coherent
information resulting from the post-processing in Figure 12
is given by the weighted average over the output of the
measurements s1 and s2 over B1 and B2:

Ic(Φ
A1A2A3A

′
,D ◦ N⊗3

D ) =∑
s1s2

p(s1s2)Ic(Φ
A1A2A3A

′
,Ds1s2 ◦ N⊗3

D ) (21)

where Ds1s2 embeds the dependence of the post-processing
on s1 and s2, i.e., whether there will be applied a X gate on
the third qubit.

For each syndrome s1s2, there are 16 Kraus operators that
can give rise to it. As an example, with probability q3

27 each of
the three channels will act as a X channel, and the decoder,
by measuring the first and second qubits as 00, will keep the
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D
s1

s2

if s1=s2=1

ΦA1A2A3A
′

ND

ND

ND X

I

Figure 12: Scheme showing the decoder D used to prove the
superadditivity of the coherent information for the depolarizing
channel ND.

third qubit as unchanged. By grouping all the possibilities that
give rise to a specific syndrome – say 00 – we can model the
overall evolution of the third qubit as going through a Pauli
channel such as:

N (ρ) = qIs1s2ρ+ qXs1s2XρX + qYs1s2Y ρY + qZs1s2ZρZ (22)

characterized by the vector of probabilities ~qs1s2 with coherent
information given by:

Ic(Φ
A1A2A3A

′
,Ds1s2 ◦ N⊗3

D ) = 1−H(~qs1s2) (23)

Remarkably, it has been shown that we can pick a noise
parameter q from the region where the coherent information
of the single use of the depolarizing channel is vanishing
from Figure 11, while the coherent information in (21) is
non-vanishing. This proves (18), demonstrating a superadditive
effect of the coherent information for the depolarizing channel.

Furthermore, it has been also demonstrated (not construc-
tively, i.e, using random codes) that there exist channels that
have vanishing coherent information for arbitrary n-codes, but
they have a non-vanishing capacity [64]. Which is even a
stronger argument for the necessity of regularization for the
quantum capacity. Indeed, on one hand, this means that the co-
herent information must be regularized over unbounded uses of
the channel, hence, it cannot be used to compute the capacity
in general. On the other hand, since the coherent information
is additive for separable input states, additivity violation also
implies that entanglement can protect information from noise
in a way that is not possible classically [9, 115].

C. Superadditivity of Classical and Quantum Capacities

Having discussed the superadditivity of the one-shot ca-
pacities – i.e., of the Holevo information and the coherent
information – we discuss now the superadditivity of the
regularized capacities C(N ) and Q(N ).

Someone could think that some form of superadditivity
for the regularized capacities might be obtained by using
multiple instances of the same channel, as schematized in
Figure 5b. However, regularized capacities – regardless of the
classical/quantum nature of the message – over asymptotic
uses of the same channel are themselves always additive. In

the case of the classical capacity, this translates formally into:

C(N⊗n) = nC(N ) (24)

regardless on whether the n uses of the same channel happens
simultaneously in parallel or sequentially with independent
uses over time. Similarly, the quantum capacity Q(N ) is
additive over multiple uses of the same channel

Q(N⊗n) = nQ(N ) (25)

This additivity property can be easily seen from the regu-
larization of the Holevo capacity given in (5) and from the
regularization of the coherent capacity given in (7).

Since the additivity is established for the use of the same
channel in parallel or independently over time, it is important
to understand if this holds also when different channels are
considered. The answer to this question allows one to under-
stand how different noisy channels interact and enhance each
others capabilities.

Whether it is true that:

C(N ⊗M) ≥ C(N ) + C(M) (26)

is still an open problem for classical capacity of quantum
channels. For instance, it can easily be noted by simple coding
arguments, that the rate C(N )+C(M) is always achievable by
feeding the optimal code for each channel independently. The
question of the superadditivity of the classical capacity relies
on whether there could be a code with entangled states of the
codewords, that satisfies C(N ⊗M) > C(N ) + C(M). We
should note that the superadditivity of the Holevo information
of two channels27 N and M does not guarantee the superad-
ditivity of the overall capacity of the two channels N ⊗M
when used together.

Contrary, the situation for the quantum capacity is much
more understood.

The quantum capacity can be superadditive over the use of
two quantum channels N andM together [16]. This could be
described formally by:

Q(N ⊗M) > Q(N ) +Q(M) (27)

Furthermore, as discussed in Section V the quantum capac-
ity can exhibit a superactivation phenomena, which constitutes
a form of superadditivity over different zero-capacity channels
in the sense that the quantum capacity can satisfy the following
inequality:

Q(N ⊗M) > Q(N ) +Q(M) = 0 (28)

for Q(N ) = Q(M) = 0 [10]. The superactivation of the
quantum capacity is not possible for the classical capacity for
reasons that we clarify in Section V-D.

V. SUPERACTIVATION OF QUANTUM CHANNEL
CAPACITIES

Here we detail the second marvel phenomenon introduced
in Section III, namely, superactivation. Superactivation, as

27Already proved to exist with Hastings counterexample to the additivity
conjecture [6], as mentioned in Section IV-A.
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(a) Alice and Bob attempt to separately use two zero-capacity
channels N and M to transfer quantum states. Alice uses separate
encoders E1 and E2 for each group of channels and Bob uses
separate decoders D1 and D2. For any set of chosen encoding and
decoding operations the transmission of information will fail due to
the vanishing capacity of individual channels.
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(b) The same two channels being used for the same task, but the
sender’s encoder E now has simultaneous access to the inputs
of all channels being used, allowing for quantum information
to get through the two channels, and the receiver’s decoding

D is also performed jointly preserving coherence.

Figure 13: Superactivation of the quantum capacity from the encoder perspective.

mentioned at the end of Sec IV, is an unexpected genuinely
quantum phenomenon that occurs when two zero-capacity
quantum channels are used to transmit quantum information.

Unexpectedly, superactivation can only occur when the two
cooperating quantum channels are from different families,
none of which can simulate28 the other. In the next subsections,
we discuss the different nonequivalent families of quantum
channels known in literature. Subsequently, we provide ex-
amples of the phenomenon of superactivation for quantum
channels from these families.

A. Classes of Zero-Capacity Channels

At least two classes of quantum channels are known to have
zero capacities (whether additional classes of zero-capacity
channels exist is still an open problem). The first class is
known to be the family of antidegradable channels. Channels
of this family, cannot transmit quantum messages due to the
no-cloning theorem, which prohibits quantum information to
be duplicated [94]. As is discussed in Appendix C, antidegrad-
able channels are self-complementary, in the sense that the
environment of the channel can process its outcome to get an
exact copy of the receiver. Thus, if this channel has a positive
quantum capacity, it would violate the no-cloning theorem.
An example of channels from this family is the 50% two-
qubit erasure channel, which faithfully transmits a two-qubit
input state half of the time and outputs an erasure flag in the
rest of the cases. This channel is given by [49, 46]:

NE50%
(ρ) =

1

2
ρ+

1

2
|e〉 〈e| (29)

where |e〉 stands for the erasure flag29.
Another family which is known to have vanishing quantum

capacity is the class of PPT channels. These are channels with

28I.e., arbitrary combinations of channels of one family cannot result in a
channel from the other family [10, 49, 46].

29Mathematically, this means that NE50%
: H1 ⊗ H2 → H1 ⊗ H2 ⊕

span{|e〉}, where H1,2 are the Hilbert spaces of the first and second qubit,
respectively. Hence, this channel has a four-level input and a five-level output,
where the extra output corresponds to the erasure flag.

Choi state that has a positive partial transpose30, hence a PPT
state. It is known that PPT states are states from which no
entanglement can be distilled even asymptotically. The reason
why PPT channels have zero capacity, is that no entanglement
can be recovered between the sender and the receiver even
at an unbounded use of the channel [3, 116]. A particular
example of this family is the 4-dimensional Horodecki channel
NH given by its Kraus operators as:√

q

2
I⊗ |0〉 〈0| ,

√
q

2
Z ⊗ |1〉 〈1| ,

√
q

4
Z ⊗ Y,√

q

4
I⊗X,

√
1− qX ⊗M0,

√
1− qY ⊗M1 (30)

with

M0 =

(
1
2

√
2 +
√

2 0

0 1
2

√
2−
√

2

)

M1 =

(
1
2

√
2−
√

2 0

0 1
2

√
2 +
√

2

)
(31)

and I,X, Y, Z denoting the 2 × 2 generating matrices of the
Pauli group.

B. Superactivation of Quantum Capacity

Superactivation is a strong superadditivity phenomenon that
occurs when two channels, having vanishing individual quan-
tum capacities Q(N ) = Q(M) = 0 belonging to different
classes of zero capacity channels, are used together. These
channels might gain potentially a quantum capacity enabling
them to communicate quantum information, in such a way
that:

Q(N ⊗M) > Q(N ) +Q(M) = 0 (32)

As a result, we say that quantum capacity has been activated
[10]. The phenomenon of superactivation is schematized in
Figure 13.

