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Macrorealism formalizes the intuitive notion that at any given time the system occupies a definite
state and that the evolution of the system is independent of the measurements performed on it, in
contrast to the principles of quantum mechanics. In this study, we carry out a comparative analysis
between Leggett–Garg-type inequalities and the conditions of no-signaling-in-time and arrow-of-
time for macrorealism within the context of meson oscillations. Our findings indicate that, under
given initial conditions, no violations of Leggett–Garg inequalities are observed. However, no-
signaling-in-time conditions are found to be violated, thereby revealing the impossibility of applying
a macrorealistic description to the analysis of meson physics.

I. INTRODUCTION

The intersection of particle physics and quantum foun-
dations stands out as one of the most dynamic and cap-
tivating domains in contemporary physics [1–22]. A per-
tinent illustration is given by the phenomenon of flavor
mixing and oscillations, such as the case of neutrino os-
cillations. This phenomenon not only indicates physics
beyond the Standard Model, but has provided a suitable
experimental platform for testing the validity of quantum
mechanics itself. In particular, the concept of macro-
scopic realism (macrorealism), which encodes the intu-
ition suggested by the experience of our everyday macro-
scopic world and is in conflict with predictions of quan-
tum mechanics, has been put under scrutiny within flavor
oscillating systems [12, 19, 23]. The violation of its for-
mal occurrence in the quantum realm is usually provided
by a set of relations known as the Leggett–Garg inequal-
ities (LGIs) [24, 25], which are deemed as the temporal
counterparts of Bell inequalities [24–28]. Specifically, a
violation of LGIs gives a benchmark of quantumness of
the underlying system as the inability of meeting all the
assumptions of macrorealism [24].

It is worth stressing, however, that LGIs provide a
necessary but not a sufficient condition for macroreal-
ism [29–31]. In other words, in contrast to local real-
ism guaranteed by Bell inequalities, no counterpart of
Fine’s theorem exists for macrorealism, and fulfillment of
LGIs does not guarantee its validity [32, 33]. Neverthe-
less, it is still possible derive a set of equalities known as
no-signaling-in-time (NSIT) [27, 29] and arrow-of-time
(AoT) conditions offering a one-to-one correspondence
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with macrorealism [29, 34]. Indeed, the quantumness of
neutrino oscillations can be unveiled by NSIT/AoT con-
ditions even under fulfillment of LGIs, e.g., when wave-
packet decoherence is considered [22].

In this work, we question the validity of macroreal-
ism via NSIT/AoT conditions in oscillations of neutral
mesons. In contrast to neutrinos, neutral mesons are
decaying particles, a feature which adds an additional
layer of complexity in macrorealistic scenario that de-
mands consideration. Focusing on neutral kaons (the
most studied neutral meson systems) and employing an
approach grounded in conditional probabilities, we de-
rive LGIs in its canonical form as well as in another re-
formulation, commonly referred to as LGIs in Wigner
form (WLGIs), and compare them with predictions of
the NSIT/AoT conditions. Under specific initial condi-
tions, no violations of LGIs or WLGIs are found, while
the NSIT/AoT conditions persistently exhibit violations
in such instances. This result underscores the robustness
and efficacy of the proposed methodology. It is impor-
tant to stress that the findings presented in this paper can
be equally obtained by treating particle decay within the
framework of an open quantum system and repeating our
computations using the Kraus operators formalism [35–
38].

The remainder of the paper is organized as follows:
in Section II, we review the notion of macrorealism and
the related conditions we will employ in our analysis (i.e.
LGIs, WLGIs and NSIT/AoT). Moreover, we give the
basics of meson oscillations phenomenology by resort-
ing to the explicit example of neutral kaons. Then, in
Section III we analyze the ensuing LGIs, WLGIs and
NSIT/AoT conditions; with these results, we then estab-
lish a comparison among the various tests of macroreal-
ism. Finally, Section IV contains conclusions and future
perspectives.

The explicit computation of joint probabilities is re-
ported in Appendix A for reader’s convenience.

ar
X

iv
:2

40
2.

