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We study necessary and sufficient conditions for macrorealism (known as no-signaling-in-time and
arrow-of-time conditions) in the context of neutrino flavor transitions, within both the plane wave
description and the wave packet approach. We then compare the outcome of the above investigation
with the implication of various formulations of Leggett–Garg inequalities. In particular, we show
that the fulfillment of the addressed conditions for macrorealism in neutrino oscillations implies the
fulfillment of Leggett–Garg inequalities, whereas the converse is not true. Finally, in the framework
of wave packet approach, we also prove that, for distances longer than the coherence length, the
no-signaling-in-time condition is always violated whilst Leggett–Garg inequalities are not.

I. INTRODUCTION

Neutrino mixing and oscillations represent the main
indications of physics beyond the Standard Model [1–
5]. Among the multifaceted aspects of the above phe-
nomenon, in recent years the quantum informational
properties of mixed flavor states have been widely in-
vestigated [6–15]. An important achievement along this
direction is the characterization of the intrinsic quantum
nature of neutrino oscillations, which has been probed
with the data available from the MINOS experiment by
means of the Leggett–Garg inequalities (LGIs) [16].

Loosely speaking, LGIs are typically regarded as the
temporal analogues of Bell inequalities; whilst the latter
quantify the quantumness of a given system via spatially-
separated tests (thus dealing with quantum nonlocality),
the former rely on the notion of macroscopic coherence
based upon temporal auto-correlation functions [17–21].
Indeed, LGIs are closely related to the concept of macro-
realism, an intuitive view of our classical macroscopic
world according to which measurements do not perturb
the state of the probed system and reveal a pre-existing,
observable quantity.

Because of their relevance, LGIs have been extensively
employed in experimental verifications [16, 22–25]. On
the same footing, in the last decades systems revealing
phenomena of mixing and flavor oscillations have become
the subject of an emergent exploration dealing with clas-
sicality and macroscopic superpositions [14, 26–39]. As
a matter of fact, it is no coincidence that neutrinos pro-
vide a promising probe for testing the validity of LGIs,
since their flavor oscillations exhibit quantum coherence
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even after the particles have traveled macroscopic dis-
tances [14, 34–37].

Despite the pivotal role covered by LGIs, experiments
centered around macrorealism reveal a more complex
structure if compared with tests based upon local re-
alism [40]. The crucial difference lies in the fact that,
whilst Bell inequalities are both necessary and sufficient
conditions for local realism [41], the fulfillment of LGIs
is not in a one-to-one correspondence with macroreal-
ism. Indeed, the validity of the standard LGIs and their
variants such as the Wigner form of LGIs (WLGIs) [42]
turns out not to be sufficient for macrorealism [40, 43, 44].
For this reason, it is essential to introduce another set of
conditions for macrorealism which would be both neces-
sary and sufficient; such a set is given by a combination
of no-signaling-in-time (NSIT) (which is an alternative
necessary condition for macrorealism [19, 43]) and arrow-
of-time (AoT) conditions [43, 45]. Being equalities for
joint probabilities rather than inequalities, these require-
ments are more suitable to be interpreted as quantum
witnesses.

In this paper, we study the NSIT and AoT conditions
in the case of two-flavor neutrino oscillations. We find
that, while AoT conditions are always trivially satisfied,
neutrino oscillations always violate NSIT excluding an
integer set of isolated points. However, if a wave-packet
treatment is considered and the measurements are per-
formed at sufficiently large intervals of time (correspond-
ing to distances longer than the coherence length), the
NSIT conditions are always violated. This fact confirms
that, even after the occurrence of wave-packet decoher-
ence, neutrinos still retain their intrinsic quantum nature,
thereby preventing a macrorealistic interpretation of fla-
vor transitions even at late times. In conjunction with
that, we also compare the validity of LGIs (WLGIs) with
the validity of NSIT and AoT conditions; in so doing, we
find that LGIs (WLGIs) are never violated when NSIT
and AoT are not, and that for large-time intervals all the
LGIs (WLGIs) are fulfilled.