30I.e., the partial transpose map (In ⊗ T ), where In is a n-dimensional
identity map (in our case, n = 2 for qubit), keeps the eigenvalues of the Choi
state positive. See Example 5 in the Appendix B for the formal definitions of
the transpose map T and the partial transpose map (In ⊗ T ).
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In this context, it has been shown that, when a quantum
channel is used together with a classical channel to transmit
quantum information, this configuration does not increase the
quantum capacity [117]. This research area has been extended
to symmetric side quantum channels [118], whose use together
with an arbitrary channelN exhibits the following single-letter
expression:

Q(N ⊗NSS) = sup
S∈S

Ic(N ⊗ S) (33)

where NSS is the channel of unbounded dimension satisfying
the optimization over the convex set S of symmetric side
channels. In particular, it satisfies the following relation [10]:

Q(N ⊗NSS) ≥ 1

2
P (N ) (34)

with P (N ) denoting the private capacity31 of channel N .
Combined with the fact that the known Horodecki channels

have a non-vanishing private capacity – i.e., P (N ) > 0 –
this key result demonstrates that the capacity of Horodecki
channels together with symmetric channels is non-vanishing.
Namely, there exists a zero-quantum-capacity symmetric chan-
nel that, when used with a zero-quantum-capacity Horodecki
channel, leads to a positive capacity. However, this result
involves symmetric channels NSS with infinite dimensional
input, given the sup in (32). Hence, further bounds for
symmetric side channels with finite dimensional inputs are
needed.

Accordingly, it has been shown that when Alice and Bob
use a 4-dimensional Horodecki channel NH given in (30) to
communicate quantum messages with a symmetric channel
given by 50% two-qubit erasure channel NE50%

given in (29),
the startling effect of superactivation occurs [10]. When these
two channels are combined, in fact, they satisfy [10]:

0.1 < Ic(ρ,NH ⊗NE50%
) ≤

Ic(NH ⊗NE50%
) ≤ Q(NH ⊗NE50%

) (35)

where Ic(ρ,NH ⊗NE50%
) is the coherent information of the

channel NH ⊗ NE50%
over a particular input state ρ whose

expression can be found in [10].
The two channels NH ⊗ NE50%

are neither antidegrad-
able nor PPT, having quantum capacity greater than zero.
Therefore, we might interpret the gained capacity Q(NH ⊗
NE50%

) > 0.1 as the symmetry of the erasure channel being
somehow broken as an effect of the private information leaked
through the Horodecki channel [12].

C. Non-Convexity of Quantum Capacity

Astoundingly, another form of superactivation for the previ-
ous channels has been revealed, in terms of the non-convexity
property of the quantum capacity. A channel, that is a flagged
convex combination of the two zero capacity channels, can be
constructed, and is given by

Mp = pNH ⊗ |0〉 〈0|+ (1− p)NE50%
⊗ |1〉 〈1| (36)

31In a nutshell, the private capacity defines the rate at which the channel
can be used to send classical data that is secure against eavesdropper with
access to the environment of the channel.

It is a flagged32, convex combination which can be switched
between acting as NH and NE50%

with the aid of an ancillary
qubit degree of freedom.

To better understand the capabilities of this channel for
transmitting quantum information, one would calculate coher-
ent capacity over multiple uses, as its one shot coherent capac-
ity clearly vanishes because NH ⊗|0〉 〈0| and NE50%

⊗|1〉 〈1|
are both zero-capacity channels. Subsequently, its two-shot
coherent capacity is given by [10]:

Ic(ρ,Mp ⊗Mp) = p2Ic(ρ,NH ⊗NH)

+ p(1− p)Ic(ρ,NH ⊗NE50%
)

+ p(1− p)Ic(ρ,NE50%
⊗NH)

+ (1− p)2Ic(ρ,NE50%
⊗NE50%

) (37)

Under symmetry restrictions of the input state ρ, the two-shot
coherent capacity is not vanishing over a given region of the
convexity parameter p [10, 12].

This new channel, contrary to its constituent channels, has
a non-vanishing capacity, exhibiting an extreme form of su-
peractivation. This confirms that the communication potential
of a channel depends on the context in which it is used or on
what other channels are available with it. This claim, will be
further supported by the phenomenon of causal activation.

D. Classical Capacity

As discussed in Section V-A, quantum channels can have
zero capacity due of different reasons. This allows to cate-
gorize zero-capacity channels into different classes [88, 121,
122]. Hence, if we use independently two quantum channels
of different classes, the entanglement and coherence that might
be available in the input state allow the channels to interfere
with each other. Consequently, each one can leak some amount
of information that the other channel does not allow. This
interference between the two channels gives an equivalent
channel that is of neither class, resulting in a noise reduction
that beats the vanishing capacity of the individual quantum
channels.

This cannot happen when quantum channels are used to
transmit classical information, because only a channel, whose
output is the same regardless of the input message, can have
zero classical capacity [49]. Hence, there exists only a single
class of channels with zero classical capacity, and it is not
possible to exploit channels of different classes to superactivate
their classical capacities [45, 106].

VI. CAUSAL ACTIVATION OF QUANTUM CHANNEL
CAPACITIES

In ordinary quantum Shannon theory, although the infor-
mation carriers obey the laws of quantum mechanics, the
treatment of their propagation remains classical. Indeed, the
informational carriers are transmitted through a well-defined

32The flagged extension of quantum channels plays an essential role for
finding tight bounds for quantum channel capacities that cannot be expressed
as single-letter formulae. Particular examples are the depolarizing channel and
the generalized amplitude damping channel, whose capacity bounds are still
an open problem for particular ranges of their noise parameters. Interested
readers might be referred to the following recent results [84, 119, 120].
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Figure 14: The quantum switch supermap, where two quantum
channels N and M are placed in a genuinely quantum con-
figuration given by a coherent superposition of causal orders
between the two channels [16]. Within the figure, ρc denotes
the control system, part of the switch supermap, controlling the
causal order between the two channels. Whenever the control
qubit is initialized in a superposed state, the two channels are
placed in a coherent superposition of the two different causal
orders M◦N and N ◦M.

trajectory which is assumed a-priori or can be chosen ran-
domly, for example, by tossing a coin. Recent works proposed
to generalise the framework of quantum Shannon theory
[15, 16, 17] such as, not only the information or the channels,
but also the placement of the channels – i.e., the trajectories
along with the carriers propagate – can be treated as quantum
and being subjected to the superposition principle.

In this section, we will review the possible advantages
following the extension of quantum Shannon theory to include
quantum trajectories, which is considered as the second quan-
tization of classical Shannon theory [15, 16].

A. Quantum Switch

A key example of quantum trajectories, which has been
proven to be useful for communication, is given by the quan-
tum switch33 [14, 22, 23, 95, 98, 99, 109, 123, 124], illustrated
in Figure 14. Such a supermap, given two quantum channels
N and M, generates a new configuration in which the two
channels are in a coherent superposition of two different causal
orders, namely, M◦N and N ◦M.

Formally, the quantum switch maps the two original chan-
nels N and M into a new quantum channel Sρc(N ,M)(·),
whose output is given by:

Sρc(N ,M)(ρ) =
∑
ij

Sij(ρ⊗ ρc)S†ij (38)

where ρ is the input state, ρc is the state controlling the causal
order between the two channels in hand, and {Sij} denotes
the Kraus operators of the switch, given by:

Sij = NiMj ⊗ |0〉 〈0|c +MjNi ⊗ |1〉 〈1|c (39)

with {Ni} and {Mj} denoting the Kraus operators of the
respective channels. We should note that the structure of

33When the complete positivity of quantum combs or process tensors is
restricted to non-signaling channels only, a wider class of supermaps emerges,
which includes the quantum switch as a particular instance. The quantum
switch supermap cannot be described by any form of a temporal process
tensor or quantum comb, unless postselection on some degree of freedom of
the environment is allowed [95, 110].
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Figure 15: The Holevo information of the effective channel
Sρc(NCD,NCD)(·) implemented through the quantum switch
when ρc is the density matrix for the state 1√

2

(
|0〉+ |1〉). The

plot is an illustration of the results derived in [14].

the switch is independent of the Kraus representation of the
individual channels.

This new resource has proven to provide advantages over
the classical placement of quantum channels, violating the
bottleneck inequality (115) [14, 22, 109, 124]. The rationale
for this astonishing violation is that the coherent control within
the quantum switch allows for the order – in which the
channels act on the information carrier – to be entangled with
a control degree of freedom. As a consequence, a constructive
interference results from the coherent superposition of the
causal order between the channels, allowing for a reduction
of the overall noise affecting the information carrier.

It is worth noting that the control system, whose state is
fixed a-priory, is crucial in the switch. Indeed, it seems to be
locking a considerable amount of information present in the
coherent superposition of the orders. Clearly, with no access to
the measurement outcome of the control qubit at the receiver –
hence, by “tracing” it out – we cannot recover that amount of
information. Furthermore, given that the control qubit embeds
a fixed and a-priori determined quantum state, it can not be
exploited by the sender to encode information34, i.e., it does
not constitute a side channel [16].

