
On First Experiences with the Implementation of a
Newton Based Linear Programming Approach

by

A. Wanka, Cologne

Abstract

This paper presents the implementation of an exterior point linear
programming approach introduced by Betke [3, 4]. In every iteration of
this algorithm Newton’s method is used in order to determine nearest
points of two convex sets. The method is simple to implement, fully
exploits sparsity and at the presence of rounding errors it achieves
high precision and stability.

Beside the nice geometric proceeding a particular interest in this
method is derived from the following observation: In Karmarkar’s as
well as in this algorithm one has to solve a linear equation system of
the form AD2AT y = b. The solution of this system is the most time
consuming part in linear programs. While in Karmarkar’s method
the entries of the diagonal Matrix D are the coordinates of the it-
eration point, the diagonal entries are either 0 or 1 in our method.
Hence throughout this paper D is a purely combinatorial matrix which
yields to reasonable numbers of rank one updates of the correspond-
ing Cholesky factor of AD2AT . Moreover, the Cholesky factors become
sparser than in Karmarkar’s approach.

Keywords: Linear Programming, Newton’s method, Cholesky fac-
torization, rank one updates

1 Introduction

In 1984 Karmarkar proclaimed a new era of linear programming initialized
by his new algorithm [13]. Since then a flood of research has taken place,
firstly to achieve or to accelerate the announced performance of being 50
times faster than the simplex method and secondly to relax the standard

form of linear programs Karmarkar started with. The latter question has
been discussed more theoretically in many papers (see e.g. the special issue
of Algorithmica Vol.1, No.4 (1986)). So the still open dispute is: Will the
Karmarkar algorithm, a variant or some completely different method (see
e.g. Renegar [18], Chang & Murty [17]) outperform the established simplex
method? Implementations of Adler et al. [1], Gill et al. [9, 10] and Mc Shane
et al. [16] demonstrate in a fairly impressive way that their codes of Kar-
markar variants are already at least competitive with the simplex method.
To this point the works of Karmarkar & Sinha [14] and Todd [21] on the
application of Karmarkar’s algorithm on special structured linear programs
deserve particular attention.

In his original paper Karmarkar considers problems of the form:

min cTx

subject to Ax = 0 (1)

eTx = n

x ≥ 0 ,

where A is an (m×n)-matrix, x, c and e are n-vectors where all coordinates of
e are one. Furthermore, he assumes the optimum x∗ of (1) to satisfy cTx∗ = 0.
The rough proceeding of Karmarkar’s method from a current feasible point
x to the next is as follows:
At first compute the projective transformation

y =
nD−1x

eTD−1x
(2)

where D is a diagonal matrix defined by

dj = xj, j = 1, . . . , n . (3)

A matrix B is defined by (
A D
et

)
(4)

and the projection p of the objective vector c is determined by

p = −[I −BT (BBT)−1B]Dc . (5)

A new point y is then defined by

y = e+ δp , (6)

where δ > 0 is the steplength parameter, and the new iterate x̄ by the inverse
projective transformation

x̄ =
nDy

eTDy
. (7)

This procedure stops when cTx is sufficiently small.

Apparently the most time consuming part in Karmarkar’s algorithm is
the computation of the objective vector’s projection by (5) and herein the
involved solution of the equality system

AD2AT z = d . (8)

To get this projection step (5) with lesser computational effort, Dennis et. al.
[6], Goldfarb et. al. [12], Karmarkar [13] and Shanno [19] have investigated
relaxations. Dennis et. al. introduces to that end a variable metric approach,
whereas Karmarkar and Shanno apply the following rank one update notion:
Let

D̄2 = D2 + T , (9)

where x̄, x are successive iteration points. Then

AD̄2AT = AD2AT + ATAT

= AD2AT +
m∑
j=1

tjaja
T
j . (10)

In his original method tj 6= 0 (j = 1, . . . ,m) implying m rank one updates per
iteration of the corresponding Cholesky factorization. The basic idea for his
modified algorithm is to replace tj by 0 if tj is small. Karmarkar proved, using
a particular scaling, that the resulting algorithm converges to the optimum
and that the complexity is even

√
n better than the original. Note, however,

that the modified algorithm leads to an increase of the number of iterations,
since the projection of c is only approximately determined.

