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1. Introduction

Motivated from Computer Science problems we consider the following situation
(compare [2] and [3]). In these papers the reader will find a more complete descrip-
tion as well as additional references.

Let X denote a geometrically distributed random variable, i.e. P{X = k} =
pqk−1 for k ∈ N and q = 1 − p. Assume that we have n independent random
variables X1, . . . , Xn according to this distribution.

The first parameter of interest is the number of left-to-right maxima, where we
say that Xi is a left-to-right maximum (in the strict sense) if it is strictly larger
than the elements to left. A left-to-right maximum in the loose sense is defined
analogously but “larger” is replaced by “larger or equal”.

The second parameter of interest is the (horizontal) path length, i.e. the sum of
the left-to-right maxima in the loose sense of all the sequences Xi, . . . , Xn, where i
is running from 1 to n.

Example. Consider the sequence 4, 5, 2, 3, 5. It has 2 left-to-right maxima in
the strict sense (4–5) and 3 left-to-right maxima in the loose sense (4–5–5). For the
path length we must consider the subsequences

4, 5, 2, 3, 5

5, 2, 3, 5

2, 3, 5

3, 5

5

with respectively 3, 2, 3, 2, 1 left-to-right maxima. Therefore the path length is
3 + 2 + 3 + 2 + 1 = 11.

2. Left-to-right maxima in the strict sense

We can find a probability generating function by considering an appropriate
“language”.
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The “letters” will be denoted by 1,2, . . . . We decompose all sequences X1X2 . . .
in a canonical way as follows: We combine each left-to-right maximum k with the
following (smaller or equal) elements. Such a part is decribed by

Ak := k{1, . . . ,k}∗.

Such a group may be present or not. This observation gives the desired “language”,
where ε denotes the “empty word”:

L :=
(

A1 + ε
)

·
(

A2 + ε
)

·
(

A3 + ε
)

. . .

Now we want to mark each letter by a “z” and each left-to-right maximum by a
“y”. The probability pqk−1 for a letter k should of course not being forgotten.
{1, . . . ,k} maps into z(1− qk) and its star {1, . . . ,k}∗ into 1

/(

1− z(1− qk)
)

. So
we obtain the generating function F (z, y) as an infinite product:

F (z, y) =
∏

k≥1

(

1 +
yzpqk−1

1− z(1− qk)

)

To be explicit, the coefficient of znyk in F (z, y) is the probability that n random
variables have k left-to-right maxima.

Observe that, as it is to be expected, F (z, 1) =
1

1− z
, as it is then a telescoping

product.

Let f(z) = ∂F (z,y)
∂y

∣

∣

y=1
. It is the generating function for the expected values En,

i.e. the En = [zn]f(z). Performing this differentiation we are led to

f(z) =
pz

1− z

∑

k≥0

qk

1− z(1− qk)
,

which is also, by partial fraction decomposition,

f(z) = p
∑

k≥0

[

1

1− z
−

1

1− z(1− qk)

]

.

From this the coefficients En are easy to see, because there are only geometric
series:

En = [zn]f(z) = p
∑

k≥0

[

1−
(

1− qk
)n

]

= p

n
∑

k=1

(

n

k

)

(−1)k−1 1

1− qk

The asymptotic evaluation of such an alternating sum is conveniently performed
by Rice’s method, which we cite as a lemma.

Lemma. Let C be a curve surrounding the points 1, 2, . . . , n in the complex plane
and let f(z) be analytic inside C. Then

n
∑

k=1

(

n

k

)

(−1)
k
f(k) = −

1

2πi

∫

C

[n; z]f(z)dz,
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where

[n; z] =
(−1)n−1n!

z(z − 1) . . . (z − n)
=

Γ(n+ 1)Γ(−z)

Γ(n+ 1− z)
= B(n+ 1,−z). �

Extending the contour of integration it turns out that under suitable growth
conditions on f(z) the asymptotic expansion of the alternating sum is given by

∑

Res
(

[n; z]f(z)
)

+ smaller order terms

where the sum is taken over all poles z0 different from 1, . . . , n.
The range 1, . . . , n for the summation is not sacred; if we sum, for example, over

k = 2, . . . , n, the contour must encircle 2, . . . , n, etc.

