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Abstract—Superposed orders of quantum channels have al-
ready been proved – both theoretically and experimentally – to
enable unparalleled opportunities in the quantum communica-
tion domain. As a matter of fact, superposition of orders can
be exploited within the quantum computing domain as well,
by relaxing the (traditional) assumption underlying quantum
computation about applying gates in a well-defined causal order.
In this context, we address a fundamental question arising with
quantum computing: whether superposed orders of single-qubit
gates can enable universal quantum computation. As shown in
this paper, the answer to this key question is a definitive “yes”.
Indeed, we prove that any two-qubit controlled quantum gate
can be deterministically realized, including the so-called Barenco
gate that alone enables universal quantum computation.

Index Terms—Quantum computing architecture, Fault-
tolerant Quantum Computation, Universal Quantum Comput-
ing, Quantum Computation, Quantum Gates, Quantum Switch,
Superposed Orders

During the last ten years, there has been an increasing
widespread interest on investigating the advantages arising
from the superposition of traversing orders of quantum chan-
nels in the quantum communication domain, due to the
outstanding possibilities arising from the non-classical prop-
agation of quantum carriers [1]–[5]. More into details, while
classical carriers propagate through classical communication
paths, quantum channels can be placed in a genuinely quan-
tum setting with no counterpart in classical world [6], [7],
giving rise to the concept of quantum path [8]–[10]. This
non-classical propagation has been experimentally validated
[11], [12], and it finds a possible physical realization in the
device known as quantum switch [13], [14], which enables
a coherent superposition of alternative channel configurations.
Specifically, by the means of the quantum switch, the quantum
carrier can travel through different communication channels
in a quantum superposition of different causal orders. This, in
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turn, makes the order of the communication channels indefinite
and it returns disruptive advantages, as instance, for com-
munications through noisy channels [15]–[17]. Furthermore,
it has been recently demonstrated that the quantum switch
can be exploited for generating different classes of genuine
multipartite entangled states starting from separable inputs
[18], [19]. Therefore, the engineering of the unconventional
quantum propagation phenomena is key in the quantum com-
munication domain.

It must be noted, though, that the possibilities enabled by the
superposition of orders of quantum operations can be exploited
within the quantum computing domain as well [20], [21].
Specifically, it is possible to relax the (traditional) assumption
underlying quantum computation, i.e., quantum gates applied
in a well-defined causal order only [22]. By doing this, a
novel and more-general computing framework arises, which
has been applied to a number of problems, both theoretically
[20], [21], [23]–[28] and experimentally [11], [29].

In this context, we address a fundamental question arising
with quantum computing, namely, whether superposed orders
of quantum operations can constitute a novel paradigm for
universal quantum computing.

As proved in the following, the answer to this key question
is a definitive “yes”. Specifically, through the manuscript we
show that any controlled quantum gate can be deterministically
realized via superposition of the traversing orders of single-
qubit gates. Notably, this includes the two-qubit gate known
as Barenco gate, which alone enables universal quantum
computation [30].

A. Contribution

Our contributions can be summarized as follows:

• we provide a general framework for the realization of
controlled quantum gates through superposed orders of
single-qubit unitaries;

• we prove that this framework enables the deterministic
realization of any two-qubit controlled gate;

• we specialize the framework for two-qubit controlled
gates widely used in quantum computing, including CNOT,
CZ, and the universal Barenco gate.

We note that the relevance of our work can be linked to
the photonic computing domain. As a matter of fact, photonic
quantum gates are either probabilistic or based on pre-shared
multipartite-entangled states, as discussed in Section I-A. Con-
versely, our framework enables deterministic implementation
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(a) Simplified diagram of a linear optic implementation of a
CNOT logic gate, where Q0 and Q1 represent the control qubit
and the target qubit and a0, a1 are two ancillary photons.

(b) KLM CNOT scheme with simplified NS gates. Q0 and Q1

denote the control qubit and the target qubit, respectively. This
scheme assumes the logical qubits to be encoded trough spatial
modes (path encoding).

Fig. 1: Non-deterministic CNOT gate via linear optics.

of universal quantum computation, by exploiting only single-
qubit gates without the need of pre-sharing large entangled
states. And we do hope that this manuscript can fuel further
research – both theoretical and experimental – about the
powerful setup enabled by superposed orders of quantum gates
for photonic quantum computing.

I. BACKGROUND

In this section we first summarize the main challenges
arising with the implementation of controlled operations in
optical setups. Then, we provide the reader with a concise
guide through the supermap formalism required for modeling
superposed orders of quantum gates.

It is important to discuss first the physical realizability of the
quantum switch. It is known that if the underlying spacetime
is classical, no experiment can realise the quantum switch
deterministically [31]. This is consistent with [20] that shows
the only possible circuit for a quantum switch is via a post-
selection that simulates a closed time-like curve. The known
experimental realizations of quantum switches overcome this
limitation by implementing the parties’ local operations that
are delocalized in time [32]. To do away with post-selection,
known experimental realizations of the quantum switch itself
requires controlled unitary gates. These controlled unitary
gates correspond to arbitrary single-qubit unitary gates that
require “vacuum-extended” unitaries, i.e. in Fig. 2, A and
B are part of Ã = A ⊕ I and B̃ = B ⊕ I [33]. This
requirement must be kept in mind in the following discussions
of the implementations of two-qubit gates that use a quantum
switch. Technically, because of the use of “vacuum-extended
unitaries”, one may refer to experimental realizations of the
quantum switch as simulations of the quantum switch. We will
not dwell on that distinction in this current work. It is sufficient
to say that the operations necessary for the current proposal—a
quantum switch that takes two target qubits (Q0 and Q1)—
can be realized experimentally following extensions of the
implementations shown in Fig. 2. Another implementation can
be based on two target qubits and one control qubit on three
different photons, although such realizations of the quantum
switch have not been shown.