B. Causal Activation of Holevo Information

The use of the quantum switch for the transfer of classical
information over quantum channels has been shown to outper-
form the usual communication setups – namely, sequential or
parallel placement of channels in a causal order – of quantum
Shannon theory.

Specifically, when two completely depolarizing channels
– each with vanishing Holevo information, prohibiting them

34The control qubit might be regarded as the degree of freedom of the
environment that is responsible for the order of the channels. This degree
of freedom is accessible by the communication provider, who communicates
measurement outcomes on it to the receiver Bob [125].



19

from transmitting classical messages whatever classical con-
figuration they are used in – are combined together in the
quantum switch, they can deliver a non-vanishing amount
of classical information [14]. The completely depolarizing
channel NCD for a d-dimensional input ρ is described by a
mixture of d2 mutually orthogonal unitaries35 {Ui}d

2

i=1 so that:

NCD(ρ) =
1

d2

d2∑
i=1

UiρU
†
i (40)

with the Kraus operators in (39) describing the quantum switch
supermap given by:

Sij =
1

d2

(
UiUj ⊗ |0〉 〈0|c + UjUi ⊗ |1〉 〈1|c

)
(41)

When the controller is initialized in the state ρc =√
p |0〉 〈0|+√1− p |1〉 〈1|+

√
p(1− p)(|0〉 〈1|+ |1〉 〈0|), the

output (38) of the quantum switch is given explicitly by:

Sρc(NCD,NCD)(ρ) =
I

d
⊗
(
p |0〉 〈0|c + (1− p) |1〉 〈1|c

)
+

ρ

d2
⊗
√
p(1− p)(|0〉 〈1|c + |1〉 〈0|c)

(42)

where I is the d × d identity matrix. By accounting for (42)
with p = 1

2 , the Holevo information achievable through the
quantum switch Sρc(N ,M)(·) is given by:

χ
(
S|+〉〈+|(NCD,NCD)

)
= log d+ S(ρ̃c)+

−Hmin(Sρc(NCD,NCD)) (43)

where S(ρ̃c) is the von Neumann entropy of the reduced state
of the control system ρ̃c = 1

2 |0〉 〈0|+ 1
2 |1〉 〈1|+ 1

2d2 (|0〉 〈1|+
|1〉 〈0|), and Hmin(Sρc(NCD,NCD)) is the minimum output
entropy of the effective channel Sρc(NCD,NCD), given by:

Hmin(Sρc(NCD,NCD)) = −
[d+ 1

2d2
log

d+ 1

2d2
+

+
2(d− 1)

2d
log

1

2d
+
d− 1

2d2
log

d− 1

2d2

]
(44)

A plot of the Holevo information χ(Sρc(NCD,NCD)) in
(43), characterizing the capability of the quantum switch to
transfer classical information, is given in Figure 15. It is
clear from the plot that the completely depolarizing channel,
which has vanishing classical capacity over arbitrary many
uses, gains a non vanishing Holevo information36 whenever
two instances of the channels are used within the quantum
switch. It is worthwhile to mention that the Holevo information
represents just a lower bound on the regularized classical
capacity achievable with the quantum switch, which is non-
vanishing as well.

This result, although moderate in terms of capacity improve-
ment as shown in the figure, is of crucial importance from a
communication engineering perspective, since it violates one
of the fundamental bounds for classical trajectories, namely
the bottleneck inequality given in (115).

35The completely depolarizing channel NCD and its Kraus representation
are discussed in Appendix B.

36Indeed, it has been shown that – through n > 13 channels placed in
a superposition of cyclic causal orders, the quantum switch can activate the
coherent information of the fully depolarizing channel as well [98], resulting
in a non-vanishing quantum capacity.

C. Causal Activation of Quantum Capacity

As for classical capacity, there exists – as well – quan-
tum channels with vanishing quantum capacity that, when
combined within the quantum switch, gain a non-vanishing
quantum capacity [22].

An illustrative example is the entanglement breaking chan-
nel NEB characterized by the Kraus operators {X,Y }, and
whouse ouput state is given by:

NEB(ρ) =
1

2
(XρX + Y ρY ) (45)

with X and Y denoting 2× 2 Pauli matrices.
This channel has vanishing quantum capacity Q(NEB) = 0,

regardless of the adopted classical (serial or parallel) con-
figuration, since it is anti-degradable, i.e., the output on the
receiver can be obtained by post-processing the output of the
environment, resulting in a violation of no-cloning theorem as
mentioned in Section V-A.

However, the quantum switch activates its capacity to its
maximum37 whenever the control qubit places the channels in
an equal superposition of orders, that is [22]:

Q
(
S|+〉〈+|(NEB ,NEB)

)
= 1 (46)

This astonishing result can be easily understood by consid-
ering the output of the quantum switch, given by:

S|+〉〈+|(NEB ,NEB)(ρ) =
1

2
ρ⊗|+〉 〈+|c+

1

2
ZρZ⊗|−〉 〈−|c

(47)
We can see that the outcome in (47) is equivalent to a convex
combination of two flagged channels I and Z and, hence, the
coherent information of the equivalent channel is simply the
convex sum of the coherent information of the two flagged
channels:

Ic
(
S|+〉〈+|(NEB ,NEB)

)
=

1

2
× 1 +

1

2
× 1 = 1 (48)

This result is astonishing, since it non only violates the bot-
tleneck inequality given in (115) as discussed in the previous
subsection, but it activates the capacity to its maximum value,
starting from zero-capacity channel.

Although our previous discussion explicitly shows the ad-
vantages of the quantum trajectories for communications,
closed-form expressions of the ultimate capacities achieved
through the quantum switch are yet to be solved for generic
quantum channels. In this direction, many efforts are made
to obtain tight upper and lower bounds on the quantum
switch capacity. In particular, it has been shown [123] that
the use of the three copies of the completely depolarizing
channel outperforms the bound given in (43). This has been
extended to show that the asymptotic use of many copies of the
completely depolarizing channel in a superposition of cyclic
orders achieves perfect transmission of classical information
[98, 99]. Furthermore, upper and lower bounds of the quantum
switch capacity have been obtained for different types of
channels [14, 22, 98, 109, 124].
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Superactivation Causal activation

Entanglement Yes: within the encoding Yes: between the causal order of the channels and the control system

Type of the channels Two different channels belonging to different zero-
capacity classes

Two different or identical channels, as long as their Kraus operators do
not pairwise commute/anti-commute with each others

Channel placement Classical Quantum: superposition of relative orders

Channels with zero
classical capacity

Not activated Activated

Channels with zero
quantum capacity

Activated Activated

Noise Reduction Always Not always

Table IV: Superactivation vs causal activation. Although both superactivation and causal activation arise from the phenomenon of
entanglement, and they both enable information transmission even through channels with zero capacity, they exhibit fundamental
differences as summarized within the table.

VII. CONCLUSIONS AND FUTURE PERSPECTIVE

In classical communications, which are based on classical
information flowing through classical channels, it is widely
known that the channel capacity is additive. Namely, whenever
a channel cannot transmit classical information over a single
use, it can never gain potential to transmit information over
multiple uses or when assisted by other zero-capacity classical
channels.

Conversely, the weird unconventional phenomena of super-
additivity, superactivation and causal activation of quantum
channel capacities violate known bounds and assumptions of
classical Shannon theory, boosting – sometimes with astonish-
ing gains such as in Section V and Section VI-B – both the
classical and the quantum capacities.

Hence, it is of paramount importance to i) discuss the
rationale for these phenomena to appear in the quantum realm,
and ii) highlight open problems and research directions, both
from a communication engineering perspective.

A. Discussion

A.1) The role of quantum signatures: As thoroughly dis-
cussed in the previous sections, the advantage that the phenom-
ena of superadditivity, superactivation and causal activation
provide for communications is based on the presence of
entanglement, though in different disguises.

In superadditivity and superactivation, entanglement is ex-
ploited in the used codewords, enabling information carriers to
be correlated while each traverses one channel. If the sender
use separable codewords, as shown in Figure 13a with refer-
ence to the superactivation phenomenon, these phenomena do
not occur. Conversely, for causal activation the entanglement
is manifested in the correlation between: i) the order in which
the channels acts on the information carrier, and ii) the degree
of freedom of the control system, which necessarily does not
carry any information.

Similarly to this key difference in the exploitation of the
key-resource represented by entanglement there exists another

37We further note that the qubit channels that might witness such perfect
activation of the quantum capacity are the only ones unitary equivalent to the
entanglement breaking channel given in (45) [22].

distinction in terms of channel placement between superad-
ditivity/superactivation and causal activation, as summarized
with Table IV for super vs causal activation. Specifically, the
former two phenomena occur with a classical placement of
channels – either through i) multiple uses of the same channel,
or ii) use of different zero-capacity channels from different
classes – whereas the latter occurs when a quantum trajectory
is exploited – with the only restrictions to have the channel
Kraus operators not commuting or anti-commuting pairwise.

