
The use of Schubert polynomials in
SYMCHAR

A. Kohnert ∗

July 1991

1 Introduction

SYMCHAR is a collection of C routines, which allows to compute with sym-
metric groups, multivariate polynomials, representations, characters, sym-
metric polynomials, wreath products and many other related structures. The
routines are written in standard C, so that there is no problem to use it on
any machine, which has a C compiler. This was sucessfully checked for IBM-
DOS, Atari-DOS and many different UNIX-machines. The code was written
in Bayreuth, Paris and Aberystwyth. The program is public domain, and
you can get a copy together with documentation files if you send a 3,5”
HD-discette to the author.

Schubert polynomials are a generalization of Schur polynomials, and they
are used inside SYMCHAR for the multiplication of Schur functions or for the
decomposition of skew Schur functions into Schur functions. Schubert poly-
nomials where introduced by Lascoux and Schützenberger in several papers,
e.g. [LS1]. Schubert polynomials are labeled by permutations, in spite of
partitions, which label Schur functions. We will see how we can characterize
the permutations which label Schur polynomials.

∗supported by PROCOPE and ARC

1

2 Schubert polynomials

Schubert polynomials are multivariate polynomials, which are defined us-
ing a differential operator ∂i. Let An := {a1, ..., an} be an alphabet of
n commuting letters and f ∈ ZZ[An] an arbitrary polynomial. We de-
fine the operation of the elementary transpositions σi := (i, i + 1) on f .
fσi := f(a1, ..., ai−1, ai+1, ai, ai+2, ..). Now we are able to introduce the oper-
ator ∂i by

∂i(f) :=
f − fσi
ai − ai+1

The operator ∂i is a symmetrizing operator, as after the application of ∂i
the polynomial is symmetric in ai and ai+1. Now we are in the position to
define Schubert polynomials: We do it inductively according to the reduced
length of the permutations π, which label the polynomials. Let π ∈ Sn and
l(π) the reduced length (i.e. number of inversions). Define the Schubert
polynomial Xπ inductively:

1. For the maximal reduced length l(π) =
(
n
2

)
we put

Xπ(a1, ..., an) := an−1
1 an−2

2 ...an−1

2. If l(π) =: k is not maximal, π =: τσi, l(τ) = k + 1, then

Xπ(a1, ..., an) := ∂i(Xτ (a1, ..., an))

This definition works, as we have

∂i∂i+1∂i = ∂i+1∂i∂i+1

∂i∂j = ∂j∂i |i− j| > 1

There is a second method of labeling Schubert polynomials. We define a
bijection L between the permutations of Sn and certain elements of INn . Let
π ∈ Sn given in the list notation, i.e. πi is the image of i under π. We define

L(π)i := |{j > i|πj < πi}|

i.e. the number of entries to the right of πi, which are smaller. The image
L(π) is called the Lehmer code of the permutation π. L is a bijection

2

between Sn and the elements l ∈ INn with li < n − i. The computation of
the bijection is clear from an example:

L([5, 6, 3, 1, 2, 8, 4, 7]) = 4, 4, 1, 0, 0, 2, 0, 0

L−1(2, 3, 0, 1, 2, 0, 0) = [3, 5, 1, 4, 7, 5, 6]

If we use this labeling instead of the permutations we write

YI := XL−1(I),

where I is a Lehmer code. Now we have the following property: Let I = 0 ≤
I1 ≤ I2... ≤ Ik, 0, ..., 0 ∈ INn be a Lehmer code. Then

YI = SI1,...,Ik(Ak)

where SI1,...,Ik(Ak) is the Schur polynomial labeled by the partition I1, ..., Ik
in the alphabet of k letters. If we look at the following picture we will see,
that for example X2413 = Y1200 is the Schur polynomial S12(A2).

3

All Schubert polynomials, labeled by permutations of the S4.