13
29

9v
1 

 [
qu

an
t-

ph
] 

 2
0 

Fe
b 

20
24

mailto:blasone@sa.infn.it
mailto:filluminati@unisa.it
mailto:lupetruzziello@unisa.it
mailto:kyrylo.simonov@univie.ac.at
mailto:lsmaldone@unisa.it


2

II. PRELIMINARIES

A. Macrorealism and its conditions

Quantum mechanics is known as a theory offering a
highly accurate description of Nature, as confirmed by
numerous experiments. The fundamental superposition
principle manifests itself in a wide variety of phenomena
at different energy scales, e.g., particle mixing and os-
cillations which are experimentally observed in various
systems just like neutrinos and neutral mesons. Never-
theless, quantum mechanics exhibits several conceptual
issues which are still actively debated. For example, a
naive attempt to apply the superposition principle at the
macroscopic scale inevitably leads to paradoxes, such as
infamous Schrödinger’s cat. Indeed, our everyday experi-
ence suggests a breakdown of the superposition principle
and the emergence of the laws of classical physics, thus
leading to a natural question: Why and how does the
quantum world blend in the everyday classical world?

Since the “standard” quantum mechanics does not go
beyond postulating an ad hoc separation between them,
various interpretations and modifications of the quantum
theory (e.g., Bohmian mechanics and spontaneous col-
lapse models) have been developed in order to explain the
quantum-to-classical transition. One of the ways to ex-
plore it is probing coherence at macroscopic scale, which
requires a proper device-independent witness for the va-
lidity of our intuitive picture of the everyday macroscopic
world. The latter has been formalized in 1985 by Leggett
and Garg into a set of assumptions summarized as macro-
realism [24].

Definition 1. A macrorealistic system S satisfies the
two following assumptions:

• Macrorealism per sé: given a set of available
macroscopically distinct states, S is in one of them
at any given time,

• Non-invasive measurability: it is possible in
principle to determine the state of S without affect-
ing neither its state nor its dynamical evolution.

Similarly to local realism and Bell inequalities, macrore-
alism can be consolidated in a set of quantitative con-
ditions which can be experimentally falsified. Given a
physical system S evolving in time, one can perform a
series of N dichotomic measurements of a macroscopic
observable O at times t0, t1, ..., tN−1, respectively. There-
fore, each measurement produces a random outcome
Oi := O(ti) ∈ {−1, 1}. It can be demonstrated that,

if a system S is macrorealistic in accordance with Defini-
tion 1, the statistics of outcomes produced by the consid-
ered series of measurements has to satisfy a certain set
of inequalities bounding the corresponding correlations
and known as Leggett–Garg inequalities. In the simplest
case of N = 3 repeated measurements, the set of LGIs is
given as in the following definition [25, 31].

Definition 2. Given a series of measurements of an
observable O at times t0, t1, t2, the corresponding set of
Leggett–Garg inequalities (LGIs) is given by

L1(t0, t1, t2) = 1 + C01 + C12 + C02 ≥ 0 , (1)

L2(t0, t1, t2) = 1− C01 − C12 + C02 ≥ 0 , (2)

L3(t0, t1, t2) = 1 + C01 − C12 − C02 ≥ 0 , (3)

L4(t0, t1, t2) = 1− C01 + C12 − C02 ≥ 0 , (4)

where Cij := ⟨OiOj⟩ =
∑

Oi,Oj∈{−1,1}OiOjP (Oi, Oj)

is a correlation function for random outcomes Oi, Oj of
measurements at ti and tj, respectively, and P (Oi, Oj) is
the corresponding joint probability distribution.

Observations of violation of LGIs (1)-(4) suggest a fail-
ure of the macrorealistic view on the system S in terms
of Definition 1, and can hence be seen as a witness of its
”quantumness” in the sense of ability of outcome statis-
tics predicted by quantum mechanics to violate LGIs.

The LGIs introduced in Definition 2 are not the unique
conditions that can be derived from assumptions of
macrorealism. Indeed, similarly to Bell inequalities in
the Wigner form, other sets of conditions on the out-
come statistics were proposed in literature, which bound
directly the joint outcome probabilities P (Oi, Oj) in-
stead of the corresponding correlation functions [28, 39].
The idea which lies behind them is that macrorealis-
tic outcome statistics implies the existence of an overall
joint probability distribution for outcomes at all times
t0, ..., tN−1. Hence, e.g., for N = 3, the probability dis-
tributions P (Oi, Oj) could be computed by marginaliz-
ing the overall probability distributions P (O0, O1, O2).
From the obvious condition P (O0, O1, O2) ≥ 0, we de-
velop the following definition of Leggett-Garg inequalities
in Wigner form [14].