In this paper we are now going to report on the implementation of an
exterior point algorithm, in which again the solution of (8) is the crucial
point. In this approach D is replaced by a purely combinatorial diagonal
matrix, which changes from iteration to iteration only in a few entries. Thus
the use of the above mentioned rank one updates is more natural and yield
in addition to sparse Cholesky factors. The following gives an outline of the
paper.

Section 2 describes the algorithm and its implementation. Section 3 sur-
veys the so far obtained numerical results. They can be summarized by the
fact that the tested code is almost as fast as the simplex method implemen-
tation MINOS 5.1. The speed of MINOS appears to be reachable if we are
able to overcome and accelerate some numerically crucial steps.

2 Linear Programming by Minimizing Dis-

tances

Every linear programming problem can be restated as

min t

subject to

(
A
cT

)
l +

(
b
t

)
≥ 0 , (11)

where A is a (n − 1) × d-matrix, rank A = d , b is a (n − 1)-vector and c
a d-vector with c 6= 0. Incorporating c into A and t into b the associated
feasibility problem is: Does there exist an l ∈ IRd with Al + b(t) ≥ 0 ?
Betke/Gritzmann [5] suggested to replace this feasibility problem by a more
strict one which determines distances as follows:
Let E be the parametric affine plane

E(t) := {x ∈ IRn | x = Al + b(t) , l ∈ IRd} , (12)

and S the positive orthant

S := {x ∈ IRn | x ≥ 0} . (13)

Then for a fixed t the feasibility problem is particularly solved, if you know
either that the euclidean distance d(E(t), S) is positive or you know x with
x ∈ E(t) ∩ S. Betke/Gritzmann noticed that for this problem the ellipsoidal
algorithm can be used to achieve a polynomial time method for linear pro-
gramming. In order to replace the use of the rather theoretical ellipsoidal al-
gorithm by a procedure which works well in practice Betke has suggested the
application of Newton’s method. It starts with some x(t) ∈ E(t) and deter-
mines the Newton direction with respect to the distance function d(E(t), S).

Theorem 1 Let t be fixed.

1. The sequence of points generated by Newton’s algorithm converges to
the minimum of d(E(t), S).

2. There exists a constant ε > 0 with the following property: If d(x, S)−
d(E(t), S) < ε for x ∈ E(t), then Newton’s algorithm gives the exact
solution in at most n+ d further steps.

Proof: Betke [3]

Corollary 2 Newton’s algorithm solves the feasibility problem of linear pro-
gramming in a finite number of steps.

Suppose one has a routine F solving the feasibility problem of linear pro-
grams, it is well known that with binary search F solves the complete linear
program, at least for rational input data. An other fairly general procedure
might be to start with a lower bound of the objective function value. If the
corresponding feasibility problem returns the result infeasible (or equivalently
d(E(t), S) > 0) then increase the lower bound of the objective function ap-
propriately and continue this proceeding until d(E(t), S) = 0. In fact, with
the above notation the linear program (1) is equivalent to the computation
of t∗ = min{t ∈ IR, d(E(t), S) ≤ 0}. For the determination of a suitable
increase of the lower bound the ensuing algorithm applies the this time one-
dimensional Newton method. Opposed to binary search this proceeding leads
to drastical reductions in the number of phase II iterations.

Theorem 3 d(E(t), S) is a in t decreasing, nonnegative convex function.
Furthermore there exists a number ρ > 0, such that d(t) is linear in I =
[t∗ − 2−ρL, t∗] where L is the length of the binary encoding of the input.

Proof: Betke [4]

Corollary 4 Newton’s algorithm solves linear programming problems in a
finite number of steps.