It is worthwhile to underline that – regardless of the
differences between the three phenomena – quantum channels
are a fundamental constraint for this marvels to occur. Meaning
that these phenomena do not have any classical counterpart
when classical channels are used for communication.

A.2) Difference between causal activation and superaddi-
tivity/superactivation: Furthermore, it is tempting to believe
that quantum channels placed in quantum trajectories provide
stronger advantages with respect to classical configurations
such as those exploited by superadditivity and superactivation.
However, this is not the case. Indeed, in the case of the causal
activation, the information carrier undergoes a superposition
of two sequences of channels with different causal orders,
which might result in an overall noise addition instead of
reduction. And the rationale for this is due to the fact that
a destructive interference – rather than a constructive one –
can take place. Differently, in superadditivity/superactivation,
the information carriers are split between the different uses of
the same channel or the different channels such as each carrier
undergoes a single operation, which can only induce a noise
reduction, and never a noise amplification.

Finally, an interesting intersection between the two kinds of
channels placement might be found by considering the family
of flagged channels. In fact, a similarity between the phe-
nomenon of superactivation in flagged convex combinations
of zero-capacity channels, discussed in Section V-C and the
phenomenon of causal activation in the quantum switch arises.
This similarity becomes clear by noticing that the resulting
channel from the quantum switch of two channels or more
– such as the one given in (47) – is nothing else than a
quantum-flagged convex combination of two channels, which
might have zero capacity in particular cases.
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B. Open Problems

Besides the marvelous communication advantages that the
discussed phenomena enable, there are relevant issues – from
the engineering perspective – that we should point out and
properly discuss.

B.1) Superactivation: Primarily, superactivation is not yet
fully understood, and many questions in this direction are yet
to be answered. Basically, it is still important to understand
whether there exist other families of zero-capacity quantum
channels, besides the antidegradable and PPT families. Indeed,
whether the superactivation holds for other Horodecki chan-
nels without positive private capacity, or whether there are
other pairs of channels that witness such effect – besides the
50% erasure and the 4-dimensional Horodecki discussed in
the text – is still not answered.

Furthermore, besides the mentioned issues arising in dis-
crete quantum channels, there is much more to discover and
to investigate in the continuous domain [126, 127]. Recently,
it has been showed that superactivation can be revealed in a
broad range of thermal attenuator channels, even when the
transmissivity is quite low, or the thermal noise is high [128].
This urges further investigations of whether superactivation
might occur in physically relevant circumstances of quantum
Gaussian channels [129, 130]. This would be a triumph for
future quantum communications based on quantum properties
of light.

B.2) Superadditivity: With reference to the superadditivity
phenomenon, it has been proved for channels which might be
relevant in realistic scenarios. Indeed, superadditivity has been
shown for a given range of the depolarizing channel. Further-
more, a recent superadditivity phenomenon of the coherent
information has been shown for the dephasure channel, which
is a concatenation of an erasure and a dephasing channel. This
erasure channel can be seen as a pure-loss bosonic channel on
a dual-rail qubit system, which is a good model for optical
fibers.

A strong superadditivity phenomenon has been revealed
in quasi-zero-capacity channels. Specifically, quantum rocket
channel – namely, a channel with a 2 log d input qubits
with private capacity less than 2 – combined with the d-
dimensional 50% erasure channel – which has zero private
capacity – can achieve high capacity in the order of 1

2 log d
[9], hence, significantly larger than the capacity of the former
channel. Consequently, intensive efforts are devoted to further
investigations on the superadditivity of useful channels, both
i) from a theoretical point of view, to serve as a laboratory
for understanding quantum capacities, and ii) from a practical
point of view, to harness the effect of superadditivity in near
term quantum communication technologies.

However, and differently from quantum capacities, practi-
cal and concrete examples of superadditivity of the Holevo
capacity are still missing, leaving an open door for future
research to reveal the usefulness of superadditivity for the
transmission of classical information over quantum channels.
Moreover, a full understanding of the gap between capacities

of quantum channels under different constraints – namely,
classical encoding-quantum decoding and quantum encoding-
classical decoding – is still missing. This urges further inves-
tigation of finite blocklength coding and decoding strategies
[131], and the comparison between collective measurements
and LOCC (local operations and classical communication)
strategies on the discrimination of product states. The later
has been thoroughly investigated recently in [132]. We should
highlight that we have omitted in this manuscript the dis-
cussion of superadditivity in trade-off capacities of quantum
channels. This is the capacity given by a trade-off region
considering a limited assistance of quantum communication by
classical communication and entanglement. It has been shown
that this kind of quantum capacity exhibits a superadditivity
phenomenon. Interested reader is referred to [133, 134, 135].

Finally, a key issue is constituted by the fact that capac-
ities of realistic channels, which models practical quantum
communication scenarios on different platforms, are still not
known. In particular, the capacities of the generalized ampli-
tude damping channel is still not fully understood [127, 136].
This channel can be seen as the qubit analogue of the bosonic
thermal noise channel, and it models some of the sources of
noise in superconducting circuit-based quantum computing.
To this aim, many techniques for obtaining upper bounds
of quantum channel capacities have been chased. For upper
bounds on the classical capacity of quantum channels, the
reader can be referred to [115, 137, 138, 139, 140]. In equal
footing, for upper bounds of quantum capacities of quantum
channels the reader is referred to [141, 142, 143, 144].

B.3) Causal activation: Not very different from the previous
two phenomena, there is a lot to be understood in causal acti-
vation. This phenomenon has been shown to be advantageous
for some practical channels, like the entanglement breaking
channel in the case of quantum information transmission dis-
cussed in Section VI-C and the completely depolarizing chan-
nel when it comes to the classical information transmission
discussed in Section VI-B. Nevertheless, causal activation for
continuous variable channels is still missing, which would be
of paramount importance for photonic-based future quantum
communications.

Another issue that might face the engineering of causal
activation is represented by the coherent control of realistic
channels. Basically, to be able to perform coherent control, all
we need to know is the properties of the quantum channels
themselves, which are – not easily – obtained by quantum
process tomography [145, 146]. Even more challenging, it has
been shown that there are processes revealed to break one of
the key properties of quantum channels, which is complete
positivity [147, 148, 149]. These processes cannot be described
by Kraus operators and, hence, the quantum switch paradigm
fails in this regard.

A possible link between superactivation and causal acti-
vation of quantum channels might be tackled through the
environment-assisted communication paradigm [150, 151,
152]. On one hand, it has been shown that the quantum switch
can be viewed as a one-way LOCC environment-assisted
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strategy [125], where the environment is controlled by a helper.
In this context, the control qubit of the switch arises as a
residual degree of freedom of the environment. This particular
strategy (the quantum switch) perfectly corrects the noisy
channels when it is optimal, otherwise, the quantum switch
fails to perfectly mitigate the noise. It is worth mentioning
that optimality is with regard to the one-way LOCC strategy
maximizing the environment-assisted capacity of the corrected
channel. On the other hand, it has been shown that, when the
helper is allowed to use entangled states of the environment,
two useless channels with zero capacity under environment
assistance might activate their joint capacity [153, 154]. This
opens a future direction for the investigation of the link
between correlated control degrees of freedom among multiple
quantum switches, and the possible superactivation therein.
This will help better characterizing and understanding the
capacity of the quantum channels used in the quantum switch.

Besides the advantages that the quantum switch can bring to
point-to-point communications – namely, mitigating the noise
of quantum channels by placing them in coherent superpo-
sition of relative orders – it would be quite valuable to find
practical applications for quantum networks. A first contribu-
tion toward this issue has been proposed in [155], where the
indefinite causal order framework has been used to generate
multipartite entanglement. Importantly, it has been shown that
the application of the quantum switch can be advantageous
for the achievement of distributed multipartite entanglement
generation between remote nodes of a quantum network.
Consequently, the quantum switch may play the missing part
in achieving reliable photonic multi-qubit gates or, at least,
a quantum interface between different qubit technologies,
mapping entangled states engineered in a particular platform –
i.e., superconducting entanglement – to photonic flying qubits
used for long distance point-to-point communication [156].

These different advantages of the quantum switch suggest
a new way of looking at quantum networks. Namely, new
quantum internet protocol stacks are yet to be proposed [38],
taking into account the coherent control in general, and the
superposition of causal order paradigm in particular, laying
the ground for a complete understanding of the full potential
of future communication networks.

APPENDIX A
QUANTUM INFORMATION BASICS: CRASH COURSE

1) Quantum bit and superposition principle: Information,
either classical or quantum, can be encoded in the state of the
simplest quantum mechanical system, namely, the quantum bit
(qubit). Mathematically38, the state of a qubit is defined as a
vector |ψ〉 in a two-dimensional Hilbert space H. Therein it
is possible to choose a basis, as instance the computational
basis {|0〉 , |1〉} which draws an analogy with the states 0
and 1 of a classical bit. Then, according to the superposition

38Here we adopt the bra-ket notation, which is usually adopted to denote
the vector representing the state of a qubit. Indeed, a ket |·〉 represents a
column vector, while a bra 〈·| = |·〉† represents its hermitian conjugate. A
scalar product of two vectors |ψ〉 and |φ〉 is then denoted as 〈ψ|φ〉, whereas
a direct product of a ket and a bra is given by |φ〉〈ψ|.

principle, an arbitrary state of a qubit can be expressed as a
linear combination of the chosen basis states:

|ψ〉 = α|0〉+ β|1〉 (49)

where α, β ∈ C, and |α|2 + |β|2 = 1. The state |ψ〉 in (49) is
said to be in a superposition of the states |0〉 and |1〉.