The remainder of the paper is organized as follows: in
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Section II, we review the notion of macrorealism and the
related quantifiers we will employ to support our rea-
soning (namely, LGIs, WLGIs and NSIT/AoT). In Sec-
tion III, we provide the necessary tools to investigate
neutrino oscillations and analyze the ensuing NSIT con-
ditions in the two-flavor approximation; with these re-
sults, we then establish a comparison with the predic-
tions stemming from LGIs and WLGIs. Finally, Section
IV contains conclusions and future perspectives.

II. MACROREALISM AND NSIT CONDITIONS

According to our daily experience, we do not observe
macroscopic objects around us being in two different po-
sitions at the same time. Furthermore, a motionless
object with a net vanishing force acting on it stays at
all times in a given place which can be determined by
simply looking at it. Macrorealism aims at formalizing
this knowledge by relying on the following basic assump-
tions1:

• macrorealism per se: given a set of available macro-
scopically distinct states, a macroscopic object is in
one of them at any given time;

• non-invasive measurability : it is possible in princi-
ple to determine the state of the macroscopic object
without affecting either its state or its dynamical
evolution.

Similarly to the celebrated Bell inequalities in the frame-
work of local realism, one can derive a set of inequali-
ties (known as LGIs) that have to be satisfied by any
physical system abiding by the above macrorealistic pre-
scriptions. To show this in a simple case, let us con-
sider a system with a dichotomous macroscopic observ-

able O with associated values ±1 which is consecutively
measured N times by an observer at fixed time points
{t0, t1, ..., tN−1}. Assuming for simplicity N = 3 (i.e.,
three measurements at times t0, t1, t2), the measurement
statistics with respect to the 2-time correlation functions
Cij = 〈O(ti)O(tj)〉 has to satisfy the LGIs [20, 44]

L1(t0, t1, t2) = 1 + C01 + C12 + C02 ≥ 0 , (1)

L2(t0, t1, t2) = 1− C01 − C12 + C02 ≥ 0 , (2)

L3(t0, t1, t2) = 1 + C01 − C12 − C02 ≥ 0 , (3)

L4(t0, t1, t2) = 1− C01 − C12 − C02 ≥ 0 , (4)

if macrorealism holds true. Hence, as for Bell inequali-
ties, these relations can be used to explore the quantum-
ness of a system and the existence of macroscopic super-
positions. Indeed, in quantum mechanics the LGIs (1)-
(4) can be (and are) violated, in particular by the sys-
tems coherently oscillating between the states on which
O = ±1, respectively [20].

The Leggett–Garg inequalities (1)-(4) can then be re-
garded as the temporal counterpart of the Bell inequal-
ities, and just like the latter they are not unique. As a
matter of fact, alternative forms of LGIs can be found
by focusing solely on the joint probabilities P (Oi, Oj)
of finding outcomes Oi and Oj after measuring O at
times ti and tj , respectively (instead of evaluating the
functions Cij [21, 42]). Indeed, macrorealism entails
the existence of an overall joint probability distribu-
tion P (O0, O1, O2) of definite outcomes at all measure-
ment times t0, t1, t2. Thus, the two-time probabili-
ties P (Oi, Oj) can be straightforwardly calculated as
marginals of the overall joint probability distribution.
The requirement of positivity P (O0, O1, O2) ≥ 0 de-
mands specific constraints on P (Oi, Oj); the shape of
such constraints can be summarized in the so-called WL-
GIs [35]

W1(t0, t1, t2) = P (O1, O2)− P (−O0, O1)− P (O0, O2) ≤ 0 , (5)

W2(t0, t1, t2) = P (O0, O2)− P (O0,−O1)− P (O1, O2) ≤ 0 , (6)

W3(t0, t1, t2) = P (O0, O1)− P (O1,−O2)− P (O0, O2) ≤ 0 . (7)

As it occurs for LGIs (1)-(4), WLGIs (5)-(7) can be vio-
lated by quantum mechanical probabilities.