Definition 3. Given a series of measurements of an
observable O at times t0, t1, t2, the corresponding set of
Leggett–Garg inequalities in Wigner form (WL-
GIs) is given by

W1(t0, t1, t2) = P (O1, O2)− P (−O0, O1)− P (O0, O2) ≤ 0 , (5)

W2(t0, t1, t2) = P (O0, O2)− P (O0,−O1)− P (O1, O2) ≤ 0 , (6)

W3(t0, t1, t2) = P (O0, O1)− P (O1,−O2)− P (O0, O2) ≤ 0 , (7)
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where −Oi is the measurement outcome alternative to Oi,
i.e., −Oi = ∓1 if Oi = ±1.

Although obvious analogies between macrorealism and
local realism (and, in turn, LGIs/WLGIs and CHSH/Bell
inequalities) can be drawn, there is a crucial difference
between them. For local realism, Bell inequalities pro-
vide a necessary and sufficient condition guaranteed by
Fine’s theorem [32]. However, this is not the case for
macrorealism: indeed, it has been proven that all forms
of LGIs are necessary but not sufficient for macroreal-
ism, and no Fine’s theorem exists in this case [29, 30].
Therefore, while a violation of LGIs/WLGIs guarantees
incompatibility of the underlying physical system with
the macrorealistic view, their fulfillment can still hide its
quantum nature. Nevertheless, a test which completely
characterizes macrorealism can be established as two sets
of equalities putting constraints on the outcome proba-
bility distributions, one constraining the signaling from
past to future (dubbed no-signaling-in-time) and one con-
straining signaling from future to past (dubbed arrow-of-
time) [29].

Definition 4. Given a series of measurements of an ob-
servable O at times t0, t1, t2, the corresponding set of no-
signaling-in-time (NSIT) conditions is given by:

NSIT(1) : P (O2) =
∑
O1

P (O1, O2) , (8)

NSIT(2) : P (O0, O2) =
∑
O1

P (O0, O1, O2) , (9)

NSIT(3) : P (O1, O2) =
∑
O0

P (O0, O1, O2) , (10)

and the set of arrow-of-time (AoT) conditions is given
by:

AoT(1) : P (O0, O1) =
∑
O2

P (O0, O1, O2) , (11)

AoT(2) : P (O0) =
∑
O1

P (O0, O1) , (12)

AoT(3) : P (O1) =
∑
O2

P (O1, O2) . (13)

Then, NSIT/AoT imply LGIs (WLGIs), while the oppo-
site is not true. This was shown in the physically relevant
example of neutrino oscillations in Ref. [22], where all
previous conditions were studied. There, it was shown
that NSIT/AoT can witness violations of macrorealism
when LGIs (WLGIs) do not. For example, this happens
for time intervals much longer than the wave-packets co-
herence time. This fact will be even clearer in the follow-
ing, where we are going to analyze the various tests of
macrorealism in the framework of meson oscillations. We
will see that, with the chosen initial condition, no viola-
tion of LGIs or WLGIs is experienced, while NSIT/AoT
reveal the quantum nature of the phenomenon.

B. Meson oscillations: an overview

Before proceeding with the analysis of conditions for
macrorealism, we briefly review the phenomenology of
neutral meson oscillations. For the sake of simplicity, we

focus on neutral K-mesons (kaons), i.e., K0−K0
oscilla-

tions, although the described framework and the follow-
ing results hold true for other types of neutral mesons as
well. Moreover, in our discussion we omit the tiny effects
of CP violation, which does not add any relevant feature
to the analysis.
Oscillations of neutral kaons can be effectively ap-

proached via the non-relativistic Wigner–Weisskopf ap-
proximation (WWA), based on the non-Hermitian Hamil-
tonian

Ĥ = M̂ − i

2
Γ̂, (14)

with the eigenstates |Ki⟩, where i = S,L (dubbed as
short-lived and long-lived states, respectively), and the
corresponding eigenvalues mi − i

2Γi, with (distinct) def-
inite masses mi and decay widths Γi. In the above ex-
pression, M̂ = M̂† is the mass operator, which covers the
unitary part of the dynamics and Γ̂ = Γ̂† describes the
decay. In turn, the dynamics of a neutral kaon produced
at t0 can be obtained by solving the Schrödinger equation
under the effective WWA Hamiltonian (14),

|ψ(t)⟩ = fS(t)|KS⟩+ fL(t)|KL⟩, (15)

where fi(t) = ⟨ψ(t = t0)|Ki⟩e−(imi+
Γi
2 )(t−t0).