A. Optical Controlled Operations
It is widely recognized by both the industrial and academic

communities that light represents the prominent candidate

for quantum information carriers [38]. More into details,
the advantages arising from photons as quantum information
carrier are manifold.

Photons hardly interact with the environment, and they do
not require a complex cooling infrastructure or high vacuum
chambers. Additionally, they support long-range transmission
with low losses through optical fibers channels or waveguides.
Also, single photons exhibit multiple degrees of freedom
(DoFs) that represent a resource for quantum information en-
coding. Indeed, photons are commonly known as the physical
realization of polarization-encoded qubits. However, photons
can also exist in a superposition of time bins or frequency bins.
Furthermore, by exploiting multi-mode waveguides, photons
also allow path-encoded qubits and high dimensional quantum
states such as path-encoded qudits [39].

Unfortunately, regardless the appealing features for quantum
communications, photonic quantum technologies still repre-
sent a challenge from a quantum computing perspective.
Indeed, such technologies suffer from the probabilistic nature
of single-photon sources and photon-photon non linear inter-
actions, which realize quantum logic gates.

However, gate-based photonic quantum computing can
be realized also by exploiting linear optical elements [40].
Specifically, quantum logic operations can be obtained prob-
abilistically through linear optical elements, ancillary photons
and post-selection based on the output of single-photon detec-
tors [41]–[46]. In this context, particularly challenging is the
realization of the logic gate CNOT, whose scheme for optical
implementation is represented in Figure 1 and can be sum-
marized as follows. The two input photons (control qubit Q0

and target qubit Q1, respectively) and two additional ancilla
photons (a0,a1) are combined through a linear optic network
of Beam Splitters (BS) as pictorially represented in Figure 1a.
If both the ancilla qubits are detected at the output of the
optical network – specifically, both the detectors signal a single
photon detection – then the target qubit has been successfully
subjected to the CNOT logic operation. To better understand
the nondeterministic nature of the optical implementation of
the gate, we consider the well known Knill-Laflamme-Milburn
(KLM) CNOT scheme [40], represented in Figure 1b. The basic
unit of the scheme is a nonlinear sign-shift gate (NS) which
given the input state |µ⟩ = a |0⟩ + b |1⟩ + c |2⟩ returns the
output state |µ′⟩ = a |0⟩+ b |1⟩ − c |2⟩, where |0⟩, |1⟩ and |2⟩
denote the vacuum state, single photon state and two-photon
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Fig. 2: Schematic diagram of some of experimentally implemented architectures of the photonic quantum switch. (a) An
implementation via a Mach-Zehnder geometry, where the target qubit is encoded in polarization of the photon, while the
control qubit is mapped into its path degree of freedom using the first beam splitter and coherently recombining the paths
A → B and B → A at the second beam splitter [11], [12], [14], [34], [35]. (b) An implementation via a Sagnac geometry,
where the target qubit is encoded in polarization of the photon (as in (a)), whereas a single beam splitter introduces the path
degree of freedom as control and completes superposition of causal orders of A and B [36]. (c) An implementation via a
geometry, where the target qubit is encoded in the path degree of freedom of the photon, while the role of control qubit is
played by its polarization [13], [37].

state, respectively. Consider the qubits encoded through spatial
modes (path), the NS gate is obtained through three BS and
two number resolving detectors. The NS gate successfully
performs an heralded π phase rotation, when exactly one
photon is detected on one detector and no photons are detected
at the other. This event occurs with probability 1/4. The
KLM CNOT gate is constructed from two NS gates, hence the
CNOT success probability is (1/4)2 = 1/16. We represent in
Figure 1b the KLM CNOT gate with two simplified NS gates,
namely, the NS gates are implemented through one BS and one
detector. The result is still an heralded sign shift, where the
detection of one photon represents the herald event, however
the success probability is slightly decreased (from 0.25 to 0.23)
[47].

For overcoming the nondeterministic nature of gate-based
schemes, the so-called cluster-state-based photonic quantum
computing has been developed [48]. The key idea is that, in
the absence of deterministic two-photon operations, an initial
cluster state can be built up offline using non-deterministic
interactions. Successively, the computation progresses by ma-
nipulating the cluster state via deterministic single-qubit oper-
ations through optical elements [48].

Our framework merges both the appealing features of gate-
based and cluster-state-based photonic computing. Specifi-
cally, our framework overcomes the limitations of the former
schemes, by enabling deterministic computing. And it over-
comes also the limitations exhibited by the latter, since it does
not require any pre-shared multipartite-entangled state, whose
generation requires offline non-deterministic interactions.

B. Superposed Orders of Quantum Operations via Quantum
Switch

While quantum circuit model is one of the most widely used
paradigms of quantum computations, a lot of effort has been
put to extend it to computations of higher order. Such objects
as quantum combs, which can be seen as quantum circuits with
open slots for arbitrary quantum gates, have allowed one to
solve problems not achievable with the quantum circuit model
[49]–[51]. Nevertheless, quantum combs, which put the gates
into a certain order on a circuit board, are not the most general
computational model of higher order that can be achieved
within quantum mechanics. Indeed, it allows for higher-order
operations putting quantum gates into configurations – such as
the superpositions of causal orders discussed in the following
– that cannot be reduced to their well-ordered compositions
[7], [20], [21], [51], [52].

