A NOTE ON THE PARITY OF
THE SUM-OF-DIGITS FUNCTION

PETER J. GRABNER

1. INTRODUCTION

Let for the following v(n) be the binary sum-of-digits function, i.e.

L L
’ (25121) _Y e
1=0 1=0
Newman [Ne| proved that

S(N)= ) (=1

n<N

is always positive and of exact order of magnitude N'°843, Coquet [Co] observed
that

(1.1) S(N) = N'@813F (log, N) + @
where F'(z) is a continuous, nowhere differentiable periodic function of period 1 (to
speak of continuity makes sense, because the values log, N are dense modulo 1) and
n(N) only takes the values 0,+1. He also gave the extreme values of the function
F. In [FGKPT] the mean value of F' was computed.

It is now natural to ask how the function

Z (=1)vm)
n<N

behaves for given odd p. Numerical studies show that for most values of p this
function takes positive and negative values. The asymptotic behaviour like a power
of N times a periodic function persists (cf. [GKS], [Gr]). In a concluding section
we want to give some examples and state conjectures in this context.

We want to investigate

T(N) = 3 (1)

n<N
and will prove
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Theorem 1. The function T(N) is positive for N > 0 and satisfies

(1.2) T(N) — N°‘<I>(log16 N) + "75(5N)

with a continuous nowhere differentiable periodic function ® of period 1,

0 for N even

ns(N) = { (_l)y(5N—1) for N odd,

_ loghb . .
and o = —g—log 5. The function @ satisfies

176 7 (15\°
0.83808514... = @ <log16 o > = <—5) < ®(z)

10 \ 11
< 19—0 <%>a = (log16 %) = 2.18677074. ..
and .
/@(a:) do = 5~ 16;(zcj+)iz;164 1.56205765115 ...
0
with

o0
cr = /(gk(l)e_m 4+ 4+ gk(15)e_15‘”+
0

(1+gx(1)e™ + -+ gr(15)e™ %% = 5) (Gr(e™°") — 1))$“_1da:,

2knwi
5 (

where gi(n) =e —1)*™ and

=11 (1 +ge(1)2"" + -+ gk(15)215'16m) ‘

m=0

2. PROOF OF THE THEOREM

Let for the following &, = exp(28%) for k = 0,...,4. Then it is an immediate
consequence of 16™ =1 mod 5 that

(2.1) gr(n) = & (=1)"™
satisfies
(2.2) 9k (16n 4+ b) = gx(n)gx(b) for 0 < b < 15.

This property is called “complete 16-multiplicativity” and immediately yields

(2.3) Jk (Z allﬁl> = Hgk(al).
=0 1=0
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Thus the value of gx(n) only depends on the digit expansion of n to the base 16.
Setting G (M) = >, . ar 9x(n) we have

(24)  T(N)= %G0(5N) + % 3 Gr(5N) = "5(5N ) 4 % 3" Gi(5N).

k=1 k=1

We will now investigate the asymptotic behaviour of Gx(M), k = 1,...,4: Let
M = ZZL:() a;16! be the 16-adic expansion of M and set M, = ZlL:p a;16'. Then
we have

(2.5)
G = Y am)+ Y D () = Grlas6h) + 3 ge(Myir) Gelap167).

Thus we have reduced the problem to the computation of Gy (al6'):

Gr(al6') = gr(c)Gr(16') = Gi(a)Gr(16)".

e<a
Notice that
15 3 l
(2.6) Gr(16) = Y &)™ =] (1 _ g ) = 5.
n=0 =0

This holds because 2 is a primitive root mod 5 and therefore the product can be
rewritten as H?ﬂ(l —¢b). (We will refer to this argument later in the concluding
remarks.)