The physical (flavor) states |K0⟩ and |K0⟩ (kaon and
antikaon, respectively) are labeled by the strangeness
quantum number. Crucially, for the hadronic decays,
both can decay via weak interaction into two or three
pions. Generally speaking, the flavor states do not coin-
cide1 with the mass eigenstates |Ki⟩, but are rather their
superpositions [40], that is

|K0⟩ =
1√
2
(|KS⟩+ |KL⟩) , (16)

|K0⟩ =
1√
2
(|KS⟩ − |KL⟩) . (17)

1 In our discussion, for the sake of simplicity we omit the tiny ef-
fects of violation of the CP symmetry in neutral kaon oscillations,
which provides an asymmetry in the oscillation probabilities in
(20) and (21):

P
K0→K

0 (t) =
e−Γt

2

|1− ε|
|1 + ε|

(
cosh

(∆Γt

2

)
− cos(∆mt)

)
,

P
K

0→K0 (t) =
e−Γt

2

|1 + ε|
|1− ε|

(
cosh

(∆Γt

2

)
− cos(∆mt)

)
,

where ϵ is a complex parameter quantifying CP violation. Nev-
ertheless, we show in the following that the oscillation probabili-
ties enter the conditions for macrorealism only as a combination
P
K0→K

0 (t)P
K

0→K0 (t), which is independent of ϵ.
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Now, suppose that a neutral kaon is produced at t = t0
as |ψ(t = t0)⟩ = |K0⟩. Taking into account the dynamics
given by (15), it evolves into the state

|K0(t)⟩ =
1√
2

(
e−(imS+

ΓS
2 )∆t|KS⟩

+ e−i(mL+
ΓL
2 )∆t|KL⟩

)
, (18)

where ∆t = t − t0. Hence, the probabilities of finding
a kaon (survival probability) and antikaon (oscillation
probability) at time t are given by

P
K0→K0/K

0(t) = |⟨K0/K
0|K0(t)⟩|2 , (19)

respectively, and it can be straightforwardly calculated
from (18) as

P
K0→K0/K

0(t) =
e−Γ∆t

2

(
cosh

(∆Γ∆t

2

)
± cos(∆m∆t)

)
,

(20)
where ∆m = mL −mS is the difference of neutral kaon
masses, Γ = ΓS+ΓL

2 and ∆Γ = ΓS − ΓL. Similarly, the
survival and oscillation probabilities can be calculated for
the scenario where an antikaon is produced at t = t0, so

that |ψ(t = t0)⟩ = |K0⟩ and

P
K

0→K
0
/K0(t) =

e−Γ∆t

2

(
cosh

(∆Γ∆t

2

)
± cos(∆m∆t)

)
.

(21)
Note that the survival and oscillation probabilities do not
sum up to unity, P

K0→K
0(t) + PK0→K0(t) ̸= 1, because

of the hadronic and the (semi-)leptonic decays of neu-
tral kaons. This fact strongly distinguishes the present
case from the one of neutrino oscillations. In particu-
lar, the (semi-)leptonic decays were intensively used to
study neutral kaon oscillations at accelerator facilities in
the CPLEAR experiment. Therein, the flavor of the de-
cayed particle is uniquely identified by a lepton of a defi-
nite charge, and the relative decay rates provide a direct
measure of the relative flavor components of the parti-
cle’s state. In turn, the transition probabilities can be
associated with the corresponding decay rates.