Superposition of causal orders of quantum operations can
be realized via the quantum switch, i.e., a quantum device
already implemented in numerous table-top optical and NMR
experiments [11]–[14], [34]–[37], [53]–[57] as schematized
in Fig. 2. In what follows, we provide the reader with the
mathematical description of the quantum switch.

Given input and output systems I and O, any quantum
operation transforming the former to the latter can be repre-
sented by a completely positive trace-preserving (CPTP) map
A : L(HI) → L(HO), where HI/O denotes Hilbert space
of system I or O, respectively, while L(HI/O) is the set of
density operators over HI/O.

The quantum switch is an example of a supermap that sends
any N quantum operations A1[·], ...,AN [·] to a new quantum
operation S(A1, ...,AN )[·]. More into details, given an ancil-
lary quantum system C, the quantum switch is constructed as
a supermap that uses a state ω of C to coherently control the
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order in which A1[·], ...,AN [·] act on the input system in the
state ρ:

S(A1, ...,AN )[ρ⊗ ω] =
∑

i1...iN

Ki1...iN (ρ⊗ ω)K†
i1...iN

, (1)

with
Ki1...iN =

∑
k

Pk(A
(1)
i1
...A

(N)
iN

)⊗ |k⟩⟨k| (2)

denoting the Kraus operators of the output quantum operation
of the quantum switch. In (2), {A(j)

ij
}i denotes the set of Kraus

operators of Aj [·], Pk denotes a k-th permutation, and |k⟩ is
the k-th basis state of system C.

By restricting the number of controlled operations to two
operations A[·] and B[·], the supermap in (1) exhibits Kraus
operators given by Kij = AiBj ⊗ |0⟩⟨0| + BjAi ⊗ |1⟩⟨1|,
with {Ai}i and {Bj}j being Kraus operators of A[·] and B[·].
This new operation implemented by the quantum switch can
be represented explicitly in a simple form as [5], [58], [59]:

S(A,B)[ρ⊗ ω] =
1

4

∑
ij

(
{Ai, Bj}ρ{Ai, Bj}† ⊗ ω

+ {Ai, Bj}ρ[Ai, Bj ]
† ⊗ ωZ

+ [Ai, Bj ]ρ{Ai, Bj}† ⊗ Zω

+ [Ai, Bj ]ρ[Ai, Bj ]
† ⊗ ZωZ

)
, (3)

where [·, ·] and {·, ·} denote a commutator and an anti-
commutator [60], respectively, and Z = |0⟩⟨0| − |1⟩⟨1| is the
Pauli Z-operator.

II. CONTROLLED GATES VIA SUPERPOSED ORDERS

In this section, we first exploit the quantum switch to
realize superposed orders of arbitrary unitary gates. Then, we
exploit these preliminary results to realize controlled gates by
resorting to single-qubit gates only.

A. Superposed orders of arbitrary gates

Given two arbitrary unitary gates A and B, the execution of
each of them on the input system I in state ρ can be seen as
the action of quantum operations A[ρ] = AρA† and B[ρ] =
BρB†. Therefore, we can realize a superposition of casual
orders between the two gates A and B by simplifying (3) as:

S(A,B) [ρ⊗ ω] =
1

4

(
{A,B}ρ{A,B}† ⊗ ω

+ {A,B}ρ[A,B]† ⊗ ωZ

+ [A,B]ρ{A,B}† ⊗ Zω

+ [A,B]ρ[A,B]† ⊗ ZωZ
)
. (4)

(4) can be equivalently interpreted as the execution of a new
unitary gate S(A,B) – acting on the overall system composed
by the input system I and the ancilla C – given by:

S(A,B) =
1

2

[
{A,B} ⊗ IC + [A,B]⊗ ZC

]
, (5)

where IC and ZC denote identity and Z-Pauli operators,
respectively, that act on C. For taking full advantage of the
indefinite causal order among the unitaries, we set system C

in the pure state ω = |+⟩⟨+|, where |±⟩ = 1√
2
(|0⟩ ± |1⟩), so

that the input system evolves into a even superposition of the
two causal orders among the unitaries.

By assuming for the sake of simplicity that the input system
I is in a pure1 initial state ρ = |ψ⟩ ⟨ψ|, the action of the new
unitary gate S(A,B) is given by:

S(A,B)(|ψ⟩ ⊗ |+⟩) = 1

2

[
({A,B} |ψ⟩)⊗ |+⟩

+ ([A,B] |ψ⟩)⊗ |−⟩
]
. (6)

It is straightforward to see that tracing out the ancillary qubit
C results in a probabilistic gate that chooses between well-
ordered sequences AB or BA randomly with probability 1/2.
On the other hand, a measurement of the state of C in the
basis spanned by:

|µ(θ)⟩ = cos
(θ
2

)
|0⟩+ i sin

(θ
2

)
|1⟩, (7)

|µ⊥(θ)⟩ = i sin
(θ
2

)
|0⟩+ cos

(θ
2

)
|1⟩, (8)

leaves the system in the following states with probability 1/2

|ψ+(θ)⟩ =
[
cos

(θ
2

)
AB + i sin

(θ
2

)
BA

]
|ψ⟩, (9)

|ψ−(θ)⟩ =
[
i sin

(θ
2

)
AB + cos

(θ
2

)
BA

]
|ψ⟩. (10)

Accordingly, once the ancillary qubit is measured, with prob-
ability 1/2, one of two different gates SA,B

+ (θ) and SA,B
− (θ)

is realized:

SA,B
+ (θ) = cos

(θ
2

)
AB + i sin

(θ
2

)
BA, (11)

SA,B
− (θ) = i sin

(θ
2

)
AB + cos

(θ
2

)
BA. (12)

B. Superposed Orders of single-qubit gates

A pre-requisite for the realization of any universal set of
quantum gates is the ability of implementing a multi-qubit gate
that cannot be reduced to a single tensor product of single-
qubit gates only. With the following lemma and corollary,
we prove that the overall multi-qubit gate – implemented
by combining single-qubit gates via the quantum switch –
satisfies the aforementioned property for non-trivial choices
of the single-qubit gates and the ancillary measurement bases.