Interestingly, it has been pointed out that all forms
of LGIs represent only a necessary (but not a sufficient)
condition for macrorealism, which can still be violated

1 Often, a third extra condition of induction is considered [20],
which states that the outcome of a measurement on a system
cannot be affected by what will/will not be measured on it later.

even if LGIs are satisfied [40, 43]. This raises the need to
seek alternative conditions that could signal a quantum
behavior for the cases in which LGIs provide an incom-
plete description. A necessary and sufficient condition is
given by a set of equalities [43] consisting of two classes
that constrain signaling from past to future (known as no-
signaling-in-time conditions, or NSIT) and from future to
past (known as arrow-of-time conditions, or AoT). In the
case N = 3 (the measurements considered in the present
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work), one can identify three NSIT conditions

NSIT(1) : P (O2) =
∑
O1

P (O1, O2) , (8)

NSIT(2) : P (O0, O2) =
∑
O1

P (O0, O1, O2) , (9)

NSIT(3) : P (O1, O2) =
∑
O0

P (O0, O1, O2) , (10)

and three AoT conditions

AoT(1) : P (O0, O1) =
∑
O2

P (O0, O1, O2) , (11)

AoT(2) : P (O0) =
∑
O1

P (O0, O1) , (12)

AoT(3) : P (O1) =
∑
O2

P (O1, O2) . (13)

Remarkably, it can be proved that NSIT conditions imply
all possible forms of LGIs.

In the following, we apply the notions introduced above
in the context of neutrino flavor transitions to compare
the different conditions for macrorealism.

III. MACROREALISM IN NEUTRINO
OSCILLATIONS

A. Phenomenology of neutrino oscillations

Neutrinos provide a paradigmatic example of mixed
particles, whose physical (flavor) states distinguishable
in a weak process do not coincide with the (mass) eigen-
states of their Hamiltonian, which propagate with fre-
quencies that depend on the corresponding masses. In
the relativistic regime, neutrino mass eigenstates evolve
according to

|νj(t)〉 = e−iEjt|νj(0)〉, (14)

Ej =
√
p2 +m2

j ≈ E +
mj

2E
, (15)

where the masses mj are taken to be much smaller than
their momentum and E = p is the energy of a mass-
less neutrino. On the other hand, flavor states are well-
described as superpositions of the mass eigenstates [1, 2]

|νσ(t)〉 =
∑
j

U∗σj |νj(t)〉 , (16)

with coefficients given by the elements Uσj of the mix-
ing matrix U . The non-equivalence of physical flavor
states and mass eigenstates of the particle Hamiltonian
ascribed to the mixing phenomenon is responsible for the
oscillation between distinct flavor states. If a neutrino is
produced in a weak process at time t = 0 with a given
flavor σ, it evolves into a superposition of flavor states

at t > 0 in such a way that the probability of detecting
another flavor ρ is

Pσ→ρ(t) = |〈νρ(t)|νσ(0)|2

=
∑
j,k

UρjUσkU
∗
ρkU

∗
σj exp

(
−i

∆m2
jk

2E
t

)
,(17)

where ∆m2
jk ≡ m2

j−m2
k. In particular, for the two-flavor

case (a typical approximation that successfully describes
many experiments with good accuracy [46]), the mixing
matrix is given by

U =

(
cos θ sin θ
− sin θ cos θ

)
, (18)

with θ being the mixing angle. Under these assump-
tions, the flavor oscillation probability is given by the
Pontecorvo formula

Pσ→ρ(t) = sin2(2θ) sin2

(
∆m2

2E
t

)
, σ 6= ρ , (19)

Pσ→σ(t) = 1− Pσ→ρ(t) , (20)

and ∆m2 ≡ ∆m2
12. In light of these features, flavor neu-

trinos resemble the behavior of two-level systems such as
spin-1/2 states and polarized photons; hence, they are
naturally liable to be studied in the framework of macro-
realism.

Note that, in the scenario described so far, mass eigen-
states possess a definite momentum p; therefore, they
are considered as propagating plane waves. Nevertheless,
the above picture still manages to fit most of neutrino
physics phenomenology that is probed in actual experi-
ments. However, a more realistic investigation of neutri-
nos requires a treatment of mass eigenstates in terms of
wave packets. To this aim, let us now consider a neutrino
propagating along the x-direction

|νσ(x, t)〉 =
∑
j

U∗σj ψj(t, x) |νj〉 , (21)

where the wave packets ψj(t, x) can be chosen as being
Gaussian functions [47]

ψj(t, x) =
(√

2πσx

)− 1
2

ei(px−Ejt)e
−

(x−vjt)
2

4σ2
x .