III. MACROREALISM IN MESON
OSCILLATIONS

A. Oscillation probabilities

In order to characterize the quantumness of neutral
kaon oscillations as done in Section IIA, it is necessary
to define an observable that can be associated with the
flavor of the particle. This can be done by choosing a di-
chotomic observable OF represented by the correspond-
ing operator

ÔF = 2ΠF − 1, (22)

where ΠF = |F ⟩⟨F | is a projector on the state of flavor

F ∈ {K0,K
0}. A measurement of OF at time ti thus

reveals whether the neutral meson is found at ti in flavor
F or not. Therefore, we associate its possible outcomes
{+1,−1} ∋ OF

i with symbols F and ¬F . This allows
us to introduce probabilities P (F |ti) ≡ P (Oi = +1) and
P (¬F |ti) ≡ P (Oi = −1) of events ”particle is found in
flavor F” and ”particle is not found in flavor F”, respec-
tively. A crucial difference between this scenario and two-
flavor neutrino oscillations can be easily spotted: for the
latter, a negative outcome of measurement of OF means
that the neutrino is found in the conjugated flavor F
(e.g., if F = νe is an electronic neutrino, then F = νµ
is a muonic netrino). This is not the case for neutral
kaon oscillations, because the outcome ¬F includes de-
cay events as well.
Before moving on with the derivation of conditions for

macrorealism for neutral kaon oscillations, we derive the
necessary joint probabilities for outcomes of sequential
measurements. As neutral mesons are produced in accel-
erator facilities in a state of given flavor, we assume the
initial state to be one which, without loss of generality,
is chosen as |F ⟩. Moreover, as we are interested in quan-
tification in terms of experimentally accessible quantities,
we aim in connecting the joint outcome probabilities with
transition probabilities (19). This is achieved in the fol-
lowing Lemma.

Lemma 1. For a neutral kaon produced at t0 in the
flavor F , two measurements of the observable OF per-
formed at times t1 and t2, respectively, reveal outcomes
O1 ∈ {F,¬F} and O2 ∈ {F,¬F} with probabilities

P (F, F ) = PF→F (∆t1)PF→F (∆t2),

P (F,¬F ) = PF→F (∆t1)
(
1− PF→F (∆t2)

)
,

P (¬F, F ) = PF→F (∆t1)PF→F (∆t2),

P (¬F,¬F ) = 1− PF→F (∆t1)− PF→F (∆t2)PF→F (∆t2),

where ∆t1 = t1 − t0 and ∆t2 = t2 − t1, and F is the

flavor conjugated to F , so that K
0
= K0, and P (·, ·) :=

P (·, ·|t1, t2).

Proof. See Appendix A.

B. (W)LGIs for neutral kaon system

We start by deriving the Leggett-Garg inequalities in
their canonical (1)-(4) as well as Wigner form (5)-(7) for
neutral kaon oscillations. In order to address typical ex-
perimental setups for neutral meson systems, we assume
that the kaon is produced at t0 = 0, and the measure-
ments of OF are performed at equidistant time intervals
∆t1 = ∆t2 = t, choosing therefore t0 = 0, t1 = t, t2 = 2t.
Having fixed that, we aim at the evaluation of the corre-
lation functions

Cij =
∑

Oi,Oj∈{F,¬F}

OiOj P (Oi, Oj) , (23)
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which can be straightforwardly obtained by applying
Lemma 1, so as to obtain

C01 = 2PF→F (t)− 1, (24)

C12 = 1− 2PF→F (t)
(
1− PF→F (t)

)
− 2PF→F (t)PF→F (t), (25)

C02 = 2PF→F (2t)− 1. (26)

Plugging these formulas into (1)-(4), we obtain the set of
LGIs constraining neutral kaon transition probabilities:

L1(t) = PF→F (2t) + P 2
F→F (t)

− PF→F (t)PF→F (t) ≥ 0, (27)

L2(t) = PF→F (2t)− P 2
F→F (t)

+ PF→F (t)PF→F (t) ≥ 0, (28)

L3(t) = −PF→F (2t)− P 2
F→F (t) + 2PF→F (t)

+ PF→F (t)PF→F (t) ≥ 0, (29)

L4(t) = −PF→F (2t) + P 2
F→F (t) + 2

(
1− PF→F (t)

)
− PF→F (t)PF→F (t) ≥ 0. (30)

Without loss of generality, assuming F = K0 and ap-
plying the transition probabilities (19), we plot the func-
tions (27)-(30) in Fig. 1. In contrast to neutrino oscil-
lations [22], the entire set of LGIs provide four different
constraints for neutral kaon oscillations. Nevertheless, it
can be easily noted that, at any point in time, they are
not violated. Therefore, LGIs cannot detect violation
of macrorealism in neutral kaon system and could lead
to an erroneous idea that its oscillations are susceptible
of a macrorealistic interpretation despite their quantum
nature.