Lemma 1. Combining N single-qubit gates A =
⊗N

i=1Ai

and N single-qubit gates B =
⊗N

i=1Bi via quantum switch
implements one of the following two new N -qubit unitaries:

SA,B
+ (θ) = cos

(θ
2

) N⊗
i=1

AiBi + i sin
(θ
2

) N⊗
i=1

BiAi, (13)

SA,B
− (θ) = i sin

(θ
2

) N⊗
i=1

AiBi + cos
(θ
2

) N⊗
i=1

BiAi, (14)

with the actual implemented gate depending on whether the
ancillary qubit is measured as (7) or (8).

1The results obtained in what follows can be straightforwardly extended
to arbitrary (mixed) state ρ by considering the action of S(A,B) on it as
S(A,B)ρS†(A,B).
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Q0

Q1 U

Fig. 3: The CU (controlled-U) logic gate.

Proof. See Appendix A.

We are now ready to provide the main result of this section
with the following corollary.

Corollary 1. SA,B
+ (θ) and SA,B

− (θ) in (13) and (14) cannot
be reduced to a single tensor product of single-qubit gates
only, unless either: i) θ = πk with k ∈ Z, or ii) [Ai, Bi] = 0
for any N − 1 gates Ai and Bi.

Proof. The proof follows directly from Lemma 1.

C. Realization of controlled gates

The realization of controlled gates is key in the quantum
domain. Indeed, not only entanglement is usually generated
within the quantum circuit model via controlled gates (typi-
cally, using a controlled-not CNOT) but – even more relevant
from our perspective – there exists a class of two-qubit
controlled gates any one of which is universal for quantum
computation [30].

For this, in the following we restrict our attention on
two-qubit controlled gates. Accordingly, we denote the con-
trolled gate for an arbitrary single-qubit unitary gate U as CU

(controlled-U), which is formally defined as:

CU = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ U. (15)

Gate CU acts on two input qubits, with the qubit acting as
control denoted as Q0 and the qubit acting as target denoted
with Q1, as depicted in Fig. 3.

In the following, we aim at proving that any arbitrary CU can
be realized with the gates in (13)-(14), namely, by combining
single-qubit gates via the quantum switch. Accordingly, given
the two input qubits in an initial state ρ, the quantum switch
combines two-qubit gates A = A0 ⊗A1 and B = B0 ⊗B1 in
superposed orders. As represented in Fig. 4, it is worthwhile
to note that A0, B0 denote the single-qubit unitaries acting on
the first qubit Q0 of the input state ρ, whereas A1, B1 denote
the single-qubit unitaries acting on the second qubit Q1 of the
input state ρ.

The following preliminary definitions are needed.

Definition 1. A single-qubit gate Rn(θ) that performs a
rotation on angle θ around the n-axis defined by the Bloch
vector n = (nX , nY , nZ) is given by:

Rn(θ) = cos
(θ
2

)
I − i sin

(θ
2

)
(n · σ), (16)

with I and σ = (X,Y, Z) denoting identity matrix and a
vector of Pauli matrices, respectively.

A0

A1

ρ

Q0

|+⟩

Q1

B0

B1

QUANTUM SWITCH

Fig. 4: Representation of two-qubit controlled logic gate via
quantum switch, with the switch represented as a H-shape blue
box as in [4], [32], [64], [65]. The quantum switch combines
two-qubit gates A = A0⊗A1 and B = B0⊗B1 in superposed
orders, with A0, B0 denoting the single-qubit unitaries acting
on the first qubit Q0 and A1, B1 denoting the single-qubit
unitaries acting on the second qubit Q1.

Accordingly, gates RX(θ), RY (θ), and RZ(θ) denote the
rotation gate given in (16) with respect to Bloch vectors n =
(1, 0, 0), n = (0, 1, 0), and n = (0, 0, 1), respectively.

Definition 2. A two-qubit rotation gate Rñn(θ) with respect
to angle θ and Bloch vectors ñ and n is given by:

Rñn(θ) = cos
(θ
2

)
I ⊗ I − i sin

(θ
2

)
(ñ · σ)⊗ (n · σ). (17)

Definition 3. Two-qubit gates A and B are locally equivalent2

if they can be mapped to one another by a tensor product of
single-qubit unitary gates {Vi}i=1,2 and {Ṽi}i=1,2:

A = (V1 ⊗ V2)B(Ṽ1 ⊗ Ṽ2). (18)

Lemma 2. The controlled two-qubit gate CU given by:

CU = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ U, (19)

is locally equivalent to sequences of single-qubit gates put into
superposed orders via quantum switch.

Proof. See Appendix B.

Lemma 2 shows that any two-qubit controlled gate can be
implemented using single-qubit gates only by combining them
in superposed orders. By exploiting this result, the following
Theorem provides a recipe for the implementation of any
arbitrary CU gate.