Here, p is the average momentum of the wave packet2,
while σx is the spatial spreading and

vj =
p

Ej
≈ 1−

m2
j

2E2
, (22)

2 To keep our considerations simple and without loss of generality,
we can impose the same average momentum for all mass eigen-
states |νj〉.
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where vj are the group velocities. The flavor oscillation
formula is thus given by

Pσ→ρ(t, x) =
(√

2πσx

)−1 ∑
j,k

UρjUσkU
∗
ρkU

∗
σje
−i

∆m2
jk

2E t

× e−
(x−vjt)

2

4σ2
x
− (x−vkt)

2

4σ2
x . (23)

In neutrino experiments, there is no direct access to time
measurements, but the distance between the source and
the detector is known. Therefore, concerning neutrino
phenomenological studies, time is typically superseded by
space. As our aim is to test macrorealism involving mea-
surements taken at different times, a reverse conversion
of space into time is mandatory. This procedure does not
affect the oscillation formula, which essentially remains
the same because of the interchangeability between time
and space in the relativistic regime [47].

Now, we can integrate (23) over x and normalize it in
order to obtain a consistent probabilistic description (i.e.,∑
σ Pσ→ρ(t) = 1). Eventually, one obtains the following

oscillation formula:

Pσ→ρ(t) =
∑
j,k

UρjUσkU
∗
ρkU

∗
σj exp

(
−i

∆m2
jk

2E
t

)

× exp

(
−

(∆m2
jk)2 t2

32E4σ2
x

)
. (24)

The exponential damping factor is responsible for the rel-
ative spread of mass-neutrino wave packets and, in turn,
for the decoherence mechanism which averages the oscil-
lations on long-time intervals (distances). Therefore, it
is possible to identify a characteristic space/time scale
at which the decoherence occurs, namely the so-called
coherence length

Lcohjk =
4
√

2E2∣∣∣∆m2
jk

∣∣∣σx . (25)

Finally, by specializing Eq. (24) for the two-flavor case,
the oscillation formula reads

Pσ→ρ(t) =
sin2(2θ)

2

(
1− e−( t

Lcoh
)
2

cos

(
∆m2

E
t

))
,

(26)

with Lcoh = 4
√

2E2

|∆m2| σx.

We are now ready to introduce the necessary and suffi-
cient conditions for macrorealism in neutrino oscillations.
For this purpose, both the plane-wave and the wave-
packet description of two-flavor Dirac neutrinos will be
considered.

B. Necessary and sufficient NSIT/AoT conditions
for macrorealism in neutrino oscillations

In order to test macrorealism in neutrino oscillations
using the combined NSIT/AoT conditions (8)–(13), we
choose neutrino flavor to be the macroscopic dichotomous
observable O(t). Since we work within the two-flavor ap-
proximation (where the flavor can be either electronic
e or muonic µ), we define it as O(t) = |νe(t)〉〈νe(t)| −
|νµ(t)〉〈νµ(t)|, which thus represents a dichotomous vari-
able with values ±1 corresponding to e- and µ-neutrino
flavors, respectively. The ensuing joint probabilities in
the NSIT/AoT conditions (8)–(13) for the measurement
outcomes can be straightforwardly rewritten in terms of
flavor oscillating probabilities using the conditional prob-
ability rule

P (Oi, Oj) = P (Oi)P (Oj |Oi)
= PO0→Oi(ti)POi→Oj (tj − ti). (27)

Without loss of generality, we assume that an electronic
neutrino is produced at time t0 = 0 and its flavor is
subsequently measured at t1 = t and t2 = 2t. When the
measurement outcomes Oi are fixed, we assume O0 =
+1 ≡ e, O1 = −1 ≡ µ, and O2 = −1 ≡ µ. Therefore, the
full set of NSIT/AoT conditions in neutrino oscillations
is

Pe→µ(2t) = Pe→e(t)Pe→µ(t) + Pe→µ(t)Pµ→µ(t)

Pe→e(0)Pe→µ(2t) = Pe→e(0)Pe→e(t)Pe→µ(t) + Pe→e(0)Pe→µ(t)Pµ→µ(t)