2) Unitary transformations: If a quantum system (such as a
qubit) is closed, it can evolve in time only under deterministic
and reversible unitary transformations U , i.e., transformations
satisfying:

U†U = IH (50)

where IH is an identity in the Hilbert space H. This means
that, given the state of the system at some initial time point
t1, its state at a certain time t2 is fully determined by the
corresponding unitary operator:

|ψ(t2)〉 = U(t2, t1)|ψ(t1)〉 (51)

which depends only on times t1 and t2. Unitary transforma-
tions play a crucial role in quantum information and quantum
communications since they can seen as gates acting on a qubit.
In this picture, a quantum gate has input and output ports for
a qubit, and the time evolution is hidden in the relationship
between them,

|ψ〉out = U |ψ〉in (52)

Typical examples of quantum gates widely used in quantum
information are the Pauli gates

X =

(
0 1
1 0

)
Z =

(
1 0
0 −1

)
Y =

(
0 −i
i 0

)
(53)

which flip the bit (|0〉 → |1〉), the phase (α |0〉 + β |1〉 →
α |0〉 − β |1〉), or both, respectively.

An important consequence of the constraint on the trans-
formations of a closed quantum system to be unitary is
the celebrated no-cloning theorem (see Section II-A), which
states the impossibility of creating an independent copy of
an unknown quantum state. Indeed, there exists no unitary
operator U acting on two quantum systems able to transform
state |ψ1〉 of one system into state |ψ2〉 of another one,
regardless of |ψ2〉.

3) Projective measurements: If the state of the system
is unknown, certain information on it can be acquired by
measuring some (observable) property of it. Mathematically39,
any observable is described by an operator A that is self-
adjoint (i.e., A† = A) and can be expanded as:

A =
∑
i

aiMi (54)

where {ai} are its eigenvalues describing the possible out-
comes of the measurement, and Mi are the orthogonal projec-
tors onto the eigenvectors associated with the corresponding
eigenvalues:

MiMj = δijMi (55)∑
i

Mi = IH (56)

39We first describe the projective measurement, and then at the end of this
appendix we generalize it by considering the positive operator-valued measure
(POVM). For an exhaustive treatise about the subject, the reader is referred
to [101].
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By measuring the observable A, a certain outcome ai is
obtained. However, accordingly to the quantum measurement
postulate, after this measurement the system is left in the
eigenstate associated with the projector Mi. With more details,
when a measurement is performed on a system in the state
|ψ〉, the outcome ai is obtained with probability calculated
according to the Born’s rule:

P(ai) = 〈ψ|M†iMi|ψ〉 = 〈ψ|Mi|ψ〉 (57)

After the measurement, the system collapses into the state

Mi |ψ〉√
P(ai)

. (58)

We note that any following measurement of the same observ-
able reveals again the same outcome ai and state in (58).

Example 1. Let us consider a simple example to better present
the above concept related to the quantum measurement. Specif-
ically, let us suppose to be interested in measuring the qubit
state (49) in the computational basis {|0〉 , |1〉}. In this case,
M0 = |0〉 〈0| and, M1 = |1〉 〈1|. By measuring the considered
state and according to the Born’s rule, we obtain the outcome
“0” with probability given by:

P(0) = (α∗ 〈0|+ β∗ 〈1|) |0〉 〈0| (α |0〉+ β |1〉) = |α|2 (59)

and the outcome “1” with the probability:

P(1) = (α∗ 〈0|+ β∗ 〈1|) |1〉 〈1| (α |0〉+ β |1〉) = |β|2 (60)

and the system, after the measurement, is left in the state
|0〉 or |1〉, respectively. We could measure the qubit in any
other basis, for example, {|±〉 = |0〉±||1〉√

2
}. The corresponding

observable can be constructed as

A = a+M+ + a−M− = |+〉 〈+| − |−〉 〈−| (61)

where a+ = 1, a− = −1, and M+ = |+〉 〈+|, M− = |−〉 〈−|.
In this case, the measurement reveals both outcomes “+” or
“−” with the same probability

P(±) = (α∗ 〈0|+ β∗ 〈1|) |±〉 〈±| (α |0〉+ β |1〉)

=
|α|2 + |β|2

2
=

1

2
(62)

4) Mixed states and density matrix: In the situations when
the knowledge on the actual state is lacking (for example, if the
system undergoes the action of noise), it cannot be described
by a well-defined vector in Hilbert space. This means that
the system is in a certain state with some probability, i.e.,
it has to be described by a statistical mixture of vectors in
Hilbert space. Such a statistical mixture is called mixed state
(in contrast to a well-defined vector which represents a pure
state) and it can be defined formally by adapting the formalism
of density matrix. Indeed, if the system, with dimension d, is
in one of the states {|ψi〉}di with corresponding probability pi,
the density matrix that describes its overall state is defined as

ρ =

d∑
i

pi|ψi〉〈ψi| (63)

For a pure state |φ〉, the density matrix reduces to ρ = |φ〉 〈φ|.
Generally speaking, any operator ρ can be a density operator

and describe a state of the system, as long as it fulfills the
following conditions,

1) ρ† = ρ, i.e., pi ∈ R for all i,
2) ρ ≥ 0, i.e., pi ≥ 0 for all i,
3) Tr(ρ) = 1, i.e.,

∑d
i pi = 1.

These conditions ensure that the eigenvalues of ρ can be
interpreted as probabilities, namely, they are real, positive, and
sum up to the unity. It is necessary to stress out the crucial
difference between these “classical” probabilities pi and the
“quantum” ones P(i). The probabilities P(i) appear when
one performs a measurement on the (well-defined) system’s
state due to the Born’s rule, whereas the probabilities pi
describe our a priori knowledge of the actual system’s state
independently on measurement. Indeed, when a measurement
of an observable A is performed on a qubit being in the state
ρ, an outcome ai is revealed with the probability

P(ai) = Tr(Miρ) (64)

leaving the system in the state

MiρMi

P(ai)
(65)

Example 2. Being the state in (49) a pure state, its density
matrix can be evaluated as

ρψ = |ψ〉〈ψ|
= |α|2|0〉〈0|+ αβ∗|0〉〈1|+ α∗β|1〉〈0|+ |β|2|1〉〈1|

=

(
|α|2 αβ∗

α∗β |β|2
)

(66)

On the other hand, the classical mixture of the states 0 and 1
with the probabilities |α|2 and |β|2 is described by the mixed
state

ρ = |α|2|0〉〈0|+ |β|2|1〉〈1|

=

(
|α|2 0

0 |β|2
)

(67)

When measured in computational basis, in both cases, the
qubit can be found in the state 0 and 1 with probabilities
|α|2 and |β|2, respectively. However, if the measurement is
performed in a basis which includes |ψ〉, i.e., it answer the
question “Is the qubit in the state |ψ〉 or not?”, then, in the
first case, the answer is always “Yes”, and the measurement
does not change the state of the system. In the second case,
the outcome “Yes” is obtained indeed with the probability

P(Yes) = |α|4 + |β|4 (68)

As discussed, the crucial difference is that, in the first case,
the qubit stays in a well-defined state |ψ〉 which is revealed,
as we have seen, when a suitable measurement is performed.
In the second case, however, the qubit a priori stays in one of
the states |0〉 or |1〉 with the corresponding probabilities.

5) POVM: Before ending the appendix it is important to
highlight that the projective measurements introduced above
and described by a set of orthogonal projectors {Mi}, which
satisfy conditions (55) and (56), represent a special case of
the general quantum measurement postulate. However, there
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are important problems in quantum computation and quantum
information, such as the optimal way to distinguish a set of
quantum states, which require a more general tool, as the
positive operator-valued measure (POVM) formalism [101],
where the measurement operators Mi are not necessarily
orthogonal.

Example 3. An important example of using POVM in quantum
communications is given by the problem of distinguishing
between non-orthogonal states. Given a set of N linearly
independent states {|ψi〉}, no projective measurement can tell
with a certainty that a qubit has been in one of them before
measurement if they are not orthogonal. However, a wisely
chosen POVM allows to perfectly distinguish between them
by paying the price that sometimes no information about the
state can be revealed at all. Indeed, it can be achieved by
considering a set of states {|ψ̃i〉} such that a state |ψ̃i〉 is
orthogonal to all the states under interest but |ψi〉 [157], i.e.,

〈ψ̃i|ψj〉 = δij (69)

where δij is unity for i = j and zero otherwise. Then the
POVM consisting of N projectors

Mi =
1

|〈ψ̃i|ψi〉|2
|ψ̃i〉〈ψ̃i| (70)

and the operator MN+1 = I − ∑iMi allows to distin-
guish perfectly between {|ψi〉}. Indeed, finding an outcome
i ∈ {1, ..., N} suggests that the system has been in the
state |ψi〉 before measurement. However, finding the outcome
N + 1 associated with the operator MN+1 does not give any
information about the state of the system at all. For example,
let us assume that we have a qubit and want to distinguish
between two states, |ψ1〉 = |0〉 and |ψ2〉 = |+〉. In this case,
a POVM consisting of operators

M1 = 2|−〉〈−| (71)
M2 = 2|1〉〈1| (72)
M3 = I − 2|−〉〈−| − 2|1〉〈1| (73)

does the job.