In order to describe the new algorithm in more formal terms, it is appropriate
to express the euclidean distance of x = Al + b(t) ∈ E(t) and the positive
orthand S by

d(l, t) := d(x, S) =: (xTD(l, t)x)1/2 (14)

where D(l, t) is a diagonal matrix with dj :=

{
1 if xj < 0
0 else .

The algorithm

can now be stated as follows:

Algorithm

i, j = 0 (15)
CHOOSE a lower bound t0 for the optimum (16)
CHOOSE l0 ∈ IRd (17)
WHILE ∇d(li, tj) = 2ATD(li, tj)(Ali + b(tj)) 6= 0 (18)

COMPUTE pi by: ∇d(li, tj) +ATD(li, tj)Api = 0 (19)
DETERMINE di by: d(li + δipi) = min

δ
d(li + δipi) (20)

li+1 = li + δipi , i = i+ 1 (21)
END

IF (j = 0 and d(l∗, t0) = 0) ⇒ ’problem unbounded’ (22)

IF d′(l∗, tj) :=
eTnD(l∗, tj)x
d(l∗, tj)

= 0 ⇒ ’problem infeasible’ (23)

LET tj+1 := tj −
d(l∗, tj)
d′(l∗, tj)

, j = j + 1 (24)

COMPUTE d(l∗, tj), d′(l∗, tj) as described above (25)
IF d(l∗, tj) = 0 ⇒ ’optimal’ (26)
GOTO (18)

In all LP-methods the speed of each iteration is dominated by the time to
solve an equation system. Therefore, there are roughly speaking two strate-
gies to achieve good performances of LP-codes, namely, to use relatively small
matrices in this equation system as the simplex method does with using bases
or to work with the large matrix of all restrictions in order to achieve low
iteration numbers. Karmarkar’s as well as the described method follow the
second strategy. Fortunately, ready tools to solve (19) are available using the
Cholesky factorization

ATDA = R̄R̄T (27)

with R̄ an upper triangular matrix. However, if A contains dense columns,
the factor R̄ becomes incredibly dense and all advantages of sparsity are
lost. Furthermore, since D is a degenerated diagonal matrix, ATDA becomes
very ill conditioned yielding an uncomfortable unprecise search direction. As

a remedy of that fact one can replace (19) by the equivalent least square
problem

|D(li, tj)(Ali + b(tj)) +D(li, tj)ARz| . (28)

Note that this least square problem includes an appropriately chosen trian-
gular matrix R which accelerates the convergence of the iteratively applied
conjugate gradient method. The matrix R, used in (28), is the Cholesky
factor of

PÃTDÃP T = RRT (29)

where Ã is obtained from A by deleting dense columns. We call a column
dense if it contains more than 50 nonzero entries. The permutation matrix
P is computed by the subroutine GENQMD of the SPARSEPAK-A package
(see George & Liu [7]). This minimum degree ordering matrix P is applied to
achieve a possible sparse preconditioner R. The data structure of the nonzero
entries of the Cholesky factor R is computed by SPARSEPAK’S subroutine
SMBFCT. If this structure is attained (with dj = 0 if row j is dense, dj = 1
otherwise), we keep it fixed throughout the run of the algorithm. The values
of R, however, changes from iteration to iteration as follows: Let xi, xi+1

be two successive iteration points. By definition the diagonal entry dj of D
changes from 1 to 0 if (xi)j < 0 , (xi+1)j ≥ 0 and dj changes from 0 to 1 if
(xi)j ≥ 0 , (xi+1)j < 0. Thus from iteration i to iteration i+ 1 the Cholesky
factor can be determined by the sequence of rank one up and down dates:

Ri+1R
T
i+1 = RiR

T
i ± al1aTl1 ± . . .± alka

T
lk
. (30)