We rewrite (2.5)

(2.7) Gr(M) =5 " 57""G(ay) [] grla)
p=0 I=p+1
and set
0 oo -1
(2.8) Dk (Z all6_l> = Z H gr(ap)Gr(ar)57"
=0 =0 p=0

Notice that these functions are well-defined and continuous (this is proved in a more
general setting in [Gr]) and ¢x(1) = 1, ¢ (16) = 5.
Inserting the definition of ¢y, into (2.7) yields

M
_ rllog,g M _ ar—{log;s M} {log,s M}
(2.9)  Gr(M) = slose Mg, <16[log16 M]) = M5 ey (16 e ) ’

where [z] and {z} denote the integer and the fractional part of z as usual. We set
now Y (x) = pr(z)z~ for 1 <z < 16 and observe that
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is a continuous function which can be continued periodically (with period 1). Then

we have
Ui (N )

T(N)= (5N)*¥(5N) +
and ®(y) = 52U (5-16Y).

In order to compute the extremal values of ® we derive an explicit formula for
o(z) =+ Zizl ¢k (z). For this purpose we introduce some notations:

ar(l,z)=#{p<l:iap,=1Va, =11}

(4, z)
as(l,r) =#{p<liap=2Va, =T}
as(l,x) =#{p<l:ap =3}
as(lx) =#{p<l:ap=4Va, =14}
as(l,x) =#{p <l:ap, =6}
as(l,z) =#{p<l:a,=8Va, =13}
ar(l,z) =#{p <l:ap, =9}
ag(l,x) =#{p <l:ap =12}
> ap . .
for z = Z Iov (from now on we will omit the dependence on z)
p=0
A(l) = a1(l) + 2as(l) + 3as(l) + 4aq(l) + as(l) + 3ae(l) + daz(l) + 2as(l)
B(l) = ai(l) + az(l) + as(l) + as(l)
and
A(l) mod 5
d(a;, A))]0O 1 2 3 4
0 0 0 O 0 0
1 4 _1 _1 _1 _1
5 75 5 "5 "5
2 1 0 O 0 -1
3 6 1 1 _4 _4
5 5 5 5 5
4 1 o 1 -1 -1
5 6 _4 6 _4 _4a
5 5 5 5 5
6 2 -1 1 -1 -1
- 9 _6¢ 4 _6 _1
5 °5 5 5 5
8 2 -1 1 -2 0
9 o4 1 _9 1
5 5 5 5 5
10 2 0 0 -2 0
T E R G
12 3 0 0 -2 -1
o B
14 3 0 -1 -1 -1
4 _4 _4 _4
15 5 5 —5 5 —s

We are now able to write

(2.10) (—1yB@ Yo, AD)

p}
&

I
M8

o~
I
=
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Detailed investigation of the entries of d(a, A) ylelds < ¢ < 4 and also estimates

for o(z), = € [{&, B, 16! < k < 161

@ (%l) + (-1)BEY (B +1)+1,A(1+1))57 7 < p(z) <
(2.11)

” (1%) + (=) B (B +1), A(L+ 1))57 1,

where m(B, A) is given by

A(l) mod 5
m(B(),A0l) 0 1 2 3 4
0 0 —% -1 —3 —3
B(l) mod 2
1 43 3 1w

Outside the interval [1,2] it can be proved by trivial estimates that ¥(z) <
5 (32)* =: M. The interval [1, 2] has to be splitted into several parts to prove that

the maximum of \Il is attained at x = %

(1) 1 < <1l p(z) < 18 and ¥(z) < 1%L < M.

(2) B-3167F <z < B 2167 fork > 1: p(z) < 5 —32-57%2 and
U(z) g (% —32- 5—k—2)( 22167k < M.

(B) B<z<: (:L')<—and\11( y<M

(4) 2 <z <2 p(z) <2 and ¥(z) <M

(5) 2t <z <2 in this interval some local extrema are attained which are
only ~ 155 smaller than M; therefore this interval has to be split into 32
intervals of length 5= to prove U(z) < M.

(6) ?3 <z <2 px) < 3653(1) and \Il(x)g 32(1)(16) < M.

In order to prove that ¥(z) > £ (2)* =: m we note first that outside of the

interval [3, 4] this inequality can be obtamed by trivial estimates. The interval [3, 4]
again has to be split:

(1) 3<z < p(z) > & and U(z) > m
(2) 5 +3167F1 <z < 1—31 + 3167F: o(z) > L +32-57%3 and ¥(z) >
( +32 57 3)(5 4 3167F) 7> > m,

(3) 2 <z <4 p(z) > 1923590 and ¥(z) > 122:82/— >m

After rescahng this yields the extremal values stated in the theorem.