6) Composite systems and entanglement: A generic pure
uncorrelated state of a composite system of n qubits {|ψi〉ni=1}
is described by a joint quantum state

|ψ〉 = ⊗ni=1 |ψi〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψn〉 (74)

belonging to a 2n-dimensional complex Hilbert space. To
simply illustrate this, we consider a two qubit system A and
B. The two systems are described individually in the basis
{|0〉 , |1〉}. Accordingly, their joint state would be described
by the tensor product basis given as {|00〉 , |01〉 , |10〉 , |11〉}.
Any state |ψ〉AB of the joint system would be given explicitly
by

|ψ〉AB = α0 |00〉+ α1 |01〉+ α2 |10〉+ α3 |11〉 (75)

with αi ∈ C and
∑
i |αi|2 = 1. Any joint state of this

composite system that cannot be written in a product form as in
(74) should present some form of correlations between systems
A and B. This form of correlations is called entanglement, and

the corresponding state is deemed entangled state. A famous
example of an entangled state in two qubit systems is the set
of Bell pairs given by:

|Φ±〉 =
1√
2

(|00〉 ± |11〉) (76)

|Ψ±〉 =
1√
2

(|01〉 ± |10〉) (77)

More generally, any bipartite quantum system, no matter its
state is pure or mixed, is said to be entangled if it cannot be
written as a convex combination (hence, probabilistic mixture)
of product states in the form:

ρAB =
∑
i

piρ
A
i ⊗ ρBi (78)

A joint state that can be written in this form is called
separable. It is worth noting that separable states can have
classical correlations between the systems A and B.

APPENDIX B
QUANTUM CHANNELS

A quantum communication channel N is described math-
ematically by a completely positive trace-preserving (CPTP)
map C : ρA → ρB from states ρ

4
= ρA ∈ L(HA) belonging

to the set of density operators L(HA) over the input Hilbert
space HA to states ρB ∈ L(HB) on an output Hilbert space
HB . The condition of CPTP assures that the output of the map
C is a valid density operator. In fact, it assures that

• C outputs a positive operator (positivity),
• for any n, In ⊗ C – with In denoting an identity map

on n-dimensional operators – outputs a positive operator
(complete positivity),

• Tr(C[ρA]) = Tr(ρA) (trace preservation).

In the following we provide two simple examples to better
understand the above concepts.

Example 4. The completely depolarizing channel is a widely-
used quantum channel model, and it is described by the
following input-output relationship:

NCD(ρA) =
Tr(ρA)

d
Id (79)

where ρA is the input state belonging to a d-dimensional
Hilbert space HA, and Id is the d-dimensional identity matrix.
The output state NCD(ρA) has a unique d-degenerate positive
eigenvalue 1

d and Tr(NCD(ρA)) = Tr(ρA). As a consequence,
NCD is a positive and trace-preserving map. Moreover, it
is a completely positive map. In fact, by adding an ancilla
system E, we can consider the action of the map In ⊗NCD
on the entire state ρEA ∈ L(HE⊗HA) with ρA = TrE(ρEA).
Accordingly, we obtain that:

(In ⊗NCD)(ρEA) = TrA(ρEA)⊗ Id
d

(80)

has positive eigenvalues since TrA(ρEA) is a state. Hence,
completely depolarizing map NCD is a quantum channel.
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Example 5. Let us consider a map T that transposes a state
ρA =

∑
ij pij |i〉〈j| of the system A, where we fix {|i〉} as a

computational basis in HA. Its output, given by:

T (ρA) =
∑
ij

pij |j〉〈i| (81)

with T denoting the matrix transpose, exhibits obviously the
same eigenvalues and trace as ρA. Hence, T is positive and
trace-preserving. However, let us add another system B in
order to check whether T is completely positive. The state of
the entire system reads:

ρBA =
∑
ijkl

pklij |k〉 〈l| ⊗ |i〉 〈j| (82)

and, if T acts on A, it becomes:

(In ⊗ T )(ρBA) =
∑
ijkl

pklij |k〉 〈l| ⊗ |j〉 〈i|

Now let us assume A and B to be maximally entangled qubits
(hence, n = 2),

ρBA ≡ ΦBA =
1

2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 (83)

and consider again the action of the map T on A. The entire
output is given by

(I2 ⊗ T )(ρBA) =
1

2


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (84)

whose eigenvalues are ± 1
2 . Since one of its eigenvalues is

negative, (I2 ⊗ T )(ρBA) is not positive and, therefore, not a
state. This means that the transpose map T is not completely
positive and, hence, it cannot represent any quantum channel.
Nevertheless, the partial transpose map (In ⊗ T ) plays an
important role in quantum communications lying in the core
of the PPT- or Peres-Horodecki criterion for determining
entanglement.

There are several ways of representing quantum channels
formally, some of which will be useful in our discussion.

A. Kraus Representation

A quantum channel N is described by an operator sum
decomposition in Kraus operators as follows [158, 159, 46]:

N (ρ) =

k∑
i=1

AiρA
†
i (85)

with ρ ∈ L(HA) and with {Ai}ki=1 being linear operators from
L(HA) to L(HB) satisfying the normalization condition:

k∑
i=1

AiA
†
i = IHA (86)

Example 6. The completely depolarizing channel NCD has
the following Kraus representation,

NCD(ρ) =
1

d2

d2∑
i=1

ÛiρÛ
†
i (87)

with {Ûi} being a set of unitary operators that are mutually
orthogonal, i.e., Tr(Û†i Ûj) = dδij . For a qubit (d = 2), a
set of Pauli operators with identity can be chosen, {Ûi} =
{I2, X, Y, Z}, leading to the Kraus representation

NCD(ρ) =
1

4

[
ρ+XρX + Y ρY + ZρZ

]
(88)

In this representation, the channel can be interpreted as a
noisy channel that causes a bit error (X), a phase error (Z),
both errors (Y ), or no error (I2) with the same probability
p = 1

4 .

Example 7. The qubit completely depolarizing channel (88)
can be naturally generalized to the Pauli channel that causes
the mentioned above errors with the corresponding probabili-
ties pX , pY , pZ . This is the quantum channel usually adopted
in quantum communications to model a noisy qubit channel,
and it has the following Kraus representation,

P(ρ) = (1−ΣXY Z)ρ+ pXXρX + pY Y ρY + pZZρZ (89)

where ΣXY Z = pX + pY + pZ . Obviously, for pX =
pY = pZ = 1

4 the Pauli channel reduces to the completely
depolarizing channel (88). On the other hand, the choice
pX = pY = pZ = q

3 leads to the depolarizing channel

ND(ρ) = (1− q)ρ+
q

3

(
XρX + Y ρY + ZρZ

)
(90)

B. Isometric extension (Stinespring dilation)

A quantum channel N can be described – as shown in
Figure 16 – by a reduced dynamics TrE(·) on the isometry
(i.e., a map that preserves the inner product) UN simulating the
joint evolution of the system A and environment E together
as [46, 160]:

N (ρ) = TrE(UN ρU
†
N ) (91)

where UN is a linear operator that maps HA onto HB ⊗
HE such that U†NUN = IHA . The two descriptions (85) and
(91) are equivalent in the sense that if we know one Kraus
decomposition {Ai}ki=1 of the channel, given an orthogonal
basis of HE as {|i〉}E , the isometric extension UN is given
by:

UN =

k∑
i=1

Ai ⊗ |i〉E (92)

Example 8. For the Pauli channel P introduced in the
previous example, the set of Kraus operators is {Ai} =
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degradable

antidegradableρB= N (ρA) ∈ L(HB)

ρA∈L(HA)

ρE= N c(ρA) ∈ L(HE)

UN Ω Ω

Figure 16: A scheme depicting channel N : L(HA) → L(HB) as the reduced dynamics of an isometry describing the joint
evolution of the system source-receiver and the environment E. Clearly, ρB = TrE [UN ρAU

†
N ] and ρE = TrB [UN ρAU

†
N ].

The figure depicts also the relations holding for degradable/antidegradable channels.