These up and down dates can be accomplished by the wellknown Givens
rotations (see [11, 19, 20]). Remember that within the introduction we have
shown that (30) is valid also for Karmarkar’s algorithm. In Karmarkar’s
original version lk equals d. Also in his modified version lk is on the average
d/2 and therefore the effort to determine Ri+1 from Ri are not negligible.
You might suspect, that also in our algorithm the number of rank one up or
down dates (or equivalently the number of sign switches between successive
iteration points) may be large. In general, this might be true, especially in
the first iterations. The elaboration of the Newton step reveals, however, that
we are well advised to restrict this number of sign switches. Notice, that the
affine plane E(t) is divided by the coordinate hyperplanes into many regions.
These regions are characterized by the sign pattern all included points have.
The major problem of finding a point x of E(t) to be the nearest to the

positive orthand is now, to detect that region of E having the sign pattern
of x. Taking into account that for the computation of the search direction in
(19) we assume D to correspond to the sign pattern of the current iteration
point, then it becomes apparent that the search direction is determined by
a more locally driven strategy. Hence, it is suitable to restrict the steplength
not only by (20) but also by a more combinatorial criterion, namely, to bound
the maximal number of sign switches from xi to xi + δz (our suggestion here
is the number 3).

Nevertheless, the determination of the steplength δ is fairly easy and
accomplished with almost no computational effort, since δ of (20) is −z

TDxi
zTDz

. As an alternative approach for the steplength we have implemented the
control of the deviation of the gradient at those points where xi+ δz changes
a sign. But in general this did not accelerate the algorithm.

A third step, beside (19) and (20), that we didn’t implement straight
forwardly is (24) and concerns the scaling of the objective function row after
every phase II step. Remember that the objective function row looks like

y = cT − t ≥ 0 . (31)

Suppose that for a fixed t the point x̄ of E , which is closest to S, has been
determined and that yold := cT x̄− t. Note that after a phase II step (23)

y := ynew ≥ 0 and that at the optimum y = 0 .

Our experiments have shown that a scaling of (31) such that

yold
ynew

= −factor (32)

yields more stable improvements of the increase of the objective function
value by every step (24). We achieved good results with a factor around 12.

3 Numerical Results

In this section we are going to summarize the performance of the described
Newton method on problems we have picked up from a general LP test set.
This set comprises 53 input data which are available via Netlib 1. We have

1for details send electronic mail to netlib @ anl-mcs or to research! netlib saying ”send
index from LP/data”.

used standard techniques of linear programming to bring all of these input
data sets into the form (11).

A more detailed description of the problems dealt with are given by table
1. The data sets are ordered by increasing numbers of nonzeros. Our com-
putational results were achieved under the following environment: We used
double precision on an IBM 4361 and the source code was compiled with the
IBM Fortran 77 compiler VS Fortran Version 2 using NOSDUMP, NOSYM
and OPT(3). All times given are for a complete run, including data input and
output. We compare our result with the code of MINOS 5.1 (August 1987)
which is an efficient Fortran code of the simplex method. The default values
of parameters were used throughout. As far as available we also confront our
results with those of Adler et al. (affine version of Karmarkar’s algorithm,
IBM 3081-K, MINOS 4.0: default parameters), Gill et al. (Newton’s barrier
method, DEC VAXstation II, MINOS 5.2: scale option 2, partial pricing 10)
and Mc Shane et al. (primal-dual barrier method, VAX 8650, MINOS 5.0:
default parameters).