Theorem 1. The average number En of left-to-right maxima (strict model) in the
context of n independently distributed geometric random variables has the asymp-
totic expansion

En = p

[

logQ n+
γ

L
+

1

2
− δ

(

logQ n
)

]

+O
( 1

n

)

where Q = q−1, L = logQ, γ is Euler’s constant and δ is a periodic function of
period 1, mean zero and small amplitude. Its Fourier series is given by

δ(x) =
1

L

∑

k 6=0

Γ (−χk) e
2kπix.

The variance can also be computed, by considering the second derivative of
F (z, y) with respect to y.

Theorem 2. The variance Vn of the number of left-to-right maxima (strict model)
in the context of n independently distributed geometric random variables has the
asymptotic expansion for n→∞

Vn = pq logQ n+p2
(

−
5

12
+

π2

6L2
−

γ

L
−
[

δ2
]

0

)

+p

(

γ

L
+

1

2

)

+δ1(logQ n)+O
( 1

n

)

.

Here,
[

δ2
]

0
is the mean of the square of δ2(x), a very small quantity that can be

neglected for numerical purposes. Furthermore, δ1(x) is a periodic function with
mean 0; its Fourier coefficients could be described if needed.

3. Left-to-right maxima in the loose sense

Again, we are defining an appropriate “language” L from which a bivariate
generating function F (z, y) can be derived.

Set Ak := k{1, . . . ,k− 1}∗, then L := A∗
1 · A

∗
2 · A

∗
3 . . . and

F (z, y) =
∏

k≥1

1

1−
yzpqk−1

1− z(1− qk−1)

=
∏

k≥0

1− z(1− qk)

1− z + zqk(1− py)
.

Therefore

f(z) =
∂F (z, y)

∂y

∣

∣

∣

∣

y=1

=
pz

1− z

∑

k≥0

qk

1− z(1− qk+1)
=

p

q

∑

k≥1

[

1

1− z
−

1

1− z(1− qk)

]

and

En = [zn]f(z) =
p

q

∑

k≥1

[

1−
(

1− qk
)n

]

.
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Theorem 3. The average number En of left-to-right maxima (loose model) in the
context of n independently distributed geometric random variables has the asymp-
totic expansion

En =
p

q

[

logQ n+
γ

L
−

1

2
− δ

(

logQ n
)

]

+O
( 1

n

)

.

Theorem 4. The variance Vn of the number of left-to-right maxima (loose model)
in the context of n independently distributed geometric random variables has the
asymptotic expansion for n→∞

Vn =
p

q2
logQ n+

p2

q2

(

−
5

12
+

π2

6L2
+

γ

L
−

2

L
−

[

δ2
]

0

)

+
p

q

(

γ

L
−

1

2

)

+δ2(logQ n)+O
( 1

n

)

.

Here,
[

δ2
]

0
is the mean of the square of δ2(x), a very small quantity that can be

neglected for numerical purposes. Furthermore, δ2(x) is a periodic function with
mean 0; its Fourier coefficients could be described if needed.

4. Path length

If we denote the path length of a “word” ω by a(ω), then we have the following
recursion formula

a(ω) = a(ρmσ) = a(ρ) + a(σ) + 1 + |ρ|

with ρ ∈ {1, . . . ,m}∗ and σ ∈ {1, . . . ,m − 1}∗. From this we get a functional
equation for the generating functions. (The upper index ‘= m’ e.g. refers to all
sequences where the maximal element is m.)

P=m(z, y) = pqm−1zyP≤m(zy, y)P<m(z, y)

It is not likely that this formidable equation can be solved explicitly. However it
contains enough information to obtain the generating functions for the expectations
(and the variance, too). For the expectation we have to differentiate with respect
to y and then set y = 1. Denoting the corresponding functions by F ∗(z), we get

F=m(z)

pqm−1z
= P≤m(z, 1)P<m(z, 1)

+

[

z
∂

∂z
P≤m(z, 1) + F≤m(z)

]

P<m(z, 1) + P≤m(z, 1)F<m(z).