Theorem 1. The arbitrary two-qubit controlled gate
CU(α, θ,n)

CU(α, θ,n) = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ U(α, θ,n), (20)

2We note that the notion of equivalence given in Def. 3, also referred
to in literature as LU equivalence [61]–[63], restricts the allowed unitary
operators to tensor product of single-qubit unitary gates only. The rationale
for this constraint lies in the aim of enabling universal quantum computing
via superposed orders of single qubits gates.
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pre-processing gates post-processing gates

|±i⟩

X

Z

ρ

Q0 X I/Z e−iπ
8

|+⟩

Q1 Z I/X ±e−iπ
8

RZ(π/2)

RX(π/2)

QUANTUM SWITCH

Fig. 5: Abstract representation of the CNOT gate implemented via superposed orders of single-qubit gates, with Q0 denoting
the control qubit and Q1 denoting the target qubit, respectively. Specifically, the order between the gates is controlled by an
ancillary qubit in state |+⟩ that – after a pre-processing phase, implemented by single-qubit gates P = X⊗Z – implements an
even superposition of causal orders between single-qubit gates A = X⊗Z and B = RZ(

π
2 )⊗RX(π2 ). Once the ancillary qubit

is measured in the basis spanned by |+i⟩ = 1√
2
(|0⟩+ i |1⟩) and |−i⟩ = 1√

2
(i |0⟩+ |1⟩), qubits Q0 and Q1 are post-processed

by F− = −e−iπ
4 (Z ⊗X) or F+ = e−iπ

4 (I ⊗ I), depending on whether the ancilla is measured as |−i⟩ or |+i⟩.

with U(α, θ,n) defined as:

U(α, θ,n) = exp
[
i
(
αI + θ(n · σ)

)]
, (21)

can be deterministically realized through:

- superposed orders of single-qubit gates A(n) = A0 ⊗
A1(n) and B(n) = B0⊗B1(n) combined via a quantum
switch,

- preceded by a pre-processing phase P (n) = P0⊗P1(n),
implemented by single-qubit gates {P0, P1(n)},

- followed by a post-processing phase F±(α, θ,n), im-
plemented by single-qubit gates set accordingly to the
ancillary-qubit measurement results in the basis spanned
by (7),

as follows:

CU(α, θ,n) = F±(α, θ,n)S
A(n),B(n)
± (θ)P (n). (22)

where:

F±(α, θ,n) = ei
α
2

(
RZ

(
α± π

2

)
⊗Rn

(
−θ ± π

2

))
(23)

A(n) = A0 ⊗A1(n) = X ⊗ (n⊥ · σ), (24)

B(n) = B0 ⊗B1(n) = RZ

(π
2

)
⊗Rn

(π
2

)
(25)

P (n) = P0 ⊗ P1(n) = X ⊗ (n⊥ · σ) (26)

with n⊥ denoting the Bloch vector perpendicular to n.

Proof. The proof follows by exploiting the result of Lemma 2,
by plugging (23)-(26) into the decomposition (22), and by
comparing it with the decomposition

CU(α, θ,n) = ei
α
2

(
RZ(α)⊗Rn(−θ)

)
RZn(θ) (27)

of the CU gate provided in Appendix B.

Remark 1. It is worthwhile to note that the deterministic
realization of an arbitrary controlled gate CU via superposed
orders of single-qubit gates imposes different constraints on
the gates acting on the control qubit with respect to the gates
acting on the target qubit. Specifically, the single-qubit gates
acting on the target – i.e., A1 and B1 – depend on the actual
definition of gate U. Conversely, the single-qubit gates acting
on the control qubit – i.e., A0 and B0 – do not depend on the
gate U.

Theorem 1 is the main instrument, exploited in what follows
for the realization of several important examples of two-qubit
controlled gates belonging to – or constituting alone as for the
Barenco gate – universal sets.

III. UNIVERSAL QUANTUM COMPUTATION

In this section, we provide several examples of popular
quantum gates that are used to construct universal sets, and
we detail how they can be synthesized from single-qubit gates
in superposed orders.

A. Controlled NOT
We start by considering the gate CNOT (controlled-NOT),

a paramount example of a gate widely used to construct
more complex gates and lying at the core of fundamental
quantum protocols such as entanglement generation, quantum
teleportation, and telegate [66]–[69].

Formally, CNOT is a controlled-X gate which acts on two
qubits as:

CNOT = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗X. (28)
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Q0

Q1 Z H H

Fig. 6: Example of equivalent quantum circuit for a CZ logic
gate exploiting the CNOT logic gate implementation.

Crucially, CNOT appears in several universal sets as a unique
multi-qubit gate together with certain single-qubit gates. In-
deed, any other unitary gate can be expressed as a sequence
of CNOT gates and some single-qubit gates [60]. Hence, an
efficient implementation of the CNOT gate is of paramount
importance when it comes to universal quantum computation.
To this aim, the following proposition demonstrates that the
CNOT gate can be realized using only simple, widely-used
single-qubit gates by properly placing some of them into a
superposition of orders.

Proposition 1. The CNOT gate can be deterministically re-
alized by combining in superposition of orders the following
single-qubit gates:

A = X ⊗ Z, (29)

B = RZ

(π
2

)
⊗RX

(π
2

)
(30)

Proof. The proof follows from Theorem 1, by recognizing that
the CNOT gate is given by the decomposition in (22) for α =
−π

2 , θ = π
2 and n = (1, 0, 0) and choosing n⊥ = (0, 0, 1).

