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Extreme deformations of the DNA double helix attracted a lot of attention during the past decades. Particu-
larly, the determination of the persistence length of DNA with extreme local disruptions, or kinks, has become
a crucial problem in the studies of many important biological processes. In this paper we review an approach
to calculate the persistence length of the double helix by taking into account the formation of kinks of arbitrary
configuration. The reviewed approach improves the Kratky–Porod model to determine the type and nature of
kinks that occur in the double helix, by measuring a reduction of the persistence length of the kinkable DNA.

PACS numbers: 36.20.Hb, 87.14.Gk, 87.15.La

I. INTRODUCTION

Many biological functions are intimately connected to the
conformational deformability of DNA which can essentially
influence its genetic activity. Numerous physical experiments
and computer simulations of DNA have demonstrated its no-
ticeable flexibility, particularly, certain proteins can cause a
formation of the localised extreme bends (kinks) in the DNA
structure [1]. Furthermore, the formation of extreme bends in
the DNA structure could be caused by a wide variety of bio-
logical processes, such as intercalation of small molecules [2],
DNA conformational changes [3], packaging [4] and others.

The interest in the extreme bending of the double helix was
initiated by Crick and Klug who investigated the mechanism
of folding of DNA in chromatin, the chromosomal material of
the cell nucleus. They first suggested that DNA is folded due
to the formation of kinks in the double helix [5], and later such
defects were found within experiments with a packaged DNA
and DNA-protein complexes [4, 6–8]. The recent view on the
problem of strong bending and kink formation in the double
helix was refreshed by Cloutier and Widom who found that
the short DNA fragments of 94 base pairs cyclise much more
easily than one would expect from the theory [9]. This crucial
result caused intense discussion on the cyclisation of DNA. A
possible explanation for the observed phenomenon was that
localised distortions (kinks) in the DNA fragment lead to the
formation of a sharp bend and an increase the probability of
looping [10, 11]. Later, numerous computational experiments
with DNA minicircles revealed the presence of various types
of kinks [1, 12–14].

Idealised models of chain molecules are suitable tools com-
monly used to describe configurations of the DNA chain [15]
and accordingly its deformations. Particularly, the Kratky–
Porod model (and its continuous version — the worm-like
chain, WLC) [16] is considered as a basic mechanical model
of DNA which can well describe a wide range of its mechani-
cal properties [17]. This model considers a coil of a smoothly
curved strand, the direction of curvature at any point of the
strand being random [18, 19]. The Kratky–Porod chain car-
ries several configurational parameters, which characterise the
flexibility of the DNA coil in solution and can be measured
in a hydrodynamic experiment. Particularly, the stiffness of
DNA is determined by the persistence length A, which is a
measure of distance over which the DNA chain ’remembers’

the direction of the first segment. Hence, the directional cor-
relation of two segments decreases exponentially with a typ-
ical length A while increasing the contour length separating
them [15, 18, 20]. However, it should be noted that the chains
of the contour length equal to A do not necessarily have a
rigid-rod-like behaviour [21].

The Kratky–Porod model assumes that the energy cost of
bending is a quadratic function of the bending angle [17].
Therefore, the Kratky–Porod model is expected to describe
only the smooth deformations of the double helix with rel-
atively small changes between the bonds. In this way, this
model should be improved to include the configurations of the
double helix with kinks of various nature, since correspond-
ing approaches are still not completely developed. Over the
past decades several ways for a renormalisation of the per-
sistence length were proposed [22, 23]. Furthermore, Wig-
gins and colleagues proposed an extension of the WLC model
— the kinkable WLC model (KWLC), which includes sharp
kinks characterised by a probability of such a kink occurring
per unit length [24]. However, these approaches consider the
kinks to be of one type only, which is rather idealised. In [25]
the Kratky–Porod chain was extended to a chain which can
undergo the formation of kinks of different length and config-
uration.

The paper is organised as follows. In Section II we review
the classification of kinks used in literature and proposed by
Lankaš et al [12] and generalise it to the case of kinks with
more complicated structure. Then we review the approach
presented in [25], particularly discussing the way to distin-
guish normal and kinked states of a helix step and considering
several configurational parameters that describe the flexibil-
ity of DNA. In Section III we analyse the obtained approach
and compare it with the approach for the bending of DNA by
multivalent cations proposed by Rouzina and Bloomfield [26].
Last but not least we present the summary and outlook in Sec-
tion IV.