Since P≤m(z, 1) =
1

1− z(1− qm)
=:

1

[[m]]
and

∂

∂z
P≤m(z, 1) =

1− qm

[[m]]
2 ,

we obtain

F≤m(z)[[m]]
2
= F<m(z)[[m− 1]]

2
+

pqm−1z

[[m]]
,

which we can solve by iteration:

F≤m(z) =
p

q

z

[[m]]
2

m
∑

i=1

qi

[[i]]
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The limit for m→∞ is the generating function for the expectations:

F (z) =
p

q

z

(1− z)2

∑

i≥1

qi

[[i]]

From this it is easy to get the coefficients En

En = [zn]F (z) =
p

q

n+1
∑

k=2

(

n+ 1

k

)

(−1)k
1

Qk−1 − 1

Theorem 5. The expected path length En in the context of n independently dis-
tributed geometric random variables has the asymptotic expansion

En = (Q− 1)n
(

logQ n+
γ − 1

L
−

1

2
+

1

L
δ3(logQ n)

)

+O(log n)

with δ3(x) =
∑

k 6=0

Γ(−1− 2kπi
L

)e2kπix.

To deal with the variance, we have to differentiate the functional equation twice.
Denoting the resulting generating function by H(z), we finally find

H(z) = 2
p

q

z

(1− z)2

∑

i≥1

qi

[[i]]
2

− 2
p

q

z

(1− z)2

∑

i≥1

qi

[[i]]

− 2
(p

q

)2 z2

(1− z)2

∑

1≤j≤i

qi+j

[[i]][[j]]

+ 4
(p

q

)2 z2

(1− z)2

∑

1≤j≤i

qi+j

[[i]]
2
[[j]]

+ 2
(p

q

)2 z2

(1− z)2

∑

1≤j≤i

qi+j

[[i]][[j]]
2

+ 2
(p

q

)2 z2

(1− z)2

∑

1≤j<i

qi+j

[[i]][[i− 1]][[j]]

+ 2
(p

q

)3 z3

(1− z)2

∑

i≥1

∑

1≤j≤i

∑

1≤h<i

qi+j+h

[[i]][[i− 1]][[j]][[h]]

To get the coefficient of zn in an efficient way we use to following principle (used
recently by Flajolet and Richmond).

A(z) =
∑

n≥0

anz
n ←→

1

1− w
A
( w

1− w

)

=
∑

n≥0

( n
∑

k=0

(

n

k

)

ak

)

wn

Of course this relation can be inverted to read

A(z) =
∑

n≥0

( n
∑

k=0

(

n

k

)

(−1)kf(k)

)

zn ←→
1

1− w
A
( w

w − 1

)

=
∑

n≥0

f(n)wn.
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That means that if we find the coefficients in the “w–world” we automatically
have the coefficients in the “z–world” as alternating sums!

This is especially convenient, since the expressions become nicer if we substitute

z =
w

w − 1
, because

1

[[i]]
=

1− w

1− wqi
.

Consider as an example the first one, namely A(z) =
z

(1− z)2

∑

i≥1

qi

[[i]]2
.

We easily find that

1

1− w
A
( w

w − 1

)

= −(1− w)2
∑

i≥1

wqi
(

1− wqi
)2 .

Let us forget the extra factor −(1− w)2 for a moment. We find for n ≥ 1

[wn]
∑

i≥1

wqi
(

1− wqi
)2 =

∑

i≥1

qin · [wn]
w

(1− w)2
=

n

Qn − 1
.

But because (1−w)2 =
w2

z2
, the extra factor just works as a shift on both sides, so

that we find
Sum 1.

[zn]
z

(1− z)
2

∑

i≥1

qi

[[i]]
2 = −

n+2
∑

k=3

(

n+ 2

k

)

(−1)k
k − 2

Qk−2 − 1

In this way we find for the coefficients of zn in the other sums in H(z) the
following expressions as alternating sums.
Sum 2.

[zn]
z

(1− z)
2

∑

i≥1

qi

[[i]]
=

n+1
∑

k=2

(

n+ 1

k

)

(−1)k
1

Qk−1 − 1

Sum 3.