Proposition 1 provides us with the realization of the CNOT

gate via superposed orders of single-qubit gates. Specifically,
as shown in Figure 5, we first pre-process the input state
– namely, control and target qubits Q0 and Q1 – with a
sequence of single-qubit gates P = X ⊗ Z in accordance
with (26). Then, the resulting state goes into the quantum
switch, which processes it according to simple, widely used
single-qubit gates as in (29) and (30). A measurement of the
ancillary qubit C in the basis spanned by states (7) and (8)
– which we denote in this case as |+i⟩ = 1√

2
(|0⟩ + i |1⟩)

and |−i⟩ = 1√
2
(i |0⟩ + |1⟩) – realizes the gates SA,B

± (π2 )

with probability 1/2 in accordance with (13) and (14). Finally,
depending on the outcome of the measurement, we perform
a post-processing by applying another sequence of single-
qubit gates, namely, i) F−(−π/2, π/2,n) = −e−iπ

4 (Z ⊗X)
whenever the ancillary qubit is found in the state |−i⟩ or
ii) the identity F+(−π/2, π/2,n) = e−iπ

4 (I ⊗ I) otherwise.
Accordingly, the overall deterministic implementation of the
CNOT via superposed orders can be expressed as:

CNOT =

{
e−iπ

4 SA,B
+ (π2 )(X ⊗ Z) if ancilla in |+i⟩ ,

−e−iπ
4 (Z ⊗X)SA,B

− (π2 )(X ⊗ Z) otherwise.
(31)

with, again, A,B given in (29) and (30).

B. Controlled Z

While CNOT gate can be directly associated with a classical
reversible XOR gate, a logic gate without classical counterpart
known as CZ (controlled-Z) gate is also frequently used due
to its diagonal form and can constitute a universal set together
with the corresponding single-qubit gates [60]. Formally, CZ
acts on two qubits as

CZ = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ Z. (32)

and is locally equivalent to the CNOT gate via Hadamard gates,
as shown in Fig. 6:

CZ = (I ⊗H)CNOT(I ⊗H). (33)

The following proposition demonstrates that the CZ gate,
similarly to the CNOT gate, can be synthesized directly using
only single-qubit gates by putting some of them in superposed
orders.

Proposition 2. The CZ gate can be deterministically realized
by combining in superposition of orders the following single-
qubit gates:

A = X ⊗X, (34)

B = RZ

(π
2

)
⊗RZ

(π
2

)
. (35)

Proof. The proof follows from Theorem 1, by recognizing that
the CZ gate is given by the decomposition in (22) for α = −π

2 ,
θ = π

2 and n = (0, 0, 1), and choosing n⊥ = (1, 0, 0).

As represented in Fig. 7, Proposition 2 proves that the
CZ gate is obtained via superposed orders of single-qubit
gates as follows. We first pre-process the input state with a
sequence of single-qubit gates P = X ⊗ X in accordance
with (26), then the resulted state goes into the quantum switch,
which processes it according to the gates in (34) and (35).
A measurement of the ancillary qubit C in basis spanned
by the states (7) and (8), which we denote in this case as
|+i⟩ = 1√

2
(|0⟩ + i |1⟩) and |−i⟩ = 1√

2
(i |0⟩ + |1⟩), realizes

the gates SA,B
± (π2 ) with probability 1/2 in accordance with

(13) and (14). Finally, depending on the outcome of the mea-
surement, we perform a post-processing by applying another
sequence of single-qubit gates, namely, F−(−π/2, π/2,n) =
−e−iπ

4 (Z ⊗ Z), if the ancillary qubit is found in the state
|−i⟩ or F+(−π/2, π/2,n) = e−iπ

4 (I ⊗ I) otherwise:

CZ =

{
e−iπ

4 SA,B
+ (π2 )(X ⊗X) if ancilla in |+i⟩ ,

−e−iπ
4 (Z ⊗ Z)SA,B

− (π2 )(X ⊗X) otherwise.
(36)

C. Barenco gate

Although CNOT and CZ gates are widely used in quantum
computing, they still require additional single-qubit gates to
realize an arbitrary unitary gate, i.e., to realize universal
quantum computation. Differently, there exists a gate named
Barenco gate – denoted in the following as BAR(αB, ϕB, θB) –
which alone is sufficient for universal quantum computation
[30]. In other words, Barenco gate forms by itself a universal
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pre-processing gates post-processing gates

|±i⟩

X

X

ρ

Q0 X I/Z e−iπ
8

|+⟩

Q1 Z I/Z ±e−iπ
8

RZ(π/2)

RZ(π/2)

QUANTUM SWITCH

Fig. 7: Abstract representation of the CZ gate realized via superposed orders of single-qubit gates. As in Figure 5, the ancillary
qubit is set in |+⟩ to implement an even superposition of causal orders, and the pre-processing phase is implemented by
single-qubit gates P = X ⊗ X . The single-qubit gates in superposed orders via quantum switch are A = X ⊗ X and
B = RZ(

π
2 )⊗RZ(

π
2 ), respectively. Once the ancillary qubit is measured in the basis spanned by |+i⟩ = 1√

2
(|0⟩+ i |1⟩) and

|−i⟩ = 1√
2
(i |0⟩+ |1⟩), qubits Q0 and Q1 are post-processed by F− = −e−iπ

4 (Z ⊗ Z) or F+ = e−iπ
4 (I ⊗ I), depending on

whether the ancilla is measured as |−i⟩ or |+i⟩.

set of quantum gates. Formally, Barenco gate is a controlled
rotation gate, which acts on two qubits as

BAR(αB, ϕB, θB) = |0⟩⟨0|⊗I+ |1⟩⟨1|⊗eiαBRn(ϕB)(2θB), (37)

and is parameterized by the angles αB, ϕB, θB ∈ [0, 2π],
with n(ϕB) = (cos(ϕB), sin(ϕB), 0). Though its universality,
practical implementation of the Barenco gate is known to
be highly challenging [70], [71]. The following proposition
demonstrates that the BAR(αB, ϕB, θB) gate can be realized for
any choice of αB, ϕB, θB by using only single-qubit gates in a
superposition of orders.