��
��
��
���

��
��
�

��
��
��
�

��
��
��
�

��
��
��
���

��
��
�

XXX
XXX

XXX
X XXX

XXX
XXX

X

XX
XXX

XXX
XX

XXX
XXX

XXX
X

XX
XXX

XXX
XX

XXX
XXX

XXX
X

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

@
@
@

@
@
@
@
@

@
@
@
@
@
@
@
@

�
�
�
�
�
�
�
�

@
@

@
@
@
@
@
@ �

�
�

�
�

�
�
�

@
@
@
@
@
@
@
@

@
@
@
@
@
@
@
@

�
�

�
�
�

�
�
�

�
�
�
�
�
�
�
�

@
@
@
@
@
@
@
@

1234, 1

1243, a+ b+ c
2134, a

2143, a2 + ab+ ac

1324, a+ b

1342, ab+ ac+ bc

1423, a2 + ab+ b22314, ab

2413, a2b+ ab2

1432, a2b+ a2c+
ab2 + abc+ b2c

4123, a3

3124,
a2

3214, a2b

2341,
abc

2431, a2bc+ ab2c 3142, a2b+ a2c

4213, a3b

4132, a3b+ a3c3241, a2bc

4231, a3bc
3412, a2b2

3421, a2b2c 4312, a3b2

4321, a3b2c

4

3 Monks Rule

This is the rule for the multiplication of Schubert polynomials by a single
variable. The general case is unknown. This means, there is no general rule
known for the multiplication of two arbitrary Schubert polynomials (like the
Littlewood Richardson rule for Schur functions).

The rule:
akXπ =

∑
ρ=π(j,k),l(ρ)=l(π)+1

sign(j − k)Xρ

An example:

a5X13627458 = −X13672458 −X13726458 +X13628457

To generate all the permutations on the right side of the equation, fix the
number πk (in the example 7) and now look to left of πk which numbers πj
are smaller with no πl between πj and πk. (in the example these are the
numbers 2 and 6) These pairs πj, πk are exchanged giving a permutation on
the right side with negative sign. Then look to the right of πk searching
for πj bigger with no πl in between. The exchanges of these pairs give the
permutations with positve sign. (in the example the number 8) Proofs may
be found in [M1] where it was proofen in the context of algebraic geometry,
or in [K1] where it was proofen in the context of Schubert polynomials.

4 Transition algorithm

In general a Schubert polynomial Xπ is not symmetric, but in the case
πi < πi+1 the polynomial is symmetric in ai and ai+1. This is clear from
the definition. Now let Xπ be symmetric in the first l variables, the transi-
tion algorithm is an algorithm which decomposes the symmetric part of the
Schubert polynomial Xπ (the polynomial Xπ, where al+1, al+2, ... are set to
zero) into Schur polynomials.

one step of the algorithm:
0. if only one decrease in π stop, Xπ is Schur polynomial

Xπ, k is the index of the last decrease in π, πk > πk+1 <

1. exchange πk and the biggest πl with l > k, πl < πk

5

2. call the result π′

3. exchange π′k with all π′l with l < k
such that the reduced length is increased by one.

4. call the generated permutations τ 1, τ 2,

one step is shortly described: input π, output τ 1, ...

Example:
13628457→ (k = 5)13627458 exchange 7 with 2 and 6,
giving 13726458 and 13672458.
So the input was one permutation, the output are two permutations.

To see that, we used the formula, which is a special case of the Monk
rule:

akXπ′ = Xπ −
∑
i

Xτ i

k choosen as above. We look look on the symmetric part, where ak becomes
zero so we have the following decomposition

Xπ =
∑
i

Xτ i

and if we have only Schur polynomials on the right side, we have a decom-
position of the symmetric part into a sum of Schur polynomials.

The single step is applied to all newly generated permutations until the
algorithm stops. So we generate a tree, on its root we have the input permu-
tation, on the leaves there are permutations, which labels Schubert polyno-
mials, which are Schur polynomials. So you may substitute the permutations
on the leaves by the partitions. A further useful property is the invariance
of the generated tree under the embedding Sn → Sn+1, π 7→ [1, π]. So if we
increase the alphabet of the Schubert polynomial, the decomposition of the
now bigger symmetric part into Schur polynomials is still valid.

This algorithm was introduced in [LS1]. In the original paper it was
shown, that you can stop with permutations, which are socalled vexillary,
but for computational reasons, it is easier to generate new permutations
until you reach the Schur polynomials.

The whole algorithm is shortly described: input permutation π, output
partitions λ1, ... The algorithm will become clear, when we look on the
examples in the two following special cases of the transition algorithm.

6

5 Useful applications of the transition algo-

rithm

We consider two special cases of the transition algorithm, this means we look
on special permutations as input of the algorithm.

5.1 Multiplication of Schur functions

We have two partitions: I = (0 ≤ I1 ≤ .. ≤ Ik) and J = (0 ≤ J1 ≤ ... ≤ Jl)
labeling two Schur functions SI and SJ . To compute the expansion of the
product SI × SJ we build the Schubert polynomial

Ỹ := Y0, I, 0,, 0︸ ︷︷ ︸
Ik times

, J, 0, ...