{√1− ΣXY ZI2,
√
pXX,

√
pY Y,

√
pZZ}. Therefore, its iso-

metric extension reads

UP =



√
1− ΣXY Z 0

0
√
pX

0 −i√pY√
pZ 0
0

√
1− ΣXY Z√

pX 0
i
√
pY 0
0 −√pZ


. (93)

In particular, for the completely depolarizing channel NCD,
the isometric extension reduces to

UNCD
=

1

2



1 0
0 1
0 −i
1 0
0 1
1 0
i 0
0 −1


. (94)

It is important to underline that the Kraus decomposition
of a quantum channel is not unique, thus the construction
of the isometric extension of the channel is not unique as
well. Another important concept associated to the Stinespring
dilation is the complementary channel N c of a quantum
channel N . The complementary channel describes the channel
transmitting information to the environment rather than trans-
mitting information to the output Hilbert space HB , and it is
given by:

N c(ρ) = TrB(UN ρU
†
N ) (95)

C. Choi state of a quantum channel

A fundamental relation between quantum channels and
states is the Choi-Jamiołkowski isomorphism. This isomor-
phism enables a one-to-one map between an arbitrary quantum
channel N and a density operator – referred to as Φ̃BA

′
N in the

following – in L(HB ⊗HA′) on the Hilbert space HB ⊗HA′
of the joint system BA′, with A′ denoting the auxiliary system
showed in Figure 17.

ΦAA
′

N
Φ̃BA

′
N

4
= (N ⊗ I)(ΦAA

′
)

I

Figure 17: A scheme depicting the Choi state Φ̃BA
′

N of the
arbitrary channel N , obtained by sending i) one part of the
maximally entangled state ΦAA

′
through channel N , and ii)

the other part through the identity channel I.

The connection results from a direct application of the map
N on one part of a maximally entangled state40 of AA′ such as
|Φ〉AA

′
= 1√

d

∑
i |ii〉

AA′ with density matrix ΦAA
′
, in order

to create what is known as the Choi-Jamiołkowski state (CJ)
of the channel N :

Φ̃BA
′

N
4
= Φ̃BA

′
N⊗Id = (N ⊗ Id)(ΦAA

′
) (96)

Example 9. The Choi state of the completely depolarizing
channel NCD reads

Φ̃BA
′

NCD
=
Id2

d2
(97)

Example 10. The Choi state of the qubit Pauli channel P
reads

Φ̃BA
′

P =
1

2


1− ΣXY 0 0 1− Σ̃XY Z

0 ΣXY ∆XY 0
0 ∆XY ΣXY 0

1− Σ̃XY Z 0 0 1− ΣXY


(98)

where ΣXY = pX + pY , ∆XY = pX − pY , and Σ̃XY Z =
pX + pY + 2pZ .

APPENDIX C
DEGRADABILITY/ANTI-DEGRADABILITY OF QUANTUM

CHANNELS

The definition of the complementary channel given in (95)
allows us to introduce the notion of degradability of a quantum

40Where HA′ is isomorphic to the input Hilbert space HA with dimension
d that, generally speaking, might be different from the dimension of HB .
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channel [46, 161, 162].
A channel N is said to be degradable if the final state ob-

tained by the environment can be obtained by postprocessing
the state at the receiver by applying a third channel (CPTP)
map, as shown in Figure 16. Formally, the channel N is
degradable if there exists a CPTP map Ω : L(HB)→ L(HE)
satisfying the relation:

N c = Ω ◦ N (99)

Similarly, a channel is said to be anti-degradable [163] if there
exists a CPTP map Ω : L(HE)→ L(HB) satisfying:

N = Ω ◦ N c (100)

Many channels are neither degradable nor anti-degradable.
However, it was shown that qubit channels with one qubit
environment are always either degradable or anti-degradable
or both (symmetric) [164]. A particular example of anti-
degradable channels is the set of entanglement breaking chan-
nels [103] mentioned in Section V-A. These are the channels
whose Choi state given in (96) is separable [103]. It is known
that the set of anti-degradable channels is convex, that is, any
convex combination on anti-degradable channels is an anti-
degradable channel, but surprisingly, the set of degradable
channels is not convex [121].

APPENDIX D
ENTROPIC QUANTITIES

Entropic quantities play an essential role in the study of
quantum communications, as they characterizes the perfor-
mance of quantum channels. The von Neumann (quantum)
entropy S(ρ) of a quantum state ρ is given by [46, 163]:

S(ρ) = −Tr(ρ log2(ρ))

= −
∑
i

λi log2(λi) (101)

where {λi} is the set of eigenvalues of ρ, i.e., “classical”
probabilities pi in its expansion (63). This generalizes the
classical Shannon entropy of a random variable X defined
as [47]:

H(X) = −
∑
x

p(x) log2 p(x) (102)

Example 11. To grasp better the introduced entropy concept,

let us consider the pure state ρψ =

(
|α|2 αβ∗

α∗β |β|2
)

. Its von

Neumann entropy is given by:

S(ρψ) = 0 · log2(0) + 1 · log2(1)

= 0, (103)

being pure states characterized by only one eigenvalue differ-
ent by zero and equal to one. Differently, for the probabilistic

mixture ρψ =

(
|α|2 0

0 |β|2
)

the von Neumann entropy coin-

cides with the classical Shannon entropy,

S(ρ) = H(|α|2, |β|2), (104)

which is maximal for |α| = |β| = 1√
2

.

Let N : HA → HB be a quantum channel and let A′ be an
auxiliary system evolving through I as shown in Figure 17,
with the additional property of being a purifying system for
ρA. Specifically, the auxiliary system A′ is chosen so that the
joint state ρAA

′
, satisfying

ρA = TrA′(ρ
AA′). (105)

is a pure state, regardless of ρA being a pure or a mixed state:
Also, let us denote the entropy of the input state ρA as:

S(A)
4
= S(ρA) (106)

with a slight abuse of notation, given the dependence of S(A)
on the input state ρA, but being consistent with the literature
[46, 49, 51]. Similarly, the entropy of the output state ρB

4
=

N (ρA) of the channel as:

S(B)
4
= S(N (ρ)) (107)

Accordingly, the entropy of the output of the complementary
channel N c can be written as:

S(E)
4
= S

(
N c(ρ)

)
= S

(
(N ⊗ I)(ρAA

′
)
)

4
= S

(
BA′

)
(108)

This quantity is known as the entropy of exchange [77], which
refers to the amount of information leaking to the environment
instead of being reliably transferred to the receiver. The rela-
tion between the different states in (108) is better understood
through the isometric representation of the channel N as:

N c(ρA) = TrBA′
(

(UN ⊗ I)(ρAA
′
)
)

N ⊗ I(ρAA
′
) = TrE

(
(UN ⊗ I)(ρAA

′
)
)

(109)

with (UN ⊗ I)(ρAA
′
) = (UN ⊗ I)ρAA

′
(U†N ⊗ I) and UN is

the isometric extension given by (92).
Moreover, the equality between the first and the last line

in (108) results from the fact that the state of the global
system, given by the environment E, the receiver B and the
purifying system A′, is a pure state. This purity of the joint
system EBA′ can be easily observed from the fact that the
joint evolution on the input system ρAA

′
– which is pure

by definition – is in fact an isometry given by UN ⊗ I.
Indeed, this isometry preserves purity by definition. As a
consequence, the entropies of any complementary bi-partitions
on the joint output pure system should be equal. Hence, the
equality S(E) = S(BA′) holds.

The previous entropies – input, output and exchanged – are
the essential building blocks for many information measures
in quantum communications41. In the following, we focus on
the measures used within the paper.

A key measure needed for our discussions in Section IV-A
is the Holevo information [53]. This is a functional χ(·, ·) of
an input ensemble of states {px, ρx} that the sender Alice
inputs to the channel N for transmitting classical information

41For a complete understanding on the relation between them, we refer the
reader to [46, 78, 165].
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through a quantum channel. Formally, the Holevo information
of channel N with respect to the arbitrary input ρ =

∑
x pxρx

is given by:

χ({px, ρx},N ) = S(N (ρ))−
∑
x

pxS(N (ρx)) (110)

where ρ is the quantum ensemble encoding the classical
message given by the alphabet X over which the random
variable X takes values.

It has been shown that the Holevo information provides an
upper bound on the mutual information I(X : Y ), given by:

I(X : Y ) = H(X) +H(Y )−H(X,Y ) (111)

where X is the random variable describing the message x to
be transferred by Alice, and Y is the random variable referring
to the output, after a POVM is applied by Bob to estimate the
value x. This is known as the Holevo bound [65], and is given
by:

I(X : Y ) ≤ χ({px, ρx},N ) (112)

It is worth mentioning, that the Holevo information is useful
for many tasks in quantum estimation and quantum discrimi-
nation, for which it has been derived.

Another key measure is the quantum mutual information of
channel N with respect to the arbitrary state ρ

4
= ρA as:

I(ρ,N ) = S(A) + S(B)− S(E) (113)

which is the quantum version of Shannon’s mutual information
given in (111).