II. KINKS IN THE KRATKY–POROD MODEL

Sharp structural changes of the double helix could cause the
breaking of base-stacking interactions and hydrogen bonds.
Particularly, the main property of kinks is that their forma-
tion is specified by the break of the stacking between con-
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Figure 1: Diagrammatic representation of the two types of kinks in
the double helix: 1) type 1 — loss of stacking in one helix step (in-
volving two intact base pairs), 2) type 2 — changing of stacking in
two helix steps (involving a modified central base pair and two intact
outer base pairs).

secutive base pairs. Moreover, different biological processes
cause kinks of different structure and hence different changes
of stacking. In this way, kinks in the double helix can be clas-
sified by their influence on base-stacking interactions.

Computer simulations of the minicircles of 94 base pairs
detected two basic groups of kinks with different structures
leading to the strong bends towards the major groove [12, 27,
28]. As shown schematically in Fig. 1, a type 1 kink is caused
by unstacking a single helix step, whereas a type 2 kink in-
volves two helix steps where the central pair is claimed to be
broken. However, we extend the definition of a type 2 kink by
using the more general case of a modified central base pair to
include more factors which could cause the formation of such
kinks.

A type 1 kink is an extreme local deformation in one
helix step which looks like a kink proposed by Crick and
Klug [5, 29]. Originally Crick and Klug described a sharp
kink of 98◦ involving two base pairs with disrupted stacking
that causes a strong bend of the double helix [5]. Kinks as
extreme as Crick–Klug kinks are rather idealised, however
the studies of the nicked double helix showed that the for-
mation of similar kinks in the sites of single-stranded breaks
is energetically favorable [30, 31]. The molecular dynamics
simulations of the series of DNA minicircles also showed the
formation of type 1 kinks in some cases, particularly for the
minicircles containing 64–66 base pairs [13, 14].

Furthermore, similar damages of the DNA structure can be
caused by intercalation of small molecules into the double he-
lix, for example due to the sequence-dependent binding of a
protein to DNA [2, 3, 6–8]. In particular, the studies of the
binding of ∆-[Ru(phen)3]2+ [32] and
[Ru(TAP)2(dppz)]2+ [33] complexes to DNA showed that
the intercalating ligands act as wedges in the minor groove,
thereby inducing type 1 kinks in the double helix.

Type 2 represents a kink with the changed stacking induced
by a modification of a base pair. Such kinks are distributed
over two base-pair steps in this case, with a modified central
base pair and maintained outer base pairs [1, 12, 29], as shown

Figure 2: Diagrammatic representation of the particular conforma-
tional kink distributed over 4 intact base pairs in the double helix.

in Fig. 1. Such a structure is treated as more probable to ap-
pear in the double helix than kinks of type 1 [1]. For exam-
ple, computer simulations of DNA oligomers of 15 base pairs
detected the presence of type 2 kinks only [29]. In the sim-
ulations of the DNA minicircles containing 65 and 110 base
pairs almost all detected kinks had a type 2 structure except
for the case of relaxed 65-base pair minicircle which experi-
enced also a type 1 kink between d(GC) base pairs [14].

An opened base pair should provide high local flexibil-
ity [17], therefore it is a natural candidate to cause the for-
mation of a kink holding the structure of a type 2 kink. The
occurrence of the partially opened (preopened) configuratios
of a base pair with possible binding of a water molecule to
it [34, 35] could be a reason to induce a type 2 kink in the
double helix as well. Besides, the discovery of the formation
of Hoogsteen base pairs in a linear DNA with a finite probabil-
ity, which could provide high local flexibility as well [17, 36],
reveals another candidate to cause a type 2 kink.

