A combinatorial proof of Louck’s conjecture
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The following conjecture was recently proposed by J.D.Louck [2] (Ober-
wolfach, July 1988):

For (complex) parameters y = (y1,...,¥,), integers n—tuples a =
(a1,...,a,) € N and variable u let

Jaluy) =u(l+u+e-y)aj1 ,

where a-y = ayy1 +. ..+ a,y, and || = a1 +...+a,. [ As usual,
(2), denotes the rising factorial, i.e. (), = z(z+1) - (z+m—1)
for m > 0 and () = 1 . In the case a = (0,...,0) = 0 put
Jfo(u,y) =1]. Then

fotus0) =3 11 (5 ) fpev)facatoy)

1<i<n

where v is another (independent) variable, and where the summa-
tion runs over all 8 € N” such that 0 < 8 < a in componentwise

order, « — 3 = (g — By,...,a — B3,).

Louck observed in [3] that (an independent proof of) this identity would lead to
a fairly elementary approach to Mellin’s formula [4] for the series expansion of
the principal solution of an algebraic equation with variable coefficients. In this
note a proof of this convolution identity will be given by combinatorial means,
i.e. by interpreting the polynomials involved as generating polynomials for a
class of combinatorial structures, so that the convolution identity expresses
a factorization property of these structures. The proof of this factorization
property can then be given without any reference to generating functions.



Let x = (2o, %1, T2,...) be an infinite sequence of variables. For any finite

set A C Nlet o4(x):=3{z;;1 € A} and
Ea(u,x) = (u+04a(x))ga , Fau,x):=u(l+u+0oa(x))a-1 ,

where u is a variable and where §A denotes the cardinality of A ( we put
Fy(u,x) =1). Thus E4(u,x) and F4(u,x) are polynomials of degree A in u
with coefficients in Z[x].

The following result will be proved by using a combinatorial model for these
polynomials:

Theorem 1 Fy(u+v,x) =3 guc=a FB(u,x)Feo(v,x)

Here v is another variable. The summation on the r.h.s. runs over all
ordered bipartitions (B, C) of A. Before introducing the combinatorial model
I will show that this theorem implies Louck’s conjecture.

For this purpose, let & = (a1,...,a,) € N"be givenand lety = (y1,..., )
be an n-tuple of variables. For each set A C N of cardinality fA = |a| =
ar+ ...+ a, let 7 = (Ay,..., A,) denote the unique ordered partition of A
which satisfies §4; = a; (1 < ¢ < n) and where all elements of A; are less than
all elements of A;4; (1 <t < n).

If (B, C) is an ordered bipartition of A, then there are (unique) 8,y € N”*
such that |B| = 4B, |v| =4C, B+~ = a and

wg = (BNA,...,BNA,), 7 =(CNA,...,CNA,).
Conversely, any pair (3,4) € (N")? such that 3+ = a results from precisely
[Ti<icn /C;Z ordered bipartitions (B, C) of A in this way. Now note that

falu,y) = FA(U7X)|ng ;
where the substitution x «* y means that variable z; has to be replaced by y;
precisely if 1 € A; , where A; is the j—th block of #§. Thus Louck’s conjecture

follows from the identity given in the theorem by applying x & y to both
sides and by noting that

Fo(,x)| o =Fa(wx)| g =fg(uy)

X—y X—Yy

Fe(v,x) = Fo(v,x)| v = fy(v,y)

| a
X—Yy X+—y
for any bipartition (B,C) of A. &
For any set A let £4 denote the set of all pairs ¢ = (f,g), where f: Ay — A

and g : A, — A are functions defined on the parts of some bipartition (Ay, A,)
of A, and where f is (weakly) decreasing, i.e. f(a) < a for all a € Ay.
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Looking at the pair ¢ = (f, g) as one endofunction of A, we see that there
are two types of connected components induced by these mapping(s):

- components of the first kind, where the set of recurrent elements consists
of just one fixed point of f;

- components of the second kind, where the set of recurrent elements con-
tains at least one element from A,.