Proposition 3. The BAR(αB, ϕB, θB) gate can be determinis-
tically realized by combining in superposition of orders the
following single-qubit gates:

A = X ⊗ Z, (38)

B = RZ

(π
2

)
⊗Rn(ϕB)

(π
2

)
, (39)

where n(ϕB) = (cos(ϕB), sin(ϕB), 0).

Proof. The proof follows from Theorem 1, by recognizing that
the BAR(αB, ϕB, θB) gate is given by the decomposition in (22)
for α = αB, θ = −θB, and n = (cos(ϕB), sin(ϕB), 0) ≡ n(ϕB)
and choosing n⊥ = (0, 0, 1).

As shown in Fig. 8, Proposition 3 proves that the
BAR(αB, ϕB, θB) gate is obtained via superposed orders of
single-qubit gates as follows. We first pre-process the input
state with a sequence of single-qubit gates P = X ⊗ Z in
accordance with (26). Then, the resulted state goes into the
quantum switch, which processes it according to the gates (38)

and (39). A measurement of the ancillary qubit C in basis
spanned by the states (7) and (8), with θ = −θB, realizes the
gates SA,B

± (−θB) with probability 1/2 in accordance with (13)
and (14). Finally, depending on the outcome of the measure-
ment, we perform a post-processing by applying another se-
quence of single-qubit gates, namely, i) F+(αB,−θB,n(ϕB)) =
ei

αB
2 RZ(αB + π

2 ) ⊗ Rn(ϕB)(θB + π
2 ), whenever the the

ancillary qubit is found in the state |µ(−θB)⟩ or ii)
F−(αB,−θB,n(ϕB)) = ei

αB
2

(
RZ(αB − π

2 )⊗Rn(ϕB)(θB − π
2 )
)

otherwise. Accordingly, the overall deterministic implementa-
tion of the BAR(αB, ϕB, θB) gate via superposed orders can be
expressed as:

BAR(αB, ϕB, θB) = ei
αB
2

(
RZ

(
αB ±

π

2

)
⊗Rn(ϕB)

(
θB ±

π

2

))
· SA,B

± (−θB)(X ⊗ Z). (40)

IV. CONCLUSIONS

In this paper, we proved that quantum gates in superposed
orders via the quantum switch give birth to a novel paradigm
for universal quantum computation. Specifically, the quantum
switch enables a framework able to implement any two-qubit
controlled gate in a deterministic manner, by exploiting only
single-qubit gates in superposition of causal orders. The result
here proposed paves the way for unleashing the advantages
provided by the engineering of the unconventional quantum
propagation phenomena towards a computing model based
on higher-order quantum operations. And we do hope that
this manuscript can fuel further research – both theoretical
and experimental – about the powerful setup enabled by
superposed orders of quantum gates for photonic quantum
computing.
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pre-processing gates post-processing gates

∣∣µ(−θB)/µ
⊥(−θB)

〉

X

Z

ρ

Q0 X RZ(−αB ± π/2) ei
αB
4

|+⟩

Q1 Z Rn(ϕB)(θB ± π/2) ei
αB
4

RZ(π/2)

Rn(ϕB)(π/2)

QUANTUM SWITCH

Fig. 8: Abstract representation of the BAR(αB, ϕB, θB) gate realized via superposed orders of single-qubit gates. As in Figure 5,
the ancillary qubit is set in ω = |+⟩ to implement an even superposition of causal orders, and the pre-processing phase is
implemented by single-qubit gates P = X⊗Z. The single-qubit gates in superposed orders via quantum switch are A = X⊗Z
and B = RZ(

π
2 )⊗Rn(ϕB)(

π
2 ), with n(ϕB) = (cos(ϕB), sin(ϕB), 0). Once the ancillary qubit is measured in the basis spanned by

the states (7) and (8) with θ = −θB, qubits Q0 and Q1 are post-processed by either F+ = ei
αB
2

(
RZ(αB +

π
2 )⊗Rn(ϕB)(θB +

π
2 )
)

or F− = ei
αB
2

(
RZ(αB − π

2 )⊗Rn(ϕB)(θB − π
2 )
)
, depending on the ancilla qubit measurement result.

APPENDIX A
PROOF OF LEMMA 1

For A =
⊗N

i=1Ai and B =
⊗N

i=1Bi, the quantum switch
implements the unitary gate given in (5), i.e.:

S(A,B) =
1

2

[{ N⊗
i=1

Ai,

N⊗
i=1

Bi

}
⊗ IC

+
[ N⊗
i=1

Ai,

N⊗
i=1

Bi

]
⊗ ZC

]
. (41)

Hence, when the input N -qubits are in a pure initial state
ρ = |ψ⟩ ⟨ψ| and the ancillary system C is in the pure state
ω = |+⟩ ⟨+|, the output of the unitary in (41) is equal to:

S(A,B)(|ψ⟩ ⊗ |+⟩) = 1

2

[{ N⊗
i=1

Ai,

N⊗
i=1

Bi

}
|ψ⟩ ⊗ |+⟩

+
[ N⊗
i=1

Ai,

N⊗
i=1

Bi

]
|ψ⟩ ⊗ |−⟩

]
. (42)

Measurement of the ancillary qubit in the basis spanned by
the states (7) and (8) leaves the input N qubits in one of the
two following states:

|ψ+(θ)⟩ =
[
cos

(θ
2

) N⊗
i=1

AiBi + i sin
(θ
2

) N⊗
i=1

BiAi

]
|ψ⟩,

(43)

|ψ−(θ)⟩ =
[
i sin

(θ
2

) N⊗
i=1

AiBi + cos
(θ
2

) N⊗
i=1

BiAi

]
|ψ⟩,

(44)

with probability 1/2. It is straightforward to observe that this
is equivalent to the implementation of one of gates in (13) and
(14), each with probability 1/2, and hence the proof follows.