Consequently, in the literature one distinguishes two types
of kinks with specified configurations. However, the geom-
etry of kinks is not known for all the structural changes in
the double helix. In particular, B–A transformations [37–
39]), binding of the TBP to TATA-box [40, 41] and the pres-
ence of A-tracts and GGCC-tracts [42–44] could cause the
formation of kinks holding a more complicated structure than
type 1 and type 2 kinks have. For example, TBP induces a
strong composite bend over 8 base pairs of TATA-box which
includes sharp bends (kinks) by 52◦ and 39◦ at the first and
last base pairs, and smoother bend at 90◦ within 6 central
base pairs [45, 46]. Therefore, we can extend the notion
of a kink and take into account the formation of smoother
kinks which involve four or more maintained base pairs with
changed stacking [47]. The distribution of the bending an-
gles inside such kinks is arbitrary. In that way, we will further
consider kinks distributed over n ≥ 3 helix steps with confor-
mational changes and refer to such kinks as conformational.
Fig. 2 shows a particular smooth conformational kink which
involves four base pairs (so 3 helix steps).

Summing up, we will further use the following classifica-
tion of kinks in the double helix,

• type 1 kink, involving n = 1 helix step,

• type 2 kink, involving n = 2 helix steps,

• conformational kink, involving n ≥ 3 helix steps.
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Figure 3: Top: two possible states of a monomeric element, a normal
one (with the bending angle δ) and a kinked one (with the bending
angle θ + δ). Bottom: the minima of the double well represent two
states of a monomeric element.

Each kink in the double helix is determined by its total an-
gle θ and the phenomenological probability W of this kink
occurring. Indeed, this probability corresponds to the concen-
tration of kinks in the double helix and can depend on several
parameters, e.g. bending energy E, spring constant k, etc.
Particularly, in the KWLC model W = 2ke−E for kinks of
type 1 [24].

As we mentioned above, the bending energy E in the
Kratky–Porod model depends quadratically on the small
bending angle δ. Since we aim to take into account the for-
mation of kinks involving extreme angles, we turn to a double
well potential [25, 48], which represents two possible states of
a monomeric element, a normal and a kinked one, as shown
in Fig. 3. The monomeric element in the normal state is bent
at the small angle δ due to the thermal fluctuations just as in
the Kratky–Porod model. The kinked state of a monomeric
element describes the presence of a kink with a certain angle
θ. Therefore, we can represent the total bending angle δ̃ of
a monomeric element in a kinked state as the sum of a kink
angle (θ) and a small deviation (δ) [25],

δ̃ = θ ± δ,
cos δ̃ = cos θ cos δ ∓ sin θ sin δ ≈ cos θ cos δ. (1)

r1

ri

b

rN

r

δ

Figure 4: Schematic representation of a Kratky–Porod chain.

In turn, we can accordingly modify the definitions of the
persistence length and other configurational parameters of

DNA to include the effect of kinks and their influence on the
state of the DNA coil. The Kratky–Porod model defines the
persistence length of a macromolecular chain as a limit of the
average value of the scalar product of the first segment unit
vector ~r1 and the vector ~r, which is the sum of the segment
vectors ~ri (see Fig. 4) [18, 21],

A0 = lim
N→∞

〈~r1
b
·
N∑
i=1

~ri〉 = b lim
N→∞

N−1∑
i=0

〈cos δ〉i, (2)

where b is the length of each segment and N is the number of
segments. Taking the limit N →∞ and using the formula for
a geometric progression we can obtain the following expres-
sion for the persistence length,

A0 =
b

1− 〈cos δ〉
. (3)

Such a definition of the persistence length represents a chain
with segments that are all in the normal state.

Let us start with type 1 kinks, which involve only a sin-
gle segment. According to the definition of the persistence
length (2) a contribution of the i-th segment in a normal state
is represented by the 〈cos δ〉i term in the series. On the other
hand, if there is a probability W1 of the type 1 kink forma-
tion on the first segment, then it should produce a contri-
bution W1 cos θ〈cos δ〉 in a kinked state and a contribution
(1 −W1)〈cos δ〉 in a normal state to the series (2). Accord-
ingly, the total contribution to the persistence length produced
by the first segment is

(
1−W1

(
1−cos θ

))
〈cos δ〉 in this case.