It is an immediate consequence of (2.11) that for every z € [0, 1] and every [ > 0
there exists a y with |z — y| < 167!, such that |p(z) — ¢(y)| > 22571, Thus ¢ is
nowhere differentiable.

It remains to compute the mean value of ®. For this purpose we note that in [Gr]
a formula for the Fourier coefficients of a fractal function occurring in the context
of g-multiplicative functions is developed. Inserting the 16-multiplicative functions
g into this formula yields the mean value stated in the theorem. [

3. CONCLUDING REMARKS

In the recent paper [GKS]| the asymptotic behaviour of the summatory function

Z (_1)V(pn+q)

n<N
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for prime numbers p and 0 < ¢ < p is investigated. It turns out that for all these
functions the asymptotic behaviour resembles that discussed in the previous section;
however it seems to be difficult to determine the value of the exponent of N in the
asymptotic formula, because it depends on the value

S e = 1 (1-¢*).
n<2s k=0

where ( is a p-th root of unity and s is the multiplicative order of 2 mod p. In
the cases s = p—1 and s = p;21 it is possible to derive general formula for this
expression (cf. [GKS]).

2.2+

0.2 0.4 0.6 0.8 1
THE GRAPH OF ®(z).

By an immediate generalization of the method used above it is possible to de-
scribe the behaviour of Zn<N(—1)”(pT"). The cases p = 3 and p = 5 are the easiest,
because 2 is a primitive root mod 3" and mod 5". Here the asymptotic behaviour
of the summands of the formula corresponding to (2.4) depends on the order of the

root exp(2£7%). The main term originates from the primitive 34 (5*® resp.) roots

P
of unity. This gives asymptotic formulae

r 1
ST(N) = Z (_1)1/(3 n) _ F(31"J\f)ﬂF (10g4 3r—1N)
n<N
8 1 8 1 nar (N)
+N3F1 <§10g4N)+-..+N3T—1Fr_1 (3’,‘_1 10g4N)+ 3’r
v(5"n 1 T [e% r—
T,(N) = Z(_l) (5"n) — F@ N) cI>(10g165 lN)
n<N
g 1 B8 _ 1 (N
+N€¢1 (S 10g16N) +...+N5r71 ‘I)r—l <5T_1 10g]_6N) + 7755(r )’

where 8 = log,3 and F is the fractal function studied in Coquet’s paper [Col;
a = loge b and @ is the fractal function of Theorem 1 (this is the reason for the
cumbersome notation of the two leading terms). The other functions occurring in
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the formulee are also continuous and periodic of period 1, the n’s only take the
values 0, +£1. Therefore these two sums only take at most finitely many negative
values.

Let us conclude with some remarks on the sum U,s(N) = 3, _n(—1)7G"5").
The order of 2 mod 375° is 4 - 3"~'55~1. Thus 2 generates half of Z}.5. and it is
not too difficult to compute the possible values for the exponent: If ( is a primitive
3F5!-th root of unity (0 < k <, 0 <[ < s) we have

4.3k—15l—1

PO = JI (1-¢)=x1,

t=0

because P(¢) = P(¢) and P(¢)P({) = Csr5:(1) = 1, where C, is the cyclotomic
polynomial of order ¢ (these terms only contribute O(log N) to U,s). Therefore
the asymptotic behaviour of U,s(N) is determined by those terms in the formula
analogous to (2.4), which correspond to primitive 3¥-th and 5'-th roots of unity.
But these terms just constitute the sums S, and 7. This gives

!
© 3r5s

Upo(N) (378, (5 N) + 5°T, (3" N)) + O(log N)

and again we have that U, only takes at most finitely many negative values. It
remains as a question, for which primes p the sum } ~(=1)"®™) is always pos-
itive. Numerical studies show that 17, 43 and 101 are possible candidates for this
property, but this is far from a proof. The method used to prove this for p = 3
and p = 5 could be applied to p = 17, but would require immense computations
for larger primes.
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