[zn]
z2

(1− z)
2

∑

1≤j≤i

qi+j

[[i]][[j]]
= −

n+1
∑

k=3

(

n+ 1

k

)

(−1)k
1

Qk−1 − 1

[

k − 2 +
k−2
∑

m=1

1

Qm − 1

]

Sum 4.

[zn]
z2

(1− z)
2

∑

1≤j≤i

qi+j

[[i]]
2
[[j]]

=
n+2
∑

k=4

(

n+ 2

k

)

(−1)k
1

Qk−2 − 1

[

(

k − 2

2

)

+
k−3
∑

m=1

m

Qm − 1

]

Sum 5.

[zn]
z2

(1− z)
2

∑

1≤j≤i

qi+j

[[i]][[j]]
2

=
n+2
∑

k=4

(

n+ 2

k

)

(−1)k
1

Qk−2 − 1

[

(

k − 2

2

)

+ (k − 2)
k−3
∑

m=1

1

Qm − 1
−

k−3
∑

m=1

m

Qm − 1

]
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Sum 6.

[zn]
z2

(1− z)
2

∑

1≤j<i

qi+j

[[i]][[i− 1]][[j]]
=

n+2
∑

k=4

(

n+ 2

k

)

(−1)k
k − 3

(Q− 1) (Qk−2 − 1)

Sum 7.

[zn]
z3

(1− z)
2

∑

i≥1
1≤j≤i
1≤h<i

qi+j+h

[[i]][[i− 1]][[j]][[h]]

= −

n+2
∑

k=5

(

n+ 2

k

)

(−1)k
1

(Q− 1) (Qk−2 − 1)

[

(

k − 3

2

)

+
k − 4

Q− 1
+

k−3
∑

m=2

m− 2

Qm − 1

]

This gives finally the following result:

Theorem 6. The variance Vn of the path length in the context of n independently
distributed geometric random variables has the asymptotic expansion

Vn = (Q− 1)2n2

{

Q+ 1

2(Q− 1)L
+

1

L2
−

π2

6L2
+

8π2

L2
h
(4π2

L

)

− α1 + δ4(logQ n)

}

+O
(

n1+ε
)

, ε > 0,

where h(x) =
∑

k≥1

ekx
(

ekx − 1
)2 , α1 = L

∑

k≥1

1

k(L2 + 4k2π2) sinh(2kπ2/L)
and δ4(x) is

again continuous, periodic of period 1 and mean zero.

Both, h(·) and α1 are very small quantities, so that a less accurate but more
readible formula is

Vn ∼ (Q− 1)2n2

{

Q+ 1

2(Q− 1)L
+

1

L2
−

π2

6L2

}

.

5. A combinatorial interpretation of Euler’s partition identities

The identities in question are (compare [1])

∏

n≥0

(

1 + tqn
)

=
∑

n≥0

tnq(
n

2)

Qn(q)

and
∏

n≥0

1

1− tqn
=

∑

n≥0

tn

Qn(q)
,

where
Qn(q) =

(

1− q1
)(

1− q2
)

. . .
(

1− qn
)

.

Now consider
P
{

X1 < · · · < Xn

}
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and its generating function

M<(z) =
∑

n≥0

P
{

X1 < · · · < Xn

}

zn

resp. the analogous quantities

P
{

X1 ≤ · · · ≤ Xn

}

and
M≤(z) =

∑

n≥0

P
{

X1 < · · · < Xn

}

zn.

Then we can set up appropriate languages

M< =
(

ε+ 1
)(

ε+ 2
)

. . .

and
M≤ = 1∗ · 2∗ . . . ,

so that
M<(z) =

∏

k≥1

(

1 + pqk−1z
)

resp.

M≤(z) =
∏

k≥1

1

1− pqk−1z
.

Using the identities we can further write

M<(z) =
∏

k≥0

(

1 + pqkz
)

=
∑

n≥0

pnznq(
n

2)

Qn(q)

and

M≤(z) =
∏

k≥0

1

1− pqkz
=

∑

n≥0

pnzn

Qn(q)
,

so that we have the explicit formulæ

P
{

X1 < · · · < Xn

}

=
pnq(

n

2)

Qn(q)

and

P
{

X1 ≤ · · · ≤ Xn

}

=
pn

Qn(q)
.
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