J.E. Pin (Paris)

Variétés de langages et combinatoire

Abstract: Let Abe a finite alphabet.

The well-known Kleene's theorem states that a language L of A^{*} is rational iff its syntactic monoid is finite. Schützenberger's theorem states that a language L is star-free iff its syntactic monoid is group-free. It turns out that many subfamilies of the rational languages can be characterized in this way by properties of their syntactic monoids or semigroups. This lecture gives a survey of the various hierarchies of star-free languages, their descriptions in terms of semigroups, and the related decidability results and problems.

- 85 -

Let S,T denote semigroups

- <u>Definition</u>: S divides T , S < T , if S is a quotient of a subsemigroup of T .
- Fact: The divisibility relation < is transitive ; moreover < is an order on <u>finite</u> semigroups.
- Definition: A variety of finite semigroups (monoids) is a class of finite semigroups (monoids) closed under taking subsemigroups, quotients and <u>finite</u> direct products, or equivalently: closed under division and finite direct products.

Let A denote a (finite) alphabet, then: A^+ := the free semigroup over A , A^* := the free monoid over A . A *language* (over A) is a subset $L \subseteq A^+$

- <u>Definition</u>: A language $L \subseteq A^+$ is *recognized* by a semigroup S if there exists a semigroup morphism $\eta : A^+ \Rightarrow S$ and a subset $P \subseteq S$ such that $L = P \eta^{-1}$.
- Example: Let $\mathcal{O}_{\mathcal{L}}$ be an automaton recognizing L (in the automata-theoretic sense). Then the transition semigroup of $\mathcal{O}_{\mathcal{L}}$ recognizes L .
- Definition: A language is recognizable if it is recognized by some finite semigroup.
- Fact: Recognizable languages are closed under boolean operation (\cap, \cup, \setminus) and under inverse morphisms.

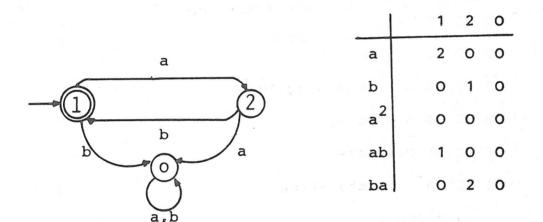
- 87 -

Fact 1) S(L) recognizes L .

2) S recognizes L iff S(L) < S

<u>Construction</u>: S(L) is the transition semigroup of the <u>minimal</u> automaton recognizing L .

Example: $A = \{a, b\}$, $L = (ab)^+ = \{ab, (ab)^2, (ab)^3, \dots\}$



in S(L): $a^2 = b^2$, aba = a, bab = b, $(ab)^2 = ab$, $(ba)^2 = ba$,...

<u>General Idea</u>: Classify recognizable languages L by properties of S(L) (M(L) resp.)

<u>Fact</u>: Let <u>V</u> denote a variety of semigroups (monoids resp.). The set of all languages of A^+ (A^* resp.) such that $S(L) \in \underline{V}$ (M(L) $\in \underline{V}$ resp.) is a boolean algebra A^+V (A^*V resp.) . $V := \{A^+V \mid A \text{ any finite alphabet}\}$ ($V := \{A^*V \mid |A \text{ any finite alphabet}\}$ resp.) V is the variety of languages associated to \underline{V} EILENBERG'S THEOREM: Varieties of languages and varieties of semigroups (monoids resp.) are in 1-1 correspondence.

Rational languages of A :

- 1) \emptyset , $\{\Lambda\}$, $\{a\}$ where $a \in A$ are rational.
- 2) If L_1, L_2 are rational, $L_1 \cup L_2, L_1 \cdot L_2$ are rational.
- 3) If L is rational, L^{*} is rational.

KEENE'S THEOREM (1954): L is rational iff L is recognizable.

Star-free languages of A* :

- 1) {a} is star-free for all $a \in A$.
- 2) If L_1, L_2 are star-free, $L_1 \cdot L_2$ and each boolean combination of L_1, L_2 (including $A^* \setminus L_1$) are star-free.

Example: Let $A = \{a, b\}$.

L = $(a A^* b) \sim (b b^* a)$ is star-free.

In fact: $\emptyset = \{a\} \ \{a\}$ is star-free $A^* = A^* \ \emptyset$ is star-free

 $b^* = A^* \sim (A^* a A^*)$ is star-free

=> L is star-free .