If it is assumed that each segment of the chain can undergo the
formation of a type 1 kink with a probabilityW1, then the con-
tributions of each segment to the persistence length should be
modified in the following way [25],

〈cos δ〉 →
(
1−W1

(
1− cos θ

))
〈cos δ〉, (4)

〈cos δ〉2 →
(
1−W1

(
1− cos θ

))2〈cos δ〉2,
...

〈cos δ〉i →
(
1−W1

(
1− cos θ

))i〈cos δ〉i,
...

and, collecting the modified contributions of all segments, the
persistence length of the chain with type 1 kinks can be calcu-
lated as

A1 =
b

1−
(
1−W1

(
1− cos θ

))
〈cos δ〉

. (5)

In this way, the presence of kinks in the DNA macro-
molecule decreases the persistence length (and hence the stiff-
ness of the macromolecule) due to the new term W1(1 −
cos θ)〈cos δ〉 depending on the angle of the kink and the prob-
ability of its formation. Furthermore, the maximal decrease
of the persistence length would be observed in the case of
θ = 180◦ due to the term 2W1〈cos δ〉.

A type 2 kink is distributed over two base pair steps. Both
segments are kinked by an equal angle, θ/2, so the total kink
angle is θ. Therefore, if there is a probability W2 of a type 2
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kink formation on the first two segments, they should produce
a contribution

W2

(
cos

θ

2
〈cos δ〉+ cos2

θ

2
〈cos δ〉2

)
in a kinked state and a contribution

(1−W2)
(
〈cos δ〉+ 〈cos δ〉2

)
in a normal state to the series (2). Hence, the total contribution
to the persistence length produced by the first two segments is(

1−W2

(
1− cos

θ

2

))
〈cos δ〉+(

1−W2

(
1− cos2

θ

2

))
〈cos δ〉2

in this case. If it is assumed that each segment of the chain
can undergo the formation of a type 2 kink with a probability
W2, then the contributions of each segment to the persistence
length should be modified in the following way [25],

〈cos δ〉+ 〈cos δ〉2 → (6)(
1−W2

(
1− cos θ2

))
〈cos δ〉+(

1−W2

(
1− cos2 θ2

))
〈cos δ〉2,

〈cos δ〉3 + 〈cos δ〉4 →(
1−W2

(
1− cos2 θ2

))(
1−W2

(
1− cos θ2

))
〈cos δ〉3 +(

1−W2

(
1− cos2 θ2

))2〈cos δ〉4,
...

〈cos δ〉2i + 〈cos δ〉2i+1 →(
1−W2

(
1− cos2 θ2

))i(
1−W2

(
1− cos θ2

))
〈cos δ〉2i +(

1−W2

(
1− cos2 θ2

))i+1〈cos δ〉2i+1,

...

Summing up all the contributions, we obtain the following
expression for the persistence length of a chain with type 2
kinks,

A2 =
b · F2

(
W2, θ

)
1−

(
1−W2

(
1− cos2 θ2

))
〈cos δ〉2

, (7)

where F2

(
W2, θ

)
= 1 +

(
1−W2

(
1− cos θ2

))
〈cos δ〉 charac-

terises the two segments involved by a kink of type 2. In this
way, it can be seen that kinks of type 2 should decrease the
stiffness of the macromolecule more smoothly in contrast to
kinks of type 1.

In the previous section it was assumed that the so-called
conformational kinks involving a more complicated structure
than kinks of types 1 and 2, could also exist. In this way, the
obtained approach can be generalised by focusing on the kinks
with an arbitrary distribution of angles θ1, θ2, ..., θn inside the
kink and involving n ≥ 3 base pair steps. The probability of
the formation of a conformational kink (Wn) should be intro-
duced, and the contribution of n chain segments undergoing

a conformational kink can be changed in the same way as for
the kinks of types 1 and 2 [25],

〈cos δ〉+ 〈cos δ〉2 + ...+ 〈cos δ〉n → (8)(
1−Wn

(
1− cos θ1

))
〈cos δ〉+(

1−Wn

(
1− cos θ1 · cos θ2

))
〈cos δ〉2 + ...+(

1−Wn

(
1− cos θ1 · cos θ2 · ... · cos θn

))
〈cos δ〉n =

n∑
j=1

(
1−Wn

(
1−

j∏
k=1

cos θk
))
〈cos δ〉j ,

〈cos δ〉n+1 + 〈cos δ〉n+2 + ...+ 〈cos δ〉2n →(
1−Wn

(
1−

n∏
k=1

cos θk
))
·

n∑
j=1

(
1−Wn

(
1−

j∏
k=1

cos θk
))
〈cos δ〉j ,

...