[Note that the monotonicity of f disables the existence of cycles within Ay
alone other than fixed points]. Thus each ¢ € £4 can also be written as a pair
¢ =< ¢, ¢" >, where ¢' comprises all the ¢-components of the first kind and
¢" comprises all the ¢-components of the second kind. This distiction leads us
to introduce

Ey={0p€s;¢"=0}, & :={b€ls;¢ =10},

and in a suggestive way one may write £4 = Uguc=s €5 X EL . We will now
associate a valuation with each ¢ = (f,¢) € €4: let u and x = (g, z1,...) be

variables; we then put '
W x(B) := ufw(f)xg 7

where fiz(f) is the number of fixed points of f, and where

Xg = ]___[ Lg(a) (: ]___[ xgg_l(a))‘

a€Ay a€A

Note that fiz(f) equals comp(¢’), the number of connected components of
the first kind of ¢. We may also choose to write x4 in place of x, (note that
both kinds of components contribute to this quantity), so that w, x(¢) will also
be written as ucomp(¢l)x¢.

This valuation is multiplicative w.r.t. connected components, i.e. if ¢ €
Ea,p € Eg (where AN B =), then the union ¢ U ¢ of the connected compo-
nents from both constituents defines an element of £4,5 in the obvious way,
and wy x(dUY) = w,x(¢)-w,x(1). In particular: wy, x(¢) = wyx(¢') - wux(¢")
for each ¢ € &4.

Proposition 1 Fa(u,x) =Y {w.x(¢) ;b € Ea}

Proof: Let us assume, for simplicity of notation, that A = {1,2,...,n}. The
elements ¢ € &4 are precisely the objects constructed by the following non-

deterministical procedure, consisting of n rounds to be played:
for:=1,2,...,n do:

select one of the alternatives "¢ € Af” or "0 € A,”;
if 7i € A;” has been selected: choose j € {1,2,...,1}
and put f(¢) := j;

if 7¢ € A,” has been selected: choose j € {1,2,...,n}
and put g(z) := j;



During the :-th round, if alternative "¢ € A;” has been selected, there are
¢ possibilities for the choice of f(z), one of them, f(¢) = ¢, contributing weight
u, the ¢ — 1 other ones each contributing weight 1 to w,x(¢). If alternative
71 € A,” has been selected, each element j of A can be chosen as ¢(7), con-
tributing z,¢) to the weight w,x(¢), which gives a total of o4(x) for these
possibilities. Thus the total contribution to the weight of all ¢ € £4 during
the 2-th round is v +2 —1 + JA(X), and because the selections made during
different rounds are independent, Y- {w,x(¢) ;¢ € 4} is the product, taken
over 1 <1 < n, of these contributions. <

A slight modification of the argument just given leads to a combinatorial in-
terpretation of the polynomials F4(u,x). For this purpose let

Fai={¢ € &s;min(A) € As} |

i.e. we consider the construction given above, but we do not allow any choice
in the first round: the minimum element of A must be a fixed point of f.
Then the contribution from the first round is just u instead of u + o4(x); all
the other contributions remain the same, hence:

Proposition 2 Fa(u,x) =Y {wux() ;¢ € Fa}

The next proposition contains the crucial combinatorial argument needed
for the proof of the theorem:

Proposition 3 There is a bijection £y — Fa : ¢ — b which respects the
valuation, i.e.

Wy x(¢) = wux(Y) .

Proof: Let ¢ = (f,g9) = < {¢1,...,¢5},0 > € &}, where all the connected
components ¢1,...,¢s of ¢ have a rooted tree structure, with the fixed points
of f as their roots. Then ¢ belongs to F4 precisely if min(A) is one of these
roots. In this case ¢ will be mapped onto itself, i.e. ¢ = ¢.

Assume now that ag := min(A) is not a root of one of these trees, then a
appears as a non-root node in one of the components, ¢; say, and certainly
belongs to A,. [Remember that f is a decreasing map, thus ag € Ay would
imply f(ao) = ag, which is not the case]. Thus there is a unique sequence in
P1:

g —> a1 —> Qg —> ... —> Ap_1 — 4}

where ay is the root of ¢1 (i.e. ap € Af and f(ax) = ax) and where each arrow
a; — @41 is either an f-arrow (i.e. a; € Ay and f(a;) = a;41) or a g-arrow
(i.e. a; € A, and g(a;) = ai41), 0 < ¢ < k. Note that there is at least one
g-arrow, since ag € A,.



The obvious goal is now to make ag = min(A) an f-fixed point of the
structure ¢ = (f,g). This is easily achieved by specifying

A = (Ap\{ar}) Udao} , Az = (Ag\ {ao}) U {as} ,
and defining f by

f(a) = f(a) for a € As\ {ar} f(ao) ‘= ag .

Thus f certainly is a decreasing map.