Next, we proceed with questioning the suitability of
WLGIs for the characterization of the quantumness of
neutral kaon oscillations. WLGIs (5)-(7) directly de-
pend on probabilities of measurement outcomes which
are fixed. Therefore, we assume O0 = F , O1 = ¬F , and
O2 = ¬F , so that −O0 = ¬F , −O1 = F , and −O2 = F .
Applying Lemma 1, we obtain the following set of WLGIs
constraining neutral kaon transition probabilities:

W1(t) = PF→F (2t)− PF→F (t)

− PF→F (t)PF→F (t) ≤ 0, (31)

W2(t) = PF→F (t)PF→F (t)− PF→F (2t) ≤ 0, (32)

W3(t) = PF→F (2t)− PF→F (t)

− PF→F (t)PF→F (t) ≤ 0. (33)

Therefore, WLGIs provide two different conditions re-
quiring negativity of W1(t) and W2(t), which are plotted
in Fig. 2 under the assumption F = K0. Similarly to the
LGIs analyzed above, we find that WLGIs are satisfied
at every point of time, demonstrating a crucial difference

FIG. 1. Functions L1(t) (blue solid curve, first panel), L2(t)
(red solid curve, second panel), L3(t) (black dashed curve,
second panel), and L4(t) (green dashed curve, first panel)
as functions of time scaled by the proper mean lifetime
τ = 8.954 · 10−11 s of a neutral kaon. We assume that
the kaon is produced in flavor F = K0, and the parame-
ters Γ = 5.5939 × 109 s−1, ∆Γ = 1.1149 × 1010 s−1, and
∆m = 0.5293 × 1010ℏ s−1 for neutral kaon system are cho-
sen in accordance with the corresponding experimental values
provided by the Particle Data Group in [41].

with WLGIs for neutrino oscillations, which reveal viola-
tion of macrorealism at small times [22]. This means that
(W)LGIs are not efficient enough to test the quantum na-
ture of flavor transitions in neutral kaon oscillations, and
hence the NSIT/AoT (as necessary and sufficient condi-
tions for macrorealism) have to be addressed.

C. Necessary and sufficient conditions for
macrorealism in neutral kaon oscillations

Similarly to WLGIs, the NSIT/AoT conditions depend
directly on the probabilities of measurement outcomes.
Nevertheless, only some of the latter are fixed: there-
fore, we assume O0 = F , O1 = ¬F , and O2 = ¬F as
above, unless there is summation over the corresponding
measurement outcome. Applying Lemma 1, we find that
the set of AoT conditions is trivially satisfied, while the
set of NSIT conditions reduces to a unique, non-trivial
condition with respect to (8), which is equal to

1−PF→F (2t) = 1−P 2
F→F (t)−PF→F (t)PF→F (t). (34)
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FIG. 2. Functions W1(t) (blue solid curve) and W2(t) (red
dashed curve) as functions of time scaled by the proper mean
lifetime τ = 8.954 · 10−11 s of a neutral kaon. We assume
that the kaon is produced in flavor F = K0, and the param-
eters Γ = 5.5939 × 109 s−1, ∆Γ = 1.1149 × 1010 s−1, and
∆m = 0.5293 × 1010ℏ s−1 for neutral kaon system are cho-
sen in accordance with the corresponding experimental values
provided by the Particle Data Group in [41].

For the sake of simplicity, we use (34) to introduce the
function

N (t) := PF→F (2t)−P 2
F→F (t)−PF→F (t)PF→F (t), (35)

so that the NSIT condition for macrorealism in neutral
kaon oscillations has the simple form

N (t) = 0 . (36)

Without loss of generality, assuming F = K0 and ap-
plying the transition probabilities (19), we plot the func-
tion (35) in Fig. 3. The plot shows a strong contrast
between (W)LGIs and NSIT/AoT conditions in the case
of neutral kaon oscillations: while the former are never
violated (thus failing to catch the quantum nature of fla-
vor oscillations), the latter are violated at any time point
excluding the trivial cases t = 0 and t → ∞. This sug-
gests the complete incompatibility of neutral kaon sys-
tems with the macrorealistic view.