Problem Rows Columns Nonzeroes Optimum
Afiro 28 32 88 -4.647E+02
Adlittle 57 97 465 2.254E+05
Sc 205 206 203 552 -5.220E+01
Scagr7 130 140 553 2.331E+06
Share2b 97 79 730 -4.157E+02
Recipe 92 180 752 -2.666E+02
Vtpbase 199 203 914 1.298E+05
Share1b 118 225 1182 -7.658E+04
Bore3d 234 315 1525 1.373E+03
Scorpion 389 358 1744 1.878E+03
Capri 272 353 1786 2.690E+03
Scagr25 472 500 2029 -1.475E+07
Sctab1 301 480 2052 1.412E+03
Brandy 221 249 2150 1.518E+03
Israel 175 142 2358 -8.966E+05
Etamacro 401 688 2489 -7.557E+02
Grow7 141 301 2633 -4.778E+07
Bandm 306 472 2659 -1.586E+02
E226 224 282 2767 -1.875E+01
Scsd1 78 760 3148 8.666E+00
Beaconfd 174 262 3476 3.359E+04
Stair 357 467 3857 -2.512E+02
Scrs8 491 1169 4029 9.042E+02
Scfxm2 661 914 5229 3.666E+04
Scsd6 148 1350 5666 5.050E+01
Ship04s 403 1458 5810 1.798E+06
Scfxm3 991 1371 7846 5.490E+04
Sctab2 1091 1880 8124 1.724E+03
Grow22 441 946 8318 -1.608E+08
Ship04l 403 2118 8415 1.793E+06
Ship08s 779 2387 9501 1.920E+06

Table 1

Problem Iterations MINOS / Running Times
Name Minos Newton McShane Adler Gill Newton
Afiro 8 19 1.67 0.7 0.2 1.1
Adlittle 97 60 2.50 1.8 0.5 0.6
Sc 205 131 39 2.29 1.8 0.8 0.9
Scagr7 92 52 1.14 1.4 0.7 0.6
Share2b 117 65 1.66 0.9 0.6 0.5
Recipe 33 16 - - 0.6 0.5
Vtpbase 286 256 - - 0.2 0.2
Share1b 284 125 0.81 2.1 0.9 0.4
Bore3d 114 214 - - 0.4 0.1
Scorpion 139 70 2.22 2.3 0.4 0.5
Capri 295 281 - - 0.3 0.1
Scagr25 92 115 3.16 7.0 2.2 0.1
Sctap1 375 81 2.97 1.7 0.8 0.7
Brandy 323 109 1.22 0.9 1.2 0.4
Israel 327 98 0.20 0.4 0.6 0.1
Etamacro 604 919 - - 0.4 0.03
Grow7 151 60 - - 0.9 0.3
Bandm 463 297 1.67 1.8 1.1 0.3
E226 686 153 2.05 1.6 0.9 0.5
Scsd1 220 65 5.39 2.7 1.1 0.4
Beaconfd 87 55 0.38 0.3 0.2 0.3
Stair 482 289 - - 0.6 0.1
Scrs8 933 275 1.46 1.9 1.1 0.4
Scfxm2 828 387 2.60 1.7 1.7 0.2
Scsd6 550 71 8.01 4.5 1.8 0.6
Ship04s 148 117 2.94 2.2 0.3 0.3
Scfxm3 1284 471 3.70 2.6 2.2 0.3
Sctap2 1726 60 4.77 2.6 1.1 1.4
Grow22 880 81 - - 2.2 0.7
Ship04l 226 119 3.11 2.5 0.4 0.3
Ship08s 231 162 4.59 4.4 0.6 0.3

Table 2

Table 2 collects the results of the different algorithms. It shows the it-
eration numbers as well as the respective ratios of the running times of the

MINOS code and the running times of the corresponding Karmarkar ver-
sion. Here we suppress the surprising fact concerning the iteration numbers
of each Karmarkar method, namely, that their iteration numbers are almost
fixed in the range of 30 to 50 over all dimensions and sizes of problems. We
would like to mention, that, in contrast to others, we haven’t used a pre- or
post solve phase to identify redundant constraints or variables to be 0. We
have definitely no experience with such procedures and therefore we can’t
say anything about what we would gain if we had incorporated appropriate
routines. What we can say about Newton’s method is, that it is simple to
implement, fully exploits sparsity and at the presence of rounding errors it
achieves high precision and stability.