〈cos δ〉in+1 + 〈cos δ〉in+2 + ...+ 〈cos δ〉(i+1)n →(
1−Wn

(
1−

n∏
k=1

cos θk
))i ·

n∑
j=1

(
1−Wn

(
1−

j∏
k=1

cos θk
))
〈cos δ〉j ,

...

Accordingly, the persistence length of a chain with such kinks
can be defined as

An =
b · Fn

(
Wn, {θk}

)
1−

(
1−Wn

(
1−

n∏
k=1

cos θk
))
〈cos δ〉n

, (9)

where

Fn
(
Wn, {θk}

)
= 1+

n−1∑
i=1

(
1−Wn

(
1−

i∏
k=1

cos θk
))
〈cos δ〉i

characterises segments of the chain modified by the conforma-
tional kink, and θk is the angle between the k-th and (k+1)-th
base pair.

Coil size and gyration radius of the DNA chain are the sim-
plest parameters which characterise its spatial dimensions and
can describe the properties of the double helix in solution. In
the case of a kinked DNA these parameters can be calculated
exactly. It is only necessary to replace the persistence length
of the undisturbed DNA with that of the kinked DNA in the
corresponding expressions. Thus, the coil size of a chain with
kinks of the chosen type can be defined as

〈Rn〉2 = [〈R〉2]A→An
= 2A2

n

( L

An
− 1 + e−L/An

)
, (10)

where An is the persistence length of the chain with kinks of
a chosen type and L is its contour length. In the same way, the
gyration radius can be defined as

〈Gn〉2 = [〈G〉2]A→An = (11)
LAn

3 −A2
n +

2A3
n

L −
2A4

n

L2 (1− e−L/An).

Consequently, the coil size and the gyration radius experi-
ence the same renormalisation due to the presence of kinks
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Figure 5: (Color online) The reduction of the persistence length A
is caused by the presence of multivalent cations. The experimen-
tal points are reproduced from the paper by Rouzina and Bloom-
field [26] and represent the presence of the following multivalent
cations: diamonds, Mg2+ [49]; empty circles, CoHex3+ [50, 51];
filled circles, CoHex3+ [49]; squares, Spermidine3+ [50, 51]; tri-
angles, Spermine4+ [49]. The curves represent relative persistence
lengths of B-DNA in solution with corresponding cations. Solid
curves correspond to kinks of type 1, short-dashed curves correspond
to kinks of type 2, long-dashed curves correspond to conformational
kinks distributed over 6 base pairs and dotted curves correspond to
the Rouzina–Bloomfield persistence length ARB/A0.

and hold the same expressions as the ones of the KWLC
model [24]. On the other hand, the persistence length is cal-
culated differently than the KWLC model does, since the for-
mation of kinks of different types is taken into account.

III. BENDING OF DNA BY MULTIVALENT CATIONS

In the preceding section we obtained an approach for the
Kratky–Porod model that describes the persistence length of
chains with kinks characterised by two parameters, kink an-
gle (θ) and kink formation probability (W ). Let us begin a
discussion of the results by calculating the persistence length
of chains with three types of kinks: type 1, type 2 and con-
formational kinks distributed over 3 helix steps. We assume
that all the segments inside a conformational kink have equal
bending angles θk = θ/3. Furthermore, we take A0 = 500Å
as the persistence length of an unperturbed double helix and
b = 3.4Å as the length of a chain segment.