Pe→µ(t)Pµ→µ(t) = Pe→e(0)Pe→µ(t)Pµ→µ(t) + Pe→µ(0)Pe→µ(t)Pµ→µ(t)

Pe→e(0)Pe→µ(t) = Pe→e(0)Pe→µ(t)Pµ→e(t) + Pe→e(0)Pe→µ(t)Pµ→µ(t)

Pe→e(0) = Pe→e(0)Pe→e(t) + Pe→e(0)Pe→µ(t)

Pe→µ(t) = Pe→µ(t)Pµ→e(t) + Pe→µ(t)Pµ→µ(t)

 NSIT

 AoT

Interestingly, by suitably manipulating the AoT condi-
tions, one ends up with three relations which are identi-
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cally satisfied at all times3, that is

AoT(1) : 1 = Pµ→e(t) + Pµ→µ(t) , (28)

AoT(2) : 1 = Pe→e(t) + Pe→µ(t) , (29)

AoT(3) : 1 = Pµ→e(t) + Pµ→µ(t) . (30)

This is somewhat expected, because the AoT conditions
are usually satisfied in standard quantum mechanics [40].
Thus, for neutrino oscillations, AoT conditions can be
safely neglected, thereby leaving the NSIT conditions as
the relevant ones. Accounting for the symmetry of flavor
oscillation probabilities under exchange of flavors, i.e.,
Pe→e(t) = Pµ→µ(t) and Pe→µ(t) = Pµ→e(t), the NSIT
are then given by

NSIT(1) : Pe→µ(2t) = 2Pe→µ(t)Pe→e(t) , (31)

NSIT(2) : Pe→µ(2t) = 2Pe→µ(t)Pe→e(t) , (32)

NSIT(3) : Pe→µ(t)Pµ→µ(t) = Pe→µ(t)Pµ→µ(t).(33)

It is straightforward to check that NSIT(3) is a trivial

relation, whilst NSIT(1) and NSIT(2) coincide. Conse-
quently, macrorealism in neutrino oscillations can be wit-
nessed by a single necessary and sufficient NSIT condi-
tion:

N (t) ≡ Pe→µ(2t) − 2Pe→µ(t)Pe→e(t) = 0. (34)

The function N is plotted in Fig. 1 as a function of time
for both the plane-wave and the Gaussian wave-packet
flavor oscillation probabilities (19) and (26), respectively.
It is worth stressing that, for the plane-wave description,
the NSIT condition (34) is periodically fulfilled in isolated
points. On the other hand, in the realistic wave-packet
scenario, Eq. (34) is fulfilled only for fewer values of the
time with respect to the previous case; this occurs be-
cause the behavior of N (t) is similar to the plane-wave
result only for small t (i.e., when the damping exponen-
tial is still close to unity). Nevertheless, it is crucial to ob-
serve that, for large t, N (t) approaches a constant value
which in general is different from zero, thereby prevent-
ing flavor transitions to be interpreted in a macrorealistic
way. This occurs because, at late times, one can check
that

lim
t→+∞

N (t) = − sin2(4θ)

8
, (35)

which is identically zero only for integer multiples of the
maximal mixing angle π/4.

The above picture can be easily explained in quantum
informational terms. Indeed, if neutrinos with different

3 Note that this occurrence might not be true when considering the
three-flavor scenario because of the presence of a non-vanishing
CP-violating phase.

0 5.0 ×1015 1.0 ×1016 1.5 ×1016

- 0.2
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FIG. 1. N (t) for the plane-wave (red) and the Gaussian wave-
packet (blue) approach as a function of time expressed in
eV−1. The values used to generate the plot have been taken
from the MINOS experiment [50], with sin2 θ = 0.314, ∆m2 =
7.92× 10−5 eV2, E = 10 GeV and σx = 0.5 GeV−1.

flavors are viewed as being qubits of a two-level system
[6–9], it can be shown that, despite the decoherence due
to the wave-packet spreading, the amount of quantum
correlations shared by the qubits is always non-vanishing,
thus allowing for the constant presence of a signature of
quantum behavior [48, 49]. In turn, this fact entails that,
regardless of the distance traveled and of the wave-packet
separation, for realistic values of the mixing angle (such
as the ones used in Fig. 1 [50]) under no circumstances
the phenomenon of flavor transition is compatible with
macrorealism.