We interprete table 2 as follows:

With respect to the iteration numbers the Newton method behaves far
better than the Simplex method but worse than Karmarkar’s method (almost
constantly 30 - 50 iterations for every problem). The reason why we end up
with higher iteration numbers as Adler et. al. or Mc Shane et. al. has already
been mentioned in the last section. In the Newton algorithm one has to find
the region on E with the sign pattern of the point having minimal distance
to the positive orthand. Hence, the distance minimization problem includes
a combinatorial problem that makes it hard to compute globally good search
directions. On the other side, Karmarkar’s algorithm is restricted to feasible
points, so that his search directions do not depend on a combinatorial prop-
erty. We conclude that our savings of faster updates of the Cholesky factors
in the Newton method are so far not large enough to compensate the cost
caused by higher numbers of iterations we end up with.

As a matter of fact the current implementation of the Newton algorithm
is in general not faster than Karmarkar’s algorithm or the MINOS code.
Some facts indicate, however, that a substantial improvement of the algo-
rithm is possible. We will mention four facts which seem to be of particular
importance.

For the input datas of Beaconfd, Scagr 25, Ship 04S, Ship 04L and Ship
08L the preprocessing already lasts as long as MINOS needs to solve the com-
plete problem. But this preprocessing comprises only the reading of the input
and the accomplishing of the subroutines GENQMD and SMBFCT to com-
pute the data structure of a possible sparse Cholesky factor of ATDA. Com-
paring this with Mc Shane et.al.’s results suggest to replace the SPARSEPAK

routines by the corresponding ones of SMPAK (Scientific Comuting Asso-
ciates, 1985).

The deletion of dense rows from A improves the speed of GENQMD
dramatically and we obtained several good performance results. On the bad
side, for the Israel input data we got the effect, from reducing the dense
parameter to 35, that the running time was a factor 10 higher than before.
So it seems to be worthwhile to investigate the question of finding better
permutation matrices in less time.

Beside the evaluation of the Cholesky factors the performance of the
routine used for solving the least square problem (28) is decisive for the
speed of Newton’s algorithm. Very roughly speaking, half of the obtained
running times are due to that step (if Newton’s algorithm worked extremely
bad, this share is even higher). Perhaps the replacement of the used conjugate
gradient method by a more robust one can provide remedy. To that point,
the recently upcomming normal equation approach (see Gill et. al. [10], Mc
Shane et. al. [16]) using Schur complements might decisively improve the
performance.

The use of a more efficient dynamic data structure for the Cholesky factor
R may also accelerate the speed of the algorithm. Recall that one point that
attracts Newton’s method is, that R is sparser than in Karmarkar’s approach
(some diagonal elements of D are 0). By the reason of having a simple and
quickly changeable computer code, we didn’t use a dynamic data structure
in this preliminary version.

4 Concluding Remarks

The described method is an algorithm for solving linear programming prob-
lems. The running times achieved by a preliminary implementation indicates
, that MINOS or Karmarkar algorithm results are in a reachable distance.
Bearing in mind, that by the natural and favourable possibility of updating
the involved Cholesky factor the Newton algorithm might soon become a
serious competitor to MINOS. The cruical step seems to be whether it will
be possible to further reduce the number of iterations. With respect to pre-
cision, at the presence of rounding errors the obtained accuracy was at all
problems at least 8 digits.

The polynomiality of this algorithm is still an open question. The only
results we have proved are Corollaries 2 and 4 and that (24) is performed at
most O(L) times where L is the binary encoding of the input. Regarding the
latter fact, first it is shown with standard techniques that |d(t0)|, |d′(t0)|, |l|
and |u| are bounded from above by O(2L) where l(u) is the lower (upper)
bound for the objective function value. Furthermore |d(t∗−ε| (see Theorem 3)
is bounded from below byO(2−L). Then it is fairly obvious to see that in every
step either the range of d or the range of d′ or |u−l| decreases by a fixed factor
which proves the claim. Beside some clues that O(L) may be replaced by O(n)
the cruical question for proving polynomiality of the Newton algorithm is:
Can the number of Newton steps (20) within the feasibility phase be bounded
by a polynom in L ?