We focus on the bending of DNA by multivalent cations
as a good candidate for applying the obtained model. As
shown by Rouzina and Bloomfield, the persistence length can
be dramatically reduced due to the presence of small multi-
valent cations in solution [26]. They proposed to extend the
Kratky–Porod model to take into account the bending induced
by cations: each cation causes a bend of a small angle βi, that
is actually statistically independent of the bending in the ab-
sence of cations. Thus, they define the persistence length in
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Figure 6: (Color online) Reduction of the persistence length A due
to conformational kinks distributed over 6 steps with the changed pa-
rameters caused by the presence of multivalent cations. The experi-
mental points are reproduced from the paper by Rouzina and Bloom-
field [26] and represent the presence of the following multivalent
cations: diamonds, Mg2+ [49]; empty circles, CoHex3+ [50, 51];
filled circles, CoHex3+ [49]; squares, Spermidine3+ [50, 51]; trian-
gles, Spermine4+ [49]. The curves represent relative persistences
length of B-DNA in solution with corresponding cations.

the following form,

ARB =
A0

1 +Wi〈β2
i 〉/〈β2

0〉
, (12)

where A0 = 500Å, Wi is the probability of bending and
(〈β2

0〉)1/2 = 6.7◦. On the other hand, Rouzina and Bloom-
field suggested to also consider the bends induced by cations
as distributed over 6 steps due to the proposed electrostatic
bending mechanism [26, 50]. Generally speaking, we can
imagine such bends as conformational kinks with n = 6 and
θk = θ/6, where θ is the angle of the whole kink.

The probability of the formation of a bend is suggested to
be proportional to the number of cations bound per base pair
Θz , so Wi = Wi0 · Θz , where the fractional occupancy Θz

can be estimated by solving the equation [26, 52]

zΘz

2
=

[Lz+]

[Na+]z
nz−1s

(
1− zΘz

2

)z
, (13)

where z is a charge, ns is the concentration of the cation on
the DNA surface, [Lz+] and [Na+] are bulk concentrations of
the ligand and Na+ respectively. Rouzina and Bloomfield as-
sumed that every bound cation produces an equivalent bend,
and hence Wi0 = 2/z.

In this way, we can compare results for kinks and Rouzina–
Bloomfield bends with the experimental data obtained for
Mg2+, CoHex3+, Spermidine3+ and Spermine4+ (see Fig. 5).
We assume that each bound cation causes an equivalent bend
and we use the same formula to obtain the number of cations
per base pair. Furthermore, we choose ns = 1M and the same
angles for kinks of type 1 and type 2 as Rouzina and Bloom-
field do for bends, 5.5◦ for Mg2+, 11.5◦ for CoHex3+, 4.0◦
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for Spermidine3+ and 7.1◦ for Spermine4+ [26]. For confor-
mational kinks distributed over 6 steps we assume the same
parameters.

In Fig. 5, we compare the results for the persistence length
of DNA with kinks of type 1 (solid curves), type 2 (short-
dashed curves) and conformational kinks distributed over 6
steps (long-dashed curves) against the Rouzina–Bloomfield
persistence length (dotted curves) and experimental points.
According to the obtained results the reduction of the persis-
tence length by Rouzina–Bloomfield bends is highly compati-
ble with a corresponding reduction caused by kinks of type 1.
However, this fact is not surprising sinceARB can be obtained
from A1 using a Taylor expansion in powers of the kink an-
gle. As we expect, kinks of type 1 cause a dramatic decrease
of the persistence length. Particularly, our approach predicts
that the persistence length decreases by 60-70% for high con-
centrations of CoHex3+, 35-40% for Spermine4+, 30-35% for
Mg2+ and 20% for Spermidine3+. Moreover, predictions for
kinks of type 1 are compatible with the experimental data in
the range of high concentrations of the ligand, especially for
the CoHex3+ solutions. On the other hand, if we assume the
presence of kinks of type 2 caused by multivalent cations,
we will observe a much smaller decrease of the persistence
length, such as 25-35% for CoHex3+ in particular. Confor-
mational kinks distributed over 6 steps do not decrease the
persistence length sufficiently for all considered multivalent
cations.