Before concluding this section, an important remark
has to be made: the obtained results related to the
NSIT/AoT conditions for macrorealism in neutrino oscil-
lations are independent of the choice of the initial condi-
tion (namely, the neutrino flavor at t = 0) and the values
of the outcomes O0, O1, and O2. In fact, by following
the same steps as above, one can easily prove that any
arbitrary choice for O0, O1, and O2 leads to the same nec-
essary and sufficient condition (34). This statement fur-
ther corroborates the reliability of neutrino oscillations
as a suitable instrument to investigate macrorealism.

C. Comparison of NSIT/AoT with other
conditions for macrorealism

In order to compare the condition (34) of macroreal-
ism in neutrino oscillations with the predictions obtained
with LGIs, we have to adapt the latter to the problem at
hand. To this aim, we first investigate the LGIs in their
standard formulations (1)-(4), which require the evalua-
tion of the correlation functions in terms of flavor oscil-



6

lation probabilities:

Cij = 〈O(ti)O(tj)〉

= Pe→e(ti)
(
Pe→e(tj − ti)− Pe→µ(tj − ti)

)
+ Pe→µ(ti)

(
Pµ→µ(tj − ti)− Pµ→e(tj − ti)

)
.(36)

Bearing this in mind, we have

C01 = Pe→e(0)
(
Pe→e(t)− Pe→µ(t)

)
+ Pe→µ(0)

(
Pµ→µ(t)− Pµ→e(t)

)
,

C12 = Pe→e(t)
(
Pe→e(t)− Pe→µ(t)

)
+ Pe→µ(t)

(
Pµ→µ(t)− Pµ→e(t)

)
,

C02 = Pe→e(0)
(
Pe→e(2t)− Pe→µ(2t)

)
+ Pe→µ(0)

(
Pµ→µ(2t)− Pµ→e(2t)

)
.

Finally, invoking the symmetry of flavor oscillation prob-
abilities under the exchange of flavor subscripts, it is im-
mediate to verify that

C01 = Pe→e(t)− Pe→µ(t), (37)

C12 = Pe→e(t)− Pe→µ(t), (38)

C02 = Pe→e(2t)− Pe→µ(2t). (39)

Now, plugging the found correlation functions (37)–(39)
into the definitions (1)-(4), we reach the expression of
LGIs in the framework of neutrino oscillations, that is

L1(t) = 2Pe→e(t) + 2Pe→e(2t)− 2Pe→µ(t) ≥ 0 , (40)

L2(t) = 2Pe→µ(t)− Pe→µ(2t) ≥ 0 , (41)

L3(t) = 2Pe→e(2t) ≥ 0 , (42)

L4(t) = 2Pe→µ(t) + 2Pe→µ(2t)− 2Pe→e(t) ≥ 0 . (43)

It is evident that Eq. (42) is trivially satisfied. How-
ever, it is interesting to compare the other Leggett–Garg
conditions with the NSIT (34). A plot of the above func-
tions together with N (t) for the flavor oscillation proba-
bility (26) in the wave-packet description is displayed in
Fig. 2. It can be immediately observed that the entire set
of LGIs (40)-(43) is always fulfilled at late times, whilst
N (t) 6= 0. This divergence in the predictions could have
been foreseen, since the NSIT (34) is a necessary and suf-
ficient condition for macrorealism, but the LGIs (40)-(43)
are not.