SCHÜTZENBERGER'S THEOREM (1965): L is star-free iff M(L) is aperiodic, that is $\exists n \forall x \in M(L) \ x^n = x^{n+1}$ or equivalently: If a group G divides M(L), then G is trivial.

Example:
$$(ab)^* = aA^* \cap A^*b \sim (A^*aaA^* \cup A^*bbA^*)$$

where $A = \{a, b\}$.

Theorem: (Restivo 1973) Let X be a finite code . X^{*} is star-free

iff X^* is pure (i.e. $u^n \in X^* \Rightarrow u \in X^*$).

<u>Theorem</u> (1979): For each aperiodic Monoid M there exists a finite pure code X such that $M < M(X^*)$

Fact: The set \underline{A} of all finite aperiodic monoids is a variety.

<u>Corollary</u>: <u>A</u> is generated by the set $\{M(X^*) \mid X \text{ is a finite pure code}\}$.

Definition: Let $u, v \in A^*$. u is a subword of v

if $v = v_0 u_1 v_1 u_2 v_2 \cdots u_n v_n$ $u = u_1, \cdots, u_n$ for some $n \ge 1$.

Example: aac and abcb are subwords of abaaacab .

Definition:
$$u, v \in A^*$$
 . $u \sim v$ iff u and v

have the same set of subwords of length \leq n .

<u>Example</u>: anders ~₁ andreas ababab ~₃ bababa

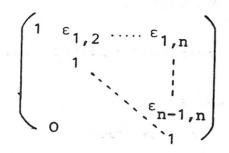
SIMON'S THEOREM (1972-1975): The following conditions are equivalent:

- L is a union of ~ -classes for some n ≥ 0 (i.e. piecewise testable)
- 2) L is in the boolean algebra generated by languages of the form $A^* a_1 A^* a_2 \dots A^* a_n A^*$, $a_1, \dots, a_n \in A$
- 3) M = M(L) is J-trivial, that is, one of the following equivalent statements is true:

(a) $\forall a, b \in M$ MaM = MbM => a = b

(b) $\exists n \ge 0 \forall x, y \in M (xy)^n = (yx)^n \text{ and } x^n = x^{n+1}$.

Corollary (Straubing 1980): A monoid is J-trivial iff it divides the monoid T of all boolean $n \times n$ matrices of the form



for some n > o.

<u>Definition</u>: $u, v \in A^*$. $u \approx_n v$ if

u and v have the same prefix of length < nand u and v have the same suffix of length < n.

Example:
$$COMICS \simeq COMBINATORICS$$

Theorem (Perrin 1971): Let $L \subseteq A^+$.

The following conditions are equivalent:

- 1) L is a union of $\frac{2}{n}$ classes for some n > 0 (i.e. endwise testable)
- 2) $L = XA^*Y \cup Z$ for some finite sets X,Y,Z A^+ .
- 3) S(L) is locally trivial (i.e. for all $e = e^2 \in S$ eSe = {e}).

Definition: For $u \in A^*$, n > o let

 $I_n(n) = \{ \text{segments of } u \text{ of length } n \}$ $u \equiv_n v \text{ iff } u \cong_n v \text{ and } I_n(u) = I_n(v)$

Example: u = ab aabaa ba $\equiv_3 ab$ aa ba = vI₂(u) = {aba, baa, aab} = I (u)

$$I_3(u) = \{aba, baa, aab\} = I_3(v)$$

Theorem: (Brozowski-Simon 1973, McNaughton 1974)

The following conditions on $L \subseteq A^+$ are equivalent:

- 1) L is a union of \exists_n -classes for some n > o (i.e. locally testable).
- 2) L is in the boolean algebra generated by languages of the form uA^* , A^*v , A^*wA^* $(u,v,w \in A^+)$.
- 3) S(L) is locally a semilattice (that is: for all $e = e^2 \in S$ eSe is an idempotent and commutative monoid.).
- Theorem (Restivo 1974): Let X be a finite code.

Then X is circular iff X^+ is locally testable.

- <u>Fact</u>: The set of all semigroups, which are locally a semilattice, are a variety $\underline{L} \underline{J}_1$
- <u>Theorem</u> (1979): For each $S \in \underline{L} = \underline{J}_1$ there exists a finite circular code X such that $S < S(X^+)$.
- <u>Corollary</u>: $\underline{L} \underline{J}_1$ is generated by the set {S(X⁺) | X is a finite circular code}.

Concatenation Hierarchies.