Consequently, if we assume the same parameters of kinks
as Rouzina and Bloomfield use for bends and compare the ob-
tained results with the experimental data, we can see that the
decrease of the persistence length due to the presence of mul-
tivalent cations can be adequately described by type 1 kinks,
at least for relatively high concentrations of the ligand. Type 2
kinks and especially conformational kinks distributed over 6
steps with such parameters do not cause the same decrease of
the persistence length as observed experimentally. Therefore,
we can conclude that the bending of DNA can be adequately
described with type 1 kinks only and not by conformational
kinks distributed over 6 steps if we assume that the values of
the kink angle and the formation probability are equal to those
in [26].

However, we can change the parameters of a kink to make
the approach consistent in the case of kinks of other types. For
example, presented in Fig. 6 are the results of the persistence
length of DNA with conformational kinks distributed over 6
steps. However, we assume that the angle of each kink is in-
creased now and choose 33◦ for Mg2+, 69◦ for CoHex3+, 24◦

for Spermidine3+ and 42.6◦ for Spermine4+. We can see that
the kinks modified in such a way can also adequately describe
the decrease of the persistence length in the presence of mul-
tivalent cations. In this way, we have to conclude that exper-
imental results can be explained using not only kinks of type
1 (that are used in the Rouzina–Bloomfield model in fact) but
kinks of other types as well, particularly conformational kinks
over 6 steps with the angles fixed in Fig. 6. Therefore, more
experimental data is needed. In particular, it is necessary to
measure the angles of kinks that occur in the double helix due
to the action of multivalent cations to identify their type and

configuration adequately. Hence, when the angle and forma-
tion probability of a kink are known, it is possible to predict its
type and the value of decrease of the persistence length caused
by the presence of such kinks.

IV. SUMMARY AND OUTLOOK

In this paper we have reviewed a simple approach for the
Kratky–Porod model presented in [25], which allows the cal-
culation of the persistence length of the DNA double helix
with kinks of a certain type occurring in its structure. This
approach focuses on two basic types of kinks proposed and
observed in the computer simulations by Lankaš and col-
leagues [1, 12], and kinks with more complex structure called
conformational kinks. In that way, corresponding configura-
tional parameters of DNA including the persistence length can
be measured and compared with the predictions of the model.
Our approach uses two parameters, the total kink angle (θ)
and the probability of kink formation (W ). Consequently, it
describes the flexibility of a DNA chain with kinks of an ar-
bitrary intrinsic structure and length n, contrasting with the
KWLC model, which describes the kinks of type 1 only [24].

The analysis of the approach showed that the possibility
of the formation of kinks in the double helix dramatically re-
duces its persistence length. In particular, it undergoes the
strongest decrease due to type 1 kinks. On the other hand,
changes in the nature of kinks (herewith, its geometry and
type) can decrease the persistence length as well as increase,
in comparison with the persistence length of the double helix
with type 1 kinks. Thus, it is possible to determine the con-
centration of kinks in the DNA chain and their nature by an
analysis of the predicted configurational parameters.

Bending of DNA by multivalent cations provides a good
example to apply the discussed approach for practical com-
putations of the persistence length. Particularly, the model
developed by Rouzina and Bloomfield [26] perfectly agrees
with our approach in the case of type 1 kinks, such as single-
stranded breaks. However, the decrease of the persistence
length in the case of the presence of multivalent cations can
be described not only by single-stranded breaks, but also by
the kinks with another intrinsic structure. For example, results
for the persistence length of the double helix with conforma-
tional kinks distributed over 6 base pairs are also compatible
with results of the Rouzina-Bloomfield framework. But the
parameters of a kink, in particular the bending angle, are much
higher and provide a stronger bending of the double helix in
this case. Therefore, an experiment to determine the nature
of the occurred kinks, their angles and intrinsic structure is
strongly needed.

Furthermore, there is an important challenge to extend the
proposed approach to more complicated configurations of the
DNA macromolecule, e. g. with kinks of different types in
its structure. In particular, configurations of the DNA dou-
ble helix containing both type 1 and type 2 kinks were ob-
served in the simulations of DNA minicircles [12, 14]. An-
other challenge is to take into account the sequence depen-
dence of the persistence length, which is a significant factor in
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DNA-protein interaction [53]. Such an improved framework
would be a more realistic theoretical tool for the analysis of
the flexibility and conformational properties of the kinkable
DNA double helix involved in key biological processes such
as folding, transcription and others.
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