References

[1] I. Adler, M. G. C. Resende and G. Veiga, An Implementation of
Karmarkar’s Algorithm for Linear Programming, University of Califor-
nia, Berkeley, 1986.

[2] I. Adler and R. C. Monteiro, An O(n3L) Primal-Dual Inte-
rior Point Algorithm for Linear Programming, University of California,
Berkeley, 1987.

[3] U. Betke, An Iterative Algorithm for LP with Finite Termination
Property, to appear in Zeitschrift für Operations Research.

[4] U. Betke, Linear Programming by Minimizing Distances, to appear in
Zeitschrift für Operations Research.

[5] U. Betke and P. Gritzmann, Projection Algorithms for Linear Pro-
gramming, to appear in Algorithmica.

[6] J. E. Dennis, A, M, Morshedi and K. Turner, A Variable-Metric
Variant of the Karmarkar Algorithm for Linear Programming, Math.
Prog. 39 (1987), 1-20

[7] A. George, J. W. H. Liu, Computer Solutions of Sparse Positive
Definite Systems, Prentice Hall, Englewood Cliffs, 1981.

[8] G. de Ghellinck and J.-Ph. Vial, An Extension of Karmarkar’s
Algorithm for Solving a System of Linear Homogeneous Equations on
the Simplex, Math. Prog. 39 (1987), 79-92.

[9] P. E. Gill, W. Murray, M. A. Saunders, J. A. Tomlin and

M. H. Wright, On Projected Newton Barrier Methods for Linear Pro-
gramming and an Equivalence to Karmarkar’s Projective Method, Math.
Prog. 36 (1986), 183-209.

[10] P. E. Gill, A. Marxen, W. Murray, M. A. Saunders and M.

H. Wright, Newton Barrier Methods for LP: Some Inplementation As-
pects, Paper presented at the ORSA/TIMS meeting, Washington, April
1988.

[11] G. H. Golub, Ch. F. van Loan, Matrix, North Oxford Academic
Publishing 1983.

[12] D. Goldfarb and S. Mehrota, A Relaxed Version of Karmarkar’s
Method, Math. Prog. 40 (1988), 289-316.

[13] N. Karmarkar, A New Polynomial-Time Algorithm for Linear Pro-
gramming, Combinatorica 4 (1984), 373-395.

[14] N. Karmarkar and L. P. Sinha, Application of Karmarkar’s Algo-
rithm to Overseas Telecommunication Facilities Planning , Paper pre-
sented at the XII. International Symposium on Mathematical Program-
ming, Boston 1985.

[15] I. J. Lustig, An Analysis of an Available Set of Linear Programming,
Technical Report SOL 87-11, Stanford, August 1987.

[16] K. A. Mc Shane, C. L. Monma, D. Shanno, An Implementation of
a Primal-Dual Interior Point Method for Linear Programming, Working
Paper, March 1988.

[17] K. G. Murty, Soo Y. Chang, The Steepes Descent Gravitational
Method for Linear Programming, Working Paper, Ann Arbor, May 1988.

[18] J. Renegar, A Polynomial Time Algorithm, based on Newton’s
Method, for Linear Programming, Math. Prog. 40 (1988), 59-94.

[19] D. F. Shanno, Computing Karmarkar’s Projection Quickly, Math.
Prog. 41 (1988), 61-72.

[20] G. W. Steward, The Effect of Rounding Errors on an Algorithm for
Downdating a Cholesky Factorization, J. Inst. Maths. Applics. (1979)
23, 203-213.

[21] M. J. Todd, Exploiting Special Structure in Karmarkar’s Linear Pro-
gramming Problem, Math. Prog. 41 (1988), 97-114.

[22] P. Vaidya, An Algorithm for Linear Programming which requires
O((m+ n)n2 + (m+ n)1.5n)L) arithmetic operations, AT&T Bell Labo-
ratories, Murray Hill (1987).

Address:
Mathematisches Institut
der Universität zu Köln
Weyertal 86-90

D-5000 Köln 41
Germany