Nevertheless, it is necessary to remark that the lack
of violation of LGIs and WLGIs seems to be contingent
on the specific choice of initial conditions, i.e. the pro-
duction of neutral kaon in flavor K0 at t = 0. Other
choices could lead to violation of (W)LGIs [38]. However,
the strong difference between predictions of (W)LGIs and
NSIT/AoT conditions discovered so far clearly highlights
the limitations of the former as tools for capturing the
quantum nature of the considered phenomenon.

IV. CONCLUSIONS

In this study, we have undertaken an analysis of
NSIT/AoT conditions within the physical framework of
meson oscillations. Our study reveals that, just like

FIG. 3. Function N (t) of the neutral kaon (blue solid curve)
and of the strange B meson (red dashed curve) as functions of
time scaled by the proper mean lifetime τ = 8.954 ·10−11 s for
a neutral kaon and τ = 1.470 · 10−12 s for a strange B meson.
We assume that the kaon is produced in flavor F = K0, and
the parameters Γ = 5.5939×109 s−1, ∆Γ = 1.1149×1010 s−1,
and ∆m = 0.5293×1010ℏ s−1 for neutral kaon system are cho-
sen in accordance with the corresponding experimental values
provided by the Particle Data Group in [41]. For the strange
B meson, the particle is produced in the flavor F = Bs and the
parameters are Γ = 6.615 × 1011 s−1, ∆Γ = 9.14 × 1010 s−1,
and ∆m = 1.776× 1013ℏ s−1

the scenario occurred for two-flavor neutrino oscillations,
these conditions boil down to a singular, non-trivial
equality, which is commonly violated by meson oscil-
lations. Employing the specific choice made for initial
conditions, it is observed that the LGIs and WLGIs are
always fulfilled, while NSIT/AoT reveal a violation of
macrorealism. These findings unambiguously underscore
the efficacy of such a formalism in scrutinizing the intri-
cate interplay between particle physics and the founda-
tional aspects of quantum mechanics.

A significant step forward along this direction would
involve the examination of NSIT/AoT conditions within
the domain of quantum field theory (QFT). In Ref. [21],
WLGIs were investigated within the framework of the
flavor Fock-space approach of QFT neutrino physics, en-
abling a coherent description of flavor oscillations at all
energy scales. The study suggests that QFT may ex-
hibit less compatibility with macrorealism compared to
quantum mechanics. This finding aligns with the general
achievement reached in the context of Bell inequalities
[42–44]. Given that NSIT/AoT conditions are necessary
and sufficient for macrorealism (akin to Bell inequalities
for local realism), we believe they could contribute to un-
veiling foundational characteristics of quantum field the-
ory. On a final note, we also pinpoint that the flavor vac-
uum and its quantum information properties were stud-
ied in the case of boson mixing as well [45–47], so that
the analysis performed in this paper can also be extended
within the framework of QFT.
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Appendix A: Proof of Lemma 1

Given a quantum system evolving in time under the
initial condition ρ(t = t0) = ρ0 for its state, a joint prob-
ability of getting outcomes O1 and O2 of measurements
of an observable O at t1 and t2, respectively, is given by:

P (O1, O2|t1, t2) = Tr

[
ΠO2

Vt2−t1

[
ΠO1

Vt1−t0 [ρ0]ΠO1

]]
,

(A1)
where ΠOi is a projector onto an eigenspace associated
with the measurement outcome Oi, and Vt1−t0 [ρ(t0)] =
ρ(t1) is a dynamical map describing the time evolution
of the system. For the sake of consistency, we recall
that dynamics of a decaying particle system, such as neu-
tral kaon system via the effective WWA non-Hermitian
Hamiltonian (14), can be equivalently described as an
open system dynamics via Gorini-Kossakowski-Lindblad-
Sudarshan (GKLS) equation for a state ϱ on an ex-
tended Hilbert space H = Hf ⊕ Hd, where Hf is the

flavor Hilbert space spanned by {|K0⟩, |K0⟩}, and Hd is
a Hilbert space spanned by states {|dk⟩}k corresponding
to decay products [48],

ϱ̇ = −i[M, ϱ]− 1

2

(
B†Bϱ+ ϱB†B − 2BϱB†

)
. (A2)

