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Abstract

The five problems of counting component colorings, vertex colorings, arc col-
orings, cocycles, and switching equivalence classes of a graph with respect to a
finite field up to isomorphism are related by an exact sequence that stems from
a coboundary operator. This cohomology is presented, and counting formulas are
given for each of the five problems.

1 Introduction

Let G be an undirected simple graph with vertex set V = V (G), edge set E = E(G),
and automorphism group Γ. Two objects related to G ( e.g. vertices, edges, components,
vertex colorings,... ) are called isomorphic, if there is an automorphism of G mapping the
one onto the other.

For some prime power q, let IF q be the finite field of this order. Consider the following
problems, which are related by the common use of the field IF q.

Problem 1 Color the components of G with q colors. What is the number of such color-
ings up to isomorphism?

Problem 2 Count the nonisomorphic vertex colorings with q colors.

Problem 3 Let A = A(G) be the set of ( directed ) arcs of the corresponding symmetric
digraph of G. An alternating coloring of G is an arc coloring with color set IF q, such that
inverse arcs have inverse colors, with respect to addition in IF q. Count the alternating
colorings of G up to isomorphism.

Problem 4 A cocycle of G is an alternating coloring of G such that, whenever (i, j) ∈ A,
i ∈ Vx, j ∈ Vy, it follows that the color of (i, j) is x − y for a vertex partition (Vu)u∈IF q

in ( possibly empty ) pairwise disjoint sets. Enumerate the nonisomorphic cocycles of G.

Problem 5 Two alternating colorings of G are called switching equivalent, if they dif-
fer only by a cocycle of G. What is the number of nonisomorphic switching equivalence
classes?
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There is a nice cohomological approach relating these five problems. Our purpose is to
present this cohomology and solutions of the problems. But let us first continue with some
remarks. Problems 1 and 2 can be easily solved by Pólya’s theorem. Problem 3 reduces
to the problem of coloring the edges of G with q colors up to isomorphism if the field
characteristic of IF q ( denoted by χ(IF q) ) equals two; in this case, the enumeration can
be done by Pólya’s theorem again. Problem 4 is solved in [5] in full generality. The last
problem was solved in [7] for complete graphs and q = 2, and later for arbitrary graphs
and q = 2 in [3] and [8] independently. In this paper we will present a counting formula
for this problem in the general case of arbitrary graphs and finite fields; its proof can be
found in [6].

2 Cohomology

All objects considered in Problems 1 - 5 have one property in common: they form vector
spaces over IF q. A vertex coloring of G with q colors can be understood as a function
f : V → IF q; let C0(G; IF q) be the vector space of such functions, with pointwise addition
and scalar multiplication. In a similar way, an alternating coloring ofG can be described by
a function F : A→ IF q such that F (i, j) = −F (j, i) for each arc (i, j) ∈ A; let C1(G; IF q)
be the vector space of such functions, with pointwise addition and scalar multiplication
again. Next we define the vector space homomorphism

δ : C0(G; IF q)→ C1(G; IF q) (1)

by setting

δ(f)(i, j) = f(i)− f(j) ((i, j) ∈ A). (2)

Let H0(G; IF q) = ke(δ), the 0-cohomology space of G, and let H1(G; IF q) =
C1(G; IF q)/im(δ), the 1-cohomology space of G. Let δ0 : H0(G; IF q) → C0(G; IF q) and
δ1 : C1(G; IF q) → H1(G; IF q) be the canonical monomorphism and epimorphism, respec-
tively. Then we have an exact sequence

δ0 δ δ1

0 −→ H0(G; IF q) −→ C0(G; IF q) −→ C1(G; IF q) −→ H1(G; IF q) −→ 0. (3)

Since H0(G; IF q) consists of those functions of C0(G; IF q) which are constant on the com-
ponents of G, the space H0(G; IF q) is the space of component colorings of G with q colors.
The set of cocycles of G corresponds to im(δ), while the set of switching equivalence classes
is given by H1(G; IF q).

The following dimension formulas can be easily obtained from elementary counting
arguments and exactness of Sequence 3.

Proposition 1 Let m,n, k be the number of edges, vertices, and components of G. Then

1. dim(H0(G; IF q)) = k;

2. dim(C0(G; IF q)) = n;
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3. dim(C1(G; IF q)) = m;

4. dim(H1(G; IF q)) = m− n+ k;

5. dim(im(δ)) = n− k.

3 Automorphisms

The automorphism group Γ of G, considered as a permutation group of the vertices of G,
acts as a permutation group on edges, arcs, and components of G via γ[i, j] = [γ(i), γ(j)],
γ(i, j) = (γ(i), γ(j)), and γ(H) = H̃ iff γ(i) is a vertex of H̃ for some vertex i of H, for
each edge [i, j], arc (i, j), and component H of G. The cycle type of γ ∈ Γ, considered as
a permutation of components, vertices, and edges of G, is denoted by (ω1(γ), . . . , ωk(γ)),
(ν1(γ), . . . , νn(γ)), and (ε1(γ), . . . , εm(γ)), respectively. Their corresponding sums are de-
noted by ω(γ), ν(γ), and ε(γ).