Similarly, a measure needed for our discussions in Sec-
tion IV-B is the coherent information of channel N with
respect to the arbitrary state ρ, given by [78, 165, 46]:

Ic(ρ,N ) = S(N (ρ))− S(N c(ρ))

= S(B)− S(E)

= −S(A′|B) (114)

with S(A′|B)
4
= S(BA′)−S(B) denoting the conditional von

Neumann entropy and the last identity following from (108).
It can be easily seen from the second line of (114) that

the coherent information is the difference between the amount
of information arriving to the receiver given by the output en-
tropy, and the amount of information leaked to the environment
given by the entropy of exchange. Furthermore, from the third
line of the same equation, we see that the coherent information
is the negative of the conditional quantum entropy. This latter
quantity can be negative, in contrast to its classical counterpart,
namely, the conditional entropy H(X|Y ). An interpretation of
the negativity of this quantity has been given in the context
of quantum state merging [166], where it has been shown that
the negativity of the quantum conditional entropy relates to
the fact that the sender and the receiver gain a potential for
future quantum communications. For extensive details on the
properties of the quantum mutual information and the coherent
information the reader is referred to [49, 46, 52, 87, 112, 167].

We further note that both the Holevo information and
the coherent information satisfy a data processing inequality.
Specifically, whenever two arbitrary channels N and M

are placed sequentially, they satisfy the following bottleneck
inequalities:

f(ρ,M◦N ) ≤ min
{
f(ρ,M), f(ρ,N )

}
(115)

with ◦ denoting the dequential concatenation operator and
f(·, ·) denoting either χ(·, ·) or Ic(·, ·).

APPENDIX E
QUANTUM CODES AND RATES

An important notion both practically and theoretically is
the notion of a code. Generally, if Alice and Bob want to
communicate a message, they choose appropriate encoding
and decoding strategies, allowing them to reach their ultimate
rate of communication, by counteracting the effect of noise of
the communication line. Formally, this consists of an encoding
map E :

E :M→ L(H⊗n) (116)

from the alphabet of classical messagesM with k = log2 |M|
to a large state space of n quantum carriers of information,
and a decoding map D:

D : L(H⊗n)→M (117)

from the joint state of the n-carriers to the alphabet M. This
is summarized in Figure 4. In the case of communicating
quantum messages, the alphabet M above is replaced by
the set of quantum states L(H) over a Hilbert space H of
dimension d, and k = log2 d.

Each element of the image set L(H⊗n) is called a codeword
and the rate of the code is given by the non-negative number
R
4
= k

n . Clearly, a rate is achievable if there exists code –
i.e., an encoder E and a decoder D – so that the probability
of decoding the message erroneously vanishes as n goes to
infinity.
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[164] M. M. Wolf and D. Pérez-Garcı́a, “Quantum capacities
of channels with small environment,” Phys. Rev. A,
vol. 75, p. 012303, Jan 2007.

[165] C. Adami and N. J. Cerf, “von neumann capacity of
noisy quantum channels,” Physical Review A, vol. 56,
no. 5, p. 3470–3483, Nov 1997.

[166] M. Horodecki, J. Oppenheim, and A. Winter, “Quantum
state merging and negative information,” Communi-
cations in Mathematical Physics, vol. 269, no. 1, p.
107–136, Oct 2006.

[167] A. S. Holevo and V. Giovannetti, “Quantum channels
and their entropic characteristics,” Reports on Progress
in Physics, vol. 75, no. 4, p. 046001, Mar 2012.

Seid Koudia Received the B.Sc degree in fundamen-
tal physics in 2015 and the M.Sc degree in theoreti-
cal physics with distinction in 2017 from the Univer-
sity of Sciences and Technology Houari Boumedien
(USTHB). Currently, he is pursuing a PhD degree
in Quantum technologies with the Future Communi-
cations Laboratory (FLY), Department of Electrical
Engineering and Information Technology (DIETI).
His research interests include quantum information
theory, quantum communications, quantum networks
and quantum coding theory.



34

Angela Sara Cacciapuoti (M’10, SM’16) is a
professor at the University of Naples Federico II
(Italy). Since July 2018 she held the national habil-
itation as “Full Professor” in Telecommunications
Engineering. Her work has appeared in first tier
IEEE journals and she has received different awards
and recognition, including the “2022 IEEE ComSoc
Best Tutorial Paper Award” and “2021 N2Women:
Stars in Networking and Communications”. For the
Quantum Internet topics, she is a IEEE ComSoc Dis-
tinguished Lecturer, class of 2022-2023. Currently,

Angela Sara serves as Area Editor for IEEE Communications Letters, and
as Editor/Associate Editor for the journals: IEEE Trans. on Communications,
IEEE Trans. on Wireless Communications, IEEE Trans. on Quantum Engi-
neering, IEEE Network. She was the recipient of the 2017 Exemplary Editor
Award of the IEEE Communications Letters. From 2020 to 2021, Angela
Sara was the Vice-Chair of the IEEE ComSoc Women in Communications
Engineering (WICE). Previously, she has been appointed as Publicity Chair
of WICE. From 2016 to 2019 she has been an appointed member of the IEEE
ComSoc Young Professionals Standing Committee. From 2017 to 2020, she
has been the Treasurer of the IEEE Women in Engineering (WIE) Affinity
Group of the IEEE Italy Section. Her current research interests are mainly
in Quantum Communications, Quantum Networks and Quantum Information
Processing.

Kyrylo Simonov received the M.Sc. degree in
physics in 2014 from the Taras Shevchenko National
University of Kyiv (Ukraine) with a thesis on physics
of DNA and the Ph.D. degree in physics in 2018
from the University of Vienna (Austria) with a thesis
on quantum foundations. Since 2018 he worked at
the Faculty of Mathematics of the University of
Vienna (Austria) on mathematical foundations of
quantum mechanics and applications of nonstandard
analysis. His research interests include quantum in-
formation theory, quantum communications, quan-

tum foundations, quantum thermodynamics, and mathematical foundations of
quantum theory.

Marcello Caleffi (M’12, SM’16) received the M.S.
degree with the highest score (summa cum laude) in
computer science engineering from the University of
Lecce, Lecce, Italy, in 2005, and the Ph.D. degree in
electronic and telecommunications engineering from
the University of Naples Federico II, Naples, Italy,
in 2009. Currently, he is Associate professor at the
DIETI Department, University of Naples Federico
II. From 2010 to 2011, he was with the Broadband
Wireless Networking Laboratory at Georgia Institute
of Technology, Atlanta, as visiting researcher. In

2011, he was also with the NaNoNetworking Center in Catalunya (N3Cat)
at the Universitat Politecnica de Catalunya (UPC), Barcelona, as visiting
researcher. Since July 2018, he held the Italian national habilitation as Full
Professor in Telecommunications Engineering. His work appeared in several
premier IEEE Transactions and Journals, and he received multiple awards,
including best strategy award, most downloaded article awards and most
cited article awards. Currently, he serves as associate technical editor for
IEEE Communications Magazine and as associate editor for IEEE Trans.
on Quantum Engineering and IEEE Communications Letters. He served as
Chair, TPC Chair, Session Chair, and TPC Member for several premier IEEE
conferences. In 2016, he was elevated to IEEE Senior Member and in 2017
he has been appointed as Distinguished Lecturer from the IEEE Computer
Society. In December 2017, he has been elected Treasurer of the Joint IEEE
VT/ComSoc Chapter Italy Section. In December 2018, he has been appointed
member of the IEEE New Initiatives Committee.


	I Introduction
	I-A Outline and Contribution

	II Preliminaries
	II-A Quantum background
	II-B From Classical Capacity to Quantum Capacities
	II-C Operational Capacity Definition for a Quantum Channel
	II-D Classical Capacity of Quantum Channels
	II-E Quantum Capacity of Quantum Channels
	II-F Bibliographic Notes

	III Quantum Marvels
	III-A Superadditivity
	III-B Superactivation
	III-C Causal activation

	IV Superadditivity of Quantum Channel Capacities
	IV-A Superadditivity of Holevo information
	IV-B Superadditivity of Coherent Information
	IV-C Superadditivity of Classical and Quantum Capacities

	V Superactivation of Quantum Channel Capacities
	V-A Classes of Zero-Capacity Channels
	V-B Superactivation of Quantum Capacity
	V-C Non-Convexity of Quantum Capacity
	V-D Classical Capacity

	VI Causal Activation of Quantum Channel Capacities
	VI-A Quantum Switch
	VI-B Causal Activation of Holevo Information
	VI-C Causal Activation of Quantum Capacity

	VII Conclusions and Future Perspective
	VII-A Discussion
	VII-B Open Problems

	Appendix A: Quantum information basics: crash course
	A-1 Quantum bit and superposition principle
	A-2 Unitary transformations
	A-3 Projective measurements
	A-4 Mixed states and density matrix
	A-5 POVM
	A-6 Composite systems and entanglement


	Appendix B: Quantum channels
	B-A Kraus Representation
	B-B Isometric extension (Stinespring dilation)
	B-C Choi state of a quantum channel

	Appendix C: Degradability/anti-degradability of quantum channels
	Appendix D: Entropic quantities
	Appendix E: Quantum codes and rates
	Biographies
	Seid Koudia
	Angela Sara Cacciapuoti
	Kyrylo Simonov
	Marcello Caleffi