Turning the attention on the Wigner formulation of
LGIs (5)-(7), we observe that they are already cast in
terms of probabilities of measurement outcomes, and
hence the identification with flavor oscillation probabili-
ties turns out to be more natural. Indeed, we obtain

W1(t) = Pe→e(t)Pµ→e(t)− Pµ→e(2t) ≤ 0 , (44)

W2(t) = P 2
e→µ(t)− Pe→e(2t) ≤ 0 , (45)

W3(t) = Pe→e(t)Pµ→e(t)− Pµ→e(2t) ≤ 0 , (46)

0 5.0×1015 1.0×1016 1.5×1016
-2

-1

0

1

2

3

4

FIG. 2. N (t) (blue) vs L1(t) (brown), L2(t) (red), and L4(t)
(black) as functions of time expressed in eV−1. The for-
mer witnesses violation of the NSIT condition whenever it
is not equal to zero, while the latter witness violation of LGIs
whenever they are negative. It is worth highlighting that, for
large t, all Lj(t) are always non-negative while N (t) differs
from zero. The values used to generate the plot have been
taken from the MINOS experiment [50], with sin2 θ = 0.314,
∆m2 = 7.92× 10−5 eV2, E = 10 GeV and σx = 0.5 GeV−1.

from which we deduce that the first and the last condi-
tions coincide, thus leading to two non-trivial inequalities
for neutrino oscillations. In Fig. 3, we compare the rel-
evant WLGIs with the NSIT condition (34). As in the
case of the standard LGIs (40)–(43), the WLGIs (44)–
(46) are satisfied for large t, where according to the NSIT
condition no macrorealistic interpretation can be alleged,
thereby confirming the previous considerations. In fact,
the obtained results for both formulations of LGIs reveal
that a macrorealistic description is not necessarily valid
in the regime where such inequalities are satisfied.

IV. CONCLUSIONS

In this paper, we have provided a preliminary analysis
of necessary and sufficient conditions for macrorealism in
neutrino flavor transitions. In particular, we have unam-
biguously found that the set of necessary and sufficient
NSIT/AoT conditions derived in Ref. [43] reduces to a
single, non-trivial NSIT relation for macrorealism which
can be potentially probed in two-flavor neutrino experi-
ments. Moreover, concerning the wave-packet approach,
we have seen that the effect of decoherence for long de-
tection times/distances allows for a net deviation from a
macrorealistic interpretation, thereby unambiguously at-
tributing a quantum nature to the phenomenon of neu-
trino oscillations. For this reason, neutrinos can never be
described in a macrorealistic way, even when quantum
coherence is apparently degraded because of the wave
packet spreading.

Additionally, we have compared the aforementioned



7

0 5.0×1015 1.0×1016 1.5×1016
-0.6

-0.4

-0.2

0.0

0.2

0.4

0 5.0×1015 1.0×1016 1.5×1016
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

FIG. 3. N (t) (blue) vsW1(t) (red, first plot) andW2(t) (red,
second plot) as functions of time expressed in eV−1. The
former witnesses violation of the NSIT condition whenever
it is not equal to zero, while the latter witness violation of
WLGIs whenever they are positive. Note that for large t, all
Wj(t) are always non-positive while N (t) differs from zero.
The values used to generate the plot have been taken from
the MINOS experiment [50], with sin2 θ = 0.314, ∆m2 =
7.92× 10−5 eV2, E = 10 GeV and σx = 0.5 GeV−1.

NSIT condition for macrorealism with the LGIs in their
standard and Wigner formulations. In both scenarios, we
have discovered that, as long as the NSIT requirement
is met, the LGIs are satisfied. However, at late times,
we have shown that the LGIs are not faithful quantifiers
of the macrorealistic description, since they are fulfilled
whilst the NSIT condition is always violated.

Our research paves the way toward a more accurate
study of macrorealism for neutrino flavor transitions. Al-
though the phenomenology of neutrino oscillations can be
effectively studied in the framework of quantum mechan-
ics (QM), a proper treatment of neutrinos demands the
application of quantum field theory (QFT) due to their
relativistic nature [5]. As a preliminary analysis along
this direction, in Ref. [14] violations of the WLGIs in
neutrino oscillations have been compared in the context
of QM and QFT. Interestingly, it turns out that QFT
violates the WLGIs more frequently than QM, which is
in agreement with the results obtained for the Bell tests
of local realism within the general framework of algebraic
QFT [51–53]. As a further evidence for the same occur-
rence, it has been proven that even vacuum correlations
in QFT can lead to a maximal quantum violation of Bell
inequalities [13]. Therefore, both studies seem to indicate
that QFT is less classical than QM, and these results has
to be reviewed by means of the NSIT/AoT conditions for
macrorealism.
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