The definition of § employs a technique well-known in constructive combi-
natorics: transforming linear arrangements of elements of some totally ordered
set bijectively into permutations of that set, where the number of left-to-right-
maxima of each linear arrangement equals the number of cycles of the corre-
sponding permutation. (This is essentially Foata’s fundamental transformation
[1]; an illustration is given at the end of this note). This transformation will be
applied to the sequence aq, aq, ..., a; above, but some care has to be taken be-
cause we want to be sure to create only cycles containing at least one element
of Aj each. Thus let 0 = 29 < 7 <13 < ... < t,, < k be the subsequence of all
those indices ¢ € {0,1,...,k} s.th. a; € A,. In addition put 7,,41 = k and let
by=a;, 1 <p<m+1). Let0=rg<1l=r <ry<...<r; <m+1 bethe

index-subsequence for the left-to-right-maxima of the sequence bg, by, ..., b1,
i.e. the sequence of indices r s.th. b, = max{b, ;p < r}. g will agree with g
on Ay \ {br,-1,0,,-1,...,b,,-1}, and furthermore we define

G(br, 1) :=g(br,_ 1) (1 <3 =Zt), glax) := g(by,—1) .

This construction certainly satisfies x, = x; ; furthermore the elements of the
sequence dy, dy, ..., ay are now arranged in ¢ cycles of f- and g-arrows, where
each cycle contains at least one element from A; (in fact: each one of the
left-to-right-maxima b,, < b,, < ... < b, belongs to a different one of the ¢

cycles).
Looking now at ¢ = (f,g) and ¢ = (f,g) globally, we can state the fol-
lowing result: components ¢, ..., ¢ are constituents of both ¢ and ¥. Com-

ponent ¢; of ¢ decomposes into one component ¢; of the first kind (the one

with ag = f(ao) = min(A) as its root), and ¢(> 1) components ¢>§1), el gbgt) of
(%)

the second kind (where the recurrent elements of ¢;"’ are the elements of the
(f,g)-cycle containing b,,,1 <1 <1). We thus have:

v = (f,g9) =<', ¢" > with
= {1,605}, " = {81, 6"} and

wux(9) = M x, = g = ().

1 belongs to F4 because ag = min(A) is the root of the component ¢;. Finally
it should be remarked that the mapping ¢ — @ can be reversed for precisely



the same reason as for the so-called fundamental transformation. <

Proof of the theorem: By proposition 2, Fa(u + v, x) is the generating polyno-
mial for structures ¢ € F4 under the valuation

wu+u,x(¢’) — (u + U)comp(qb/)x(b.

Putting a weight u + v on each of the ¢’-components means that each ¢’-
component is given weight u or weight v in all (= ZComp(¢/)) possible ways,
and then summing over all these possibilities. Collecting under the name
¢, ( ¢! resp.) all the ¢’-components which receive weight u ( v resp.) we may
write

Fa(u+v,%) = 3 {uem @ yeome@y, )

where the sum on the r.h.s. is taken over all < ¢, ¢;,, ¢" > such that ¢;, € &g _,
o, € &, , 9" € EL for some tripartition (B,, B,,C) of A, and such that

¢ =< (¢!, Ul),¢" > € Fa. The last condition says that min(A) is a recurrent
element (fixed point) of either ¢/, or ¢/:

- in the first case, ¢ = < ¢! ,¢"” > belongs to Fp,uc , and via
bijection (prop.3) ¢! is equivalent to some y in Fpg, s.th. w,x(¢!) =
wv,x(X) ;

- in the second case, xy = < ¢!, ¢"” > belongs to Fp,uc , and
via bijection (prop.3) ¢! is equivalent to some @ in Fp, s.th.

wu,X(¢L) = wu,X(¢)'

Note that in both cases we have

ucomp(<b;)vcomp(c%)xqb - w%x(%) . wux(d}) . w.,x(</f>”) — wm(@/}) . wu,x(x) )

¥ belongs to some Fg and x belongs to some Fp where (B, D) is a bipartition
of A, with min(B) < min(D) in the first case and min(D) < min(B) in the
second. This mapping

< @l 8y, 8" > (P, )

is reversible, as can be routinely checked. This proves the theorem. <&

Coneluding remarks: Louck’s conjecture has been proved independently by
P. Paule [5] , who used a suitable version of multvariable Lagrange-inversion,
and by J. Zeng [8], who use induction. The combinatorial proof given above
resembles the one I had given earlier [6] in order to combinatorially explain a
result on rooted trees that G. Kreweras had obtained by inductive methods.
In fact, a common setting for both of these proofs can be established, with the
extra benefit that many of the classical convolution identities similar to the one
proved here can be derived via specialization within a common combinatorial
setting; the details are given in [7].
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