ON A DECOMPOSITION OF SQUARE
MATRICES OVER A RING WITH IDENTITY

HEINZ LUNEBURG

Let R be a not necessarily commutative ring with 1 and let P be an (n x n)-matrix
over R. Then P is called a permutation matriz if, and only if, the following conditions
are satisfied:

(1) P; € {0,1} for all 4,5 € {0,1,...,n —1}.
(2) Each row of P contains exactly one 1.
(3) Each column of P contains exactly one 1.

Denote by S,, the symmetric group on the set {0,1,...,n —1}. If 7 € S, then we
define P(7) by
{ 1 ifw(j) =1,

P(W)ij . 0 else

Then P(w) is a permutation matrix and all permutations matrices are obtained in
this way, as is well-known.

The set Mat,,(K) of all (n x n)-matrices over the field K forms a vector space of
dimension n? over K and it belongs to the folklore of permutation matrices that

dim(span({P(7) : 7 € S, })) = (n — 1)* + 1.

Linear Algebra tells us that there exists a basis of the span of permutation matrices
consisting entirely of permutation matrices. Searching for such a basis yields a much
more general theorem.

Theorem 1. Let R be a not necessarily commutative ring with 1 and let n by a
positive integer. Consider the set Mat, 11(R) of all ((n+ 1) X (n + 1))-matrices over
R as a left R-module. Define the submodules Vi, Vo, V3 of Mat,+1(R) as follows:
(1) Vi consists of all a € Maty,1(R) such that an; = a; =0 for 0 <i<n-—1 and
n—1
Qnn = Ej:O an—1,5-
(2) Let a be an n- and b be an (n — 1)-tuple over R. Define the matrices C'(a) and
D(b) by

0 an ... Q3 Qo Q1
ai 0O a, ... a3z a9
as ai 0O a, ... ag
an—-1 ... Qs a1 0 ap

(079 . as a9 a1 0
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and
X 0 0 .. 0 0
0 0 bp—1 ... by by
0 b1 0 br—1 bo
0o ... by b1 0 b,_1
0 b,—1 ... by by 0

respectively, where X s the sum of the b;’s. Then Vy consists of all matrices of the
form C(a) + D(b).

(3) V3 is the set of all a € Mat,y1(R) with a;; = 0 for all (i,7) different from (n,0)
and (n,n).

Then Mat,, 11 (R) is the direct sum of V1, Vo, V3. Moreover, Vi is, as an R-module,
isomorphic to Mat,, (R).

The proof is left as an exercise to the reader.

Theorem 2. Same assumptions and notations as in Theorem 1. Define the permuta-
tions a, 3 € Spi1 by a:=(0,1,2,...,n) and §:= (1,2,...,n) and set B(i) := P(a')
fori=1,2,...,n and B(n+1) := P(3%) fori=1,2,...,n—1. Then {B(i): 1 <i<
2n — 1} is a basis for Va.

Proof. Straightforward.
As a consequence of Theorems 1 and 2 we get the following theorem.

Theorem 3. Denote by const,1(R) the set of all a € Mat,,+1(R) such that there
exists an v € R with Y ;_jar; =17 = > —qay for all i and j. Then const,1(R)
is a direct summand of Mat,,1(R) having a basis consisting of n*> + 1 permutation
matrices.

Theorems 1 and 2 give a recursion for a basis of const, 11 (R) as well as for a basis
of a complement of const,1(R). As an example, we list the 17 permutations whose
permutation matrices form a basis of consts(R). The /’s indicate the steps in the
recursion. Moreover, we list a set of 8 matrices forming a basis of a complement of
consts(R).

©0) / (0,1) / (0,1,2), (0,2,1), (1,2) / (0,1,2,3), (0,2)(1,3),
(0,3,2,1), (1,2,3), (1,3,2), / (0,1,2,3,4), (0,2,4,1,3), (0,3,1,4,2),
(0,4,3,2,1), (1,2,3,4), (1,3)(2,4), (1,4,3,2).

00 0 0 O 00 0 0 O 00 0 0 O 00 0 0 O
100 0 O 01 0 0 O 0 00 0O 0 00 0O
0 01 0 O 0 01 0 O 1 00 0 O 0 01 0 O
000 10 000 10 000 10 000 10
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 01
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0 0 0 0 O 0 0 0 0O 0 0 0 0O 0 0 0 0 O
00 0 0 O 000 0 O 00 0 0 O 0 00 0 O
00 0 0O 00 0 0 O 00 0 0O 00 0 0 O
100 0 O 000 10 00 0 0 O 00 0 0 O
0 0 0 01 0 0 001 10 0 0 O 0 0 0 01

The recursion for the basis of const,1(R) clearly shows that const,1(R) has a
basis consisting of n? 4+ 1 permutation matrices.
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