Due to the tensor sum structure of H, the total state can

be decomposed as ϱ =

(
ρf ρfd
ρ†fd ρd

)
, and we define

M =

(
M 0
0 0

)
, B =

(
0 0
B 0

)
, (A3)

where M is the mass operator of the WWA Hamilto-
nian (14), while B =

∑
kj bkj |dk⟩⟨fj |, with {|fj⟩}j span-

ning the flavor Hilbert space Hf , is an operator map-
ping states from Hf onto Hd, thus covering the decay
property [48]. Furthermore, the GKLS equation (A2) is
decomposed into three dynamical equations,

ρ̇f = −i[M,ρf ]−
1

2
{Γ, ρf}, (A4)

ρ̇fd = −iMρfd −
1

2
Γρfd, (A5)

ρ̇d = BρfB
†, (A6)

where Γ = B†B =
∑

kjj′ b
∗
kjbkj′ |fj⟩⟨fj′ |. It can be as-

sociated with the non-Hermitian term Γ of the WWA

Hamiltonian (14) by an appropriate choice of bkj and
{|fj⟩}j , so that (A4) coincides with the Schrödinger equa-
tion under the WWA Hamiltonian (14).
As we assume that a neutral kaon is produced at t0

in a certain flavor state |F ⟩ ∈ Hf , it is easy to spot
that the component ρfd remains zero at every point in
time, so that ϱ(t) = ρf (t) ⊕ ρd(t). Now, associating the
dynamical map Vt[·] with dynamical equations (A4) and
(A6), and outcomes F and ¬F of measurements of the
observable (22) with projectors ΠF = |F ⟩⟨F | and 1 −
ΠF , respectively, we calculate first the joint probabilities
of finding F in the first measurement and F/¬F in the
second measurement, which are straightforward:

P (F, F ) = Tr

[
ΠFVt2−t1

[
ΠFVt1−t0 [ΠF ]ΠF

]]
= ⟨F |Vt1−t0 [ΠF ]|F ⟩Tr

[
ΠFVt2−t1 [ΠF ]

]
= ⟨F |Vt1−t0 [ΠF ]|F ⟩⟨F |Vt2−t1 [ΠF ]|F ⟩
= PF→F (t1 − t0)PF→F (t2 − t1), (A7)

P (F,¬F ) = Tr
[
(1−ΠF )Vt2−t1 [ΠFVt1−t0 [ΠF ]ΠF ]

]
= ⟨F |Vt1−t0 [ΠF ]|F ⟩Tr

[
(1−ΠF )Vt2−t1 [ΠF ]

]
= ⟨F |Vt1−t0 [ΠF ]|F ⟩

(
1− ⟨F |Vt2−t1 [ΠF ]|F ⟩

)
= PF→F (t1 − t0)

(
1− PF→F (t2 − t1)

)
. (A8)

On the other hand, for the probability P (¬F, F ), we take
into account that the projector onto the eigenspace of ¬F
can be given as

1−ΠF = ΠF +Πd = |F ⟩⟨F |+Πd, (A9)

where Πd is a projector onto Hd. Hence, we obtain

P (¬F, F ) = Tr

[
ΠFVt2−t1

[
(1−ΠF )Vt1−t0 [ΠF ](1−ΠF )

]]

= Tr

[
ΠFVt2−t1

[
(ΠF +Πd)Vt1−t0 [ΠF ](ΠF +Πd)

]]

= Tr

[
ΠFVt2−t1 [ΠFVt1−t0 [ΠF ]ΠF +ΠdVt1−t0 [ΠF ]Πd]

]
= Tr

[
ΠFVt2−t1 [ΠFVt1−t0 [ΠF ]ΠF ]

]
= ⟨F |Vt1−t0 [ΠF ]|F ⟩Tr

[
ΠFVt2−t1 [ΠF ]

]
= ⟨F |Vt1−t0 [ΠF ]|F ⟩⟨F |Vt2−t1 [ΠF ]|F ⟩
= PF→F (t1 − t0)PF→F (t2 − t1), (A10)

where the third row is obtained by taking into account
that ρfd(t) = 0, and the fourth row follows from orthog-
onality of spaces Hf and Hd. Finally, the probability
P (¬F,¬F ) follows straightforwardly from the normaliza-
tion condition

∑
Oi,Oj∈{F,¬F} P (Oi, Oj) = 1, i.e.,

P (¬F,¬F ) = 1− PF→F (t1 − t0)

− PF→F (t1 − t0)PF→F (t2 − t1).(A11)
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