APPENDIX B
PROOF OF LEMMA 2

An arbitrary unitary gate U can be represented by an
Hermitian operator as U = eiH . Accordingly, applying this
representation to the CU gate, it results that CU can be expressed
as:

CU = e
i
2 (I−Z)⊗H . (45)

For a single-qubit gate U, the corresponding Hermitian opera-
tor H can be expanded into the Pauli basis as:

H = αI + θ(n · σ), (46)

where α, θ ∈ R, n denotes a real-valued unit vector known
as Bloch vector [60], and σ = (X,Y, Z) is a vector of
Pauli matrices. Plugging (46) into (45), after some algebraic
manipulations, the CU gate can be decomposed into a sequence
of gates as:

CU = ei
α
2

(
RZ(α)⊗Rn(−θ)

)
RZn(θ), (47)

where Rn(θ) = cos
(

θ
2

)
I − i sin

(
θ
2

)
(n · σ) is the rotation

operator with respect to the Bloch vector n defined in (16),
RZ(θ) is the rotation operator with respect to n = (0, 0, 1),
and RZn(θ) is the two-qubit rotation gate given in (17) when
Bloch vector ñ is set as ñ = (0, 0, 1). Clearly, from (27), it
easy to recognize that the CU gate is locally equivalent to the
two-qubit rotation gate RZn(θ) given in (17).
From this, let us demonstrate that the two-qubit rotation
RZn(θ) is locally equivalent to:

- single-qubit gates A(n) = A0 ⊗ A1(n) and B = B0 ⊗
B1(n) combined in superposition of orders via a quantum
switch,

- preceded by a sequences P (n) = P0 ⊗ P1(n) of single-
qubit pre-processing gates,
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- followed by a sequences F (n) = F0 ⊗ F1(n) of single-
qubit post-processing gates

Accordingly, by exploiting Lemma 1, it results that the overall
gate implemented by the above-described superposition of
orders is either:

SA,B
+ (θ)P = cos

(θ
2

)
A0B0P0 ⊗A1B1P1

+ i sin
(θ
2

)
B0A0P0 ⊗B1A1P1, (48)

SA,B
− (θ)P = i sin

(θ
2

)
A0B0P0 ⊗A1B1P1

+ cos
(θ
2

)
B0A0P0 ⊗B1A1P1, (49)

depending on the measurement of the ancillary qubit C in the
basis spanned by vectors (7) and (8), where the parameter θ
matches the corresponding parameter in decomposition (46).
By setting the single-qubit gates as:

P (n) = P0 ⊗ P1(n) = X ⊗ (n⊥ · σ), (50)

A(n) = A0 ⊗A1(n) = X ⊗ (n⊥ · σ), (51)

B(n) = B0 ⊗B1(n) = RZ

(π
2

)
⊗Rn

(π
2

)
, (52)

where n⊥ denotes the Bloch vector perpendicular to n (i.e.,
n⊥ · n = 0), the operations arising from the causal order AB
read as:

A0B0P0 = XRZ

(π
2

)
X = RZ

(
−π
2

)
, (53)

A1(n)B1(n)P1(n) = (n⊥ · σ)Rn

(π
2

)
(n⊥ · σ)

= Rn

(
−π
2

)
, (54)

while the ones arising from the causal order BA are:

B0A0P0 = RZ

(π
2

)
XX = RZ

(π
2

)
, (55)

B1(n)A1(n)P1(n) = Rn

(π
2

)
(n⊥ · σ)(n⊥ · σ)

= Rn

(π
2

)
. (56)

By substituting the above equations in (48) and (49), it results:

SA,B
+ (θ)P (n) = cos

(θ
2

)
RZ

(
−π
2

)
⊗Rn

(
−π
2

)
+ i sin

(θ
2

)
RZ

(π
2

)
⊗Rn

(π
2

)
, (57)

SA,B
− (θ)P (n) = i sin

(θ
2

)
RZ

(
−π
2

)
⊗Rn

(
−π
2

)
+ cos

(θ
2

)
RZ

(π
2

)
⊗Rn

(π
2

)
. (58)

Finally, by setting the single-qubit post-processing gates
F (n) = F0 ⊗ F1(n) equal either to:

F±(n) = F±,0 ⊗ F±,1(n) = RZ

(
±π
2

)
⊗Rn

(
±π
2

)
, (59)

depending on whether the ancillary qubit measurement result
is |µ(θ)⟩ or |µ⊥(θ)⟩, the following two-qubit rotation is
implemented:

F±(n)S
A,B
± (θ)P (n) = RZn(θ). (60)

In (60) we exploited the equality RZ(±π)⊗Rn(±π) = −Z⊗
(n ·σ). As both P (n) and F±(n) are tensor product of single-
qubit case, it results that SA,B

± (θ) – hence – is locally (single-
qubit) equivalent to the two-qubit rotation gate RZn(θ) via
(60), which in turn is locally equivalent to the CU gate via
(27). Hence, the proof follows.
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