Now the transition algorithm starting from Ỹ gives
∑
cKSK , and we have

SI × SJ ∩ Ak = Ỹ ∩ Ak =
∑

cKSK ∩ Ak

As the algorithm is invariant under the embedding of Sn into Sn+1 the decom-
position is independent from the size of the alphabet Ak, so we have really
the decomposition of the product of two Schur functions. This algorithm
was first introduced in a paper of Lascoux and Schützenberger [LS1]. This
method has been implemented and is used in SYMCHAR for the multiplica-
tion of two Schur functions. The algorithm becomes clear, when we look at
the following example:

7

decomposition of Schur function product S12 × S3

135249678 Code : 012003000
135248679
↓

↙ ↘

↓ ↓
138245679 135284679

= S15 135274689
↓

↙ ↘

↓ ↓
137254689 135724689
137245689 = S123

↓

↙ ↘

↓ ↓
147235689 137425689

= S24 137245689
↓

↓

↓
237145689

= S114

So we get: S12 × S3 = S24 + S114 + S123 + S15

8

5.2 Decomposition of Skew Schur functions

We have a skewpartition I = (0 ≤ I1 ≤ .. ≤ Ik)/J = (0 ≤ J1 ≤ ... ≤ Jk)
labeling the skew Schur function SI/J . In order to decompose into a sum of
Schur functions, we build the following Schubert polynomial:

Ỹ := Y 0, ..., 0︸ ︷︷ ︸
l leading zeros

... Ik−1 − Jk−1︸ ︷︷ ︸
position l+k−1+Jk−1

, 0..0, Ik − Jk︸ ︷︷ ︸
position l+k+Jk

, 0, ...

The transition starting from Ỹ gives
∑
cKSK , and we have

SI/J ∩ Al = Ỹ ∩ Al =
∑

cKSK ∩ Al

The same argument as in the case of the product of Schur functions, shows
that we have a decomposition of skew Schur functions. This algorithm was
presented in [K2]. Again we look on an example:

9

decomposition of Skew Schur function S133/12

10

12437586 Code : 00102010
12437568
↓

↓

↓
12437658
12437568
↓

↙ ↘

↓ ↓
12537468 12457368 Code : 00112000
12536478 = S112

↓

↙ ↘

↓ ↓
12635478 12563478 Code : 00220000
12634578 = S22

↓

↓

↓
12643578
12634578
↓

↓

↓
13624578 Code : 01300000

= S13

11

And we have S133/12 = S112 + S22 + S13.

12

6 Implementation

The algorithm has been implemented in the system SYMCHAR. It is written
in standard C. To implement the generation of the tree we use a stack,
of permutations. If the top level permutation is one which labels a Schur
polynomial, it is written to the output, if not, the top level permutation
is substituted by the permutations, which are generated in one step of the
algorithm. The run time of this algorithm depends heavily on the structure
which is used to store the result, if we use a tree structure for the result (=
list of partitions with coefficent) we get nice run times. These are listed on
the last table.

The run times where taken on a HP9000-425, runing UNIX Version 7.0.5,
the files where compiled using the optimizer. As an example we used the
decomposition of skew Schur functions.

skewpartition degree of number of parts run time
result in result (sec.)

123456/1234 11 283 0.1
1234567/12345 13 1833 0.5
12345678/123456 15 13561 4.7
123456789/1234567 17 112745 46.6
12345678910/12345678 19 1039929 658.8

References

[K1] Kohnert A., Die computerunterstützte Berechnung von Littlewood-
Richardson Koeffizienten mit Hilfe von Schubertpolynomen, Diplomar-
beit Bayreuth 1987

[K2] Kohnert A., Skew Schur functions and Schubert polynomials, preprint
1991

[LS1] Lascoux A. & Schützenberger M.P., Schubert Polnomials and the Lit-
tlewood Richardson Rule, Letters in Math. Physics 10 (1985) 111-124

[M1] Monk D., The Geometry of Flag Manifolds, Proc. London Math. Soc.
(3) 9 (1959) 253-286

Adress of the author:
Axel Kohnert

13

Lehrstuhl Mathematik II
Universität Bayreuth
Postfach 101251
D-W8580 Bayreuth
axel@btm2x2.mat.uni-bayreuth.de

14