The group Γ acts not only on vertices and edges of G, but also on the spaces C0(G; IF q)
and C1(G; IF q) via

γ(f) = f ◦ γ−1 for f ∈ C0(G; IF q),

γ(F ) = F ◦ γ−1 for F ∈ C1(G; IF q).
(4)

Proposition 2 For every γ ∈ Γ, γ ◦ δ = δ ◦ γ.

It is Proposition 2 from which we conclude that Γ acts on H0(G; IF q) and im(δ) in an
obvious way, and on H1(G; IF q) via

γ(F + im(δ)) = γ(F ) + im(δ). (5)

In the sense of Equations 4, every γ ∈ Γ establishes vector space automorphisms of the
four spaces of Sequence 3 and of im(δ). Our considerations may be summarized by the
observation that the diagram

δ0 δ δ1

0 −→ H0(G; IF q) −→ C0(G; IF q) −→ C1(G; IF q) −→ H1(G; IF q) −→ 0

γ ↓ γ ↓ γ ↓ γ ↓ (6)

0 −→ H0(G; IF q) −→ C0(G; IF q) −→ C1(G; IF q) −→ H1(G; IF q) −→ 0
δ0 δ δ1

is commutative.
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4 Enumeration

The Problems 1-5 can be restated in the following form: Count the orbits of the actions of Γ
on the spaces H0(G; IF q), C0(G; IF q), C1(G; IF q), im(δ), and H1(G; IF q). By Burnside’s
lemma ( which is in fact due to Cauchy-Frobenius ), these problems reduce to the
problems of counting the component colorings, vertex colorings, alternating colorings,
cocycles, and switching equivalence classes that are fixed under γ, for every γ ∈ Γ.

We define homomorphisms α0
γ : C0(G; IF q) → C0(G; IF q) and α1

γ : C1(G; IF q) →
C1(G; IF q) by setting

α0
γ(f) = f − γ(f),

α1
γ(F ) = F − γ(F ),

(7)

for f ∈ C0(G; IF q) and F ∈ C1(G; IF q). Set β0
γ = α0

γ|H0(G; IF q), and let β1
γ : H1(G; IF q)→

H1(G; IF q) be defined by β1
γ(F + im(δ)) = α1

γ(F ) + im(δ). In order to solve the Problems
1-5, it suffices to determine the sizes of ke(β0

γ), ke(α
0
γ), ke(α

1
γ), ke(α

1
γ|im(δ)), and ke(β1

γ).
But in the cases of nonisomorphic component colorings and vertex colorings we can use
Pólya’s theorem directly.

Theorem 1 The number of nonisomorphic component colorings of G with q colors is

1

|Γ|
∑
γ∈Γ

qω(γ). (8)

Theorem 2 The number of nonisomorphic vertex colorings of G with q colors is

1

|Γ|
∑
γ∈Γ

qν(γ). (9)

Let γ ∈ Γ, and let σν be a vertex cycle of γ. The cycle σν is called diagonal, if its size
is even, say |σν | = 2t, and [i, γt(i)] ∈ E for some i ∈ σν . The corresponding edge cycle
and arc cycle as well as their edges and arcs are called diagonal, too. Now set

ρ(γ) =

{
number of diagonal vertex cycles of γ , if χ(IF q) 6= 2,
0 , if χ(IF q) = 2.

(10)

Theorem 3 The number of nonisomorphic alternating colorings of G with q colors is

1

|Γ|
∑
γ∈Γ

qε(γ)−ρ(γ). (11)

Now we turn attention on the cocycles of G. Let σω be a component cycle of γ. A
vertex cycle σν of γ is associated to σω, if σν permutes vertices of components in σω. Let
κ(γ) be the number of component cycles σω of γ that have an associated vertex cycle σν
such that

4



|σν |
|σω|
6≡ 0 (mod χ(IF q)). (12)

Note that |σν ||σω | indicates how many vertices of σν are contained in a component of σω.
Recall that k is the number of components of G.

Theorem 4 The number of nonisomorphic cocycles of G over IF q is

1

|Γ|qk
∑
γ∈Γ

qν(γ)−κ(γ)+ω(γ). (13)

As an application of Theorem 4, let G = Kn be the complete graph with n vertices.
Then we have k = 1 and Γ = Sn, the symmetric group on the n vertices. For every γ ∈ Sn
we have ω(γ) = 1, hence |σω| = 1 for the only component cycle of γ. We conclude that

κ(γ) =

{
0 if |σν | ≡ 0 (mod p) for every vertex cycle σν of γ,
1 otherwise .

Now, by Theorem 4, the number of non-equivalent cocycles of Kn over IF q is

1

n!

∑
qν(γ) +

1

q · n!

∑
qν(γ), (14)

where the first sum extends over all γ ∈ Sn such that |σν | ≡ 0 (mod p) for every vertex
cycle σν of γ, and the second sum extends over the remaining permutations in Sn.

