by

Aldo de Luca

Istituto di Matematica dell'Università di Napoli,Italy and G.N.S.A.G.A.

Let A be a finite, nonempty,set or alphabet and A^{*} the free monoid generated by A. The elements of A are called letters and those of A^{*} words. We suppose that the cardinality $|A|$ is ≥ 2. The sequence $\left\{f_{n}\right\}$, $\mathrm{n} \geq 1$,of words of Fibonacci is , inductively,defined as:

$$
f_{1}=a, f_{2}=b, f_{n+1}=f_{n} f_{n-1}, a, b \in A, a \neq b, n \geq 2 .
$$

In the combinatorial theory of free monoids the sequence of words of Fibonacci plays a very important role since the words of Fibonacci have remarkable combinatorial properties some of which have been stressed by Knuth, Morris and Pratt [1] in relation with problems of "string matching" and ,more recently, by Duval [2] in the study of "periodicity" of words. A survey on properties of Fibonacci words can be found in [3].

By making use of a result which states that for $n \geq 3$ the Fibonacci words $\left\{f_{n}\right\}$ have a palindrome left factor of length $\mathrm{If}_{\mathrm{n}} \mathrm{I}-2$, we have proved in [4] that for all $n \geq 4, f_{n}$ is the product of two, uniquely determined, palindrome words of lengths $F(n-1)-2$ and $F(n-2)+2$, where $F(n)=\left|f_{n}\right|$ is the n-th term of the Fibonacci numerical sequence.

These two properties of the Fibonacci words are of great interest since one can show (cf. [4]) that for $n>4$, the Fibonacci sequence $\left\{f_{n}\right\}$ is the unique sequence of words satisfying the previous properties and the additional requirements that the words contain at least two different letters and that begin with a same letter (the letter "b" in our case).

References

[1] .D. Knuth, J.Morris and V.Pratt,Fast pattern matching in strings, SIAM J. Comput. 6(1977) 323-350.
[2] .J.P.Duval,Contribution à la combinatoire du monoide libre,Thèse d'Etat,Université de Rouen, 1980.
[3]. J.Berstel, Mots de Fibonacci, Séminaire d'Informatique Théorique Année 1980/81, Institut de Programmation,Université Paris VI
[4]. A.de Luca, A combinatorial property of the Fibonacci words, Information Processing Letters, 193-195.