The cycle index of Sn [2] is the polynomial

Z(Sn; s) =
1

n!

∑
γ∈Sn

s
ν1(γ)
1 . . . sνn(γ)

n ,

where s = (s1, s2, s3, . . .). Set 1 = (1, 1, 1, . . .) and for r ∈ IN define 1[r] = (x1, x2, x3, . . .)
by setting

xi =

{
1 if r is a divisor of i ,
0 otherwise .

Then it follows from Expression 14 by a short calculation that the number of non-
equivalent cocycles of Kn over IF q is

1

q
(Z(Sn; q · 1) + (q − 1)Z(Sn; q · 1[p])) ,

where, as usual, the number p is the field characteristic of IF q. From this formula we
obtained Table 1. The cycle indices of small order symmetric groups are tabulated in [2].

Now we will present a counting formula for the number of nonisomorphic switching
equivalence classes of the graph G. We remarked already, that the problem reduces, by
Burnside’s lemma, to the computation of the size of ke(β1

γ), since this space is the set
of switching equivalence classes fixed by the automorphism γ ∈ Γ.
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q\n 2 3 4 5 6 7 8
2 2 2 3 3 4 4 5
3 2 4 5 7 10 12 15
4 4 5 11 14 24 30 45
5 3 7 14 26 42 66 99
7 4 12 30 66 132 246 429
8 8 15 50 99 232 429 835
9 5 21 55 143 339 715 1430

11 6 26 91 273 728 1768 3978
13 7 30 140 476 1428 3876 9690
16 16 51 276 969 3504 10659 30954
17 9 57 285 1197 4389 14296 43263
19 10 70 385 1771 7084 25300 82225
23 12 100 650 3510 16380 67860 254475
25 13 117 819 4755 23751 105183 420732

Table 1

Consider the fiber product of the homomorphisms δ and α1
γ, i.e. the space Cγ(G; IF q)

consisting of all pairs (f, F ) such that δ(f) = α1
γ(F ), together with the canonical projec-

tions µ0
γ : Cγ(G; IF q) → C0(G; IF q) and µ1

γ : Cγ(G; IF q) → C1(G; IF q). Set C0
γ(G; IF q) =

im(µ0
γ) and C1

γ(G; IF q) = im(µ1
γ). Then we have im(δ1|C1

γ(G; IF q)) = ke(β1
γ). It is clear

that we can obtain the size of ke(β1
γ) from dim(C0

γ(G; IF q)).
For an automorphism γ of G, let Gγ be the cycle graph of G with respect to γ, i.e. the

simple graph with the vertex cycles of γ as vertices; two different vertices σν , τν of Gγ are
adjacent in Gγ iff there are i ∈ σν , j ∈ τν such that [i, j] ∈ E(G).

We define an evaluation on vertex cycles of γ by setting Ω(σν) = s if |σν | = psu,
where s is chosen so that p is not a divisor from u. Let Vs be the set of vertex cycles of
γ that satisfy Ω(σν) = s. Then Gγ < Vs > denotes the subgraph of Gγ induced by Vs. A
component of Gγ < Vs > is called minimal in Gγ if it does not contain a vertex that is
adjacent in Gγ to a vertex σν with Ω(σν) < s. Let Xγ be the subgraph consisting of the
minimal components of all graphs Gγ < Vs > in Gγ if p 6= 2, respectively the subgraph
consisting of such components that do not contain a vertex that is a diagonal vertex cycle
of γ if p = 2. Let ξ(γ) be the number of components of Xγ.

Recall that the number of vertex cycles of γ is denoted by ν(γ).

Theorem 5 The number of nonisomorphic switching equivalence classes of G is

1

|Γ|
∑
γ∈Γ

qε(γ)−ν(γ)+ξ(γ)−ρ(γ). (15)

In order to illustrate the last theorem, consider again the complete graph G = Kn

with n vertices, and remember the notations about its automorphism group given above.
Let γ ∈ Sn, and let (ν1, . . . , νn) be the cycle type of γ. Then ν(γ) =

∑n
i=1 νi. From

the cycle index of the pair group S(2)
n ( see [2] ) we obtain ε(γ); the cycle indices of pair

groups are tabulated in [2] for n ≤ 10.
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q\n 2 3 4 5 6 7
2 1 2 3 7 16 54
3 1 2 4 14 120 3222
4 1 4 11 100 2200 242064
5 1 3 10 155 14030 6099115
7 1 4 21 1036 395283 943185908
8 1 8 50 3088 1557536 7022450816

Table 2

Every vertex cycle of γ of even length is diagonal, hence

ξ(γ) =

{
0 , if every vertex cycle of γ is of even length and p = 2,
1 , otherwise.

(16)

Recall that p is the field characteristic of IF q. Furthermore,

ρ(γ) =

{
Number of vertex cycles of γ of even length , if p 6= 2,
0 , otherwise.

(17)

Using these facts, we obtained Table 2 presenting the numbers of nonisomorphic switching
equivalence classes of Kn for some small values of n and q.
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