 $F_{0} :=$ "basic" boolean algebra $F_{n+1} :=$ boolean algebra generated by languages of the form $L_{0} = a_{1} + b_{1} + b_{2} + \cdots + b_{k} + b_{k}$ where $k \ge 0$, $L_{0}, \dots, L_{k} \in F_{n}$, $a_{1}, \dots, a_{k} \in A$.

Two main cases:

- 1) Straubing's hierarchy (1981): $F_0 = \{A^*, \emptyset\}$
- 2) Brzozowski-Cohen hierarchy or "dot-depth hierarchy" (1971) modified by Thérien (1982)

 $F_{O} = \{XA^*Y \cup Z \mid X, Y, Z \text{ finite } \subseteq A^+\}.$

Theorem (Straubing, Pin 1981): The following conditions are equivalent:

- 1) $L \in V_2$ (= second level of Straubing's hierarchy).
- L is in the boolean algebra generated by languages of the form

$$\begin{array}{c} A_{0}^{*} a_{1} A_{1}^{*} \cdots a_{k} A_{k}^{*} , k \ge 0 \\ A_{i} \subseteq A , a_{i} \in A . \end{array}$$

3) $M(L) \in \underline{PJ}$, the variety of monoids generated by all power monoids of the form

P(M), $M \in J := \{M \mid M \text{ is } J - trivial\}$.

<u>Corollary</u>: $M \in \underline{PJ}$ iff M divides the monoid K_n of all $n \times n$ boolean upper-triangular matrices for some n > o.

That is, does there exist an algorithm to test membership in PJ ?

Knast condition (k):

For all idempotents $e_1, e_2 \in S$, for all $x, y, u, v \in S$ $(e_1 x e_2 y)^n e_1 x e_2 v e_1 (u e_2 v e_1)^n = (e_1 x e_2 y)^n e_1 (u e_2 v e_1)^n$

Theorem (Knast, to appear):

 $L \in B_1$ (L has dot-depth ≤ 1) iff S(L) satisfies (K).

<u>Fact</u>: $P(S_1^1 \times \ldots \times S_n^1)$ is a semiring.

 $(S_1, \ldots, S_n \text{ are semigroups})$.

Definition: The Schützenberger product

 $\bigotimes_n (S_1, \ldots, S_n)$ of semigroups S_1, \ldots, S_k is the set of upper-triangular matrices $(M_{i,j})$ with entries in $P(S_1^1 x, \ldots, xS_n^1)$, such that :

1)
$$M_{ii} = \{ (\Lambda, \dots, \Lambda, s_i, \Lambda, \dots, \Lambda) \}$$

i-th-component

for some $s_i \in S_i$

2)
$$M_{ij} \subseteq \{(s_1, \dots, s_n) \in S_1^1 \times \dots \times S_n^1 \mid s_1 = \dots = s_{i-1} = 1 = s_{j+1} = \dots = s_n\}$$

WARNING !

<u>Fact</u> (Straubing 1981): If L_0, \ldots, L_n are recognized by S_0, \ldots, S_n respectively and if a_1, \ldots, a_n are letters, then $L_0 a_1 L_1 \cdots a_n L_n$ is recognized by $\Diamond_{n+1} (S_0, \ldots, S_n)$.

Theorem (Reutenauer n = 1 1979, Pin 1981).

If $L \subseteq A^+$ is recognized by

 $O_{n+1}(S_0, \dots, S_n)$, then L is in the boolean algebra generated by languages of the form $L_i = a_i L_{i_1}, \dots, a_r L_{i_r}$,

 $o \leq i_0 < i_1 < \ldots < i_r \leq n$, a_k letters and L_i_k recognized by S_{i_k} $(k = 1, \ldots, r)$.

<u>Definition</u>: Let <u>V</u> be a variety . $\Diamond(\underline{V})$ is the variety generated by all semigroups $\Diamond_n(S_1, \ldots, S_n)$ for n > 0, $S_i \in \underline{V}$.

Theorem (Brzozowski-Knast 1978. Straubing 1981):

Brzozowski's hierarchy is infinite.

The facts on Straubing's and Brzozowski's hierarchies are summarized in the following tables.

STRAUBING'S HIERARCHY

Level

0

1

2

3 ↓ Languages Ø_n

Ø,A*

Varieties of monoids \underline{V}_n

 $\frac{V_{O}}{I} = \underline{I} (= \{\{1\}\})$ trivial variety.

Boolean algebra generated by languages of the form

 $A^* a_1 A^* \cdots a_n A^*$

 $\frac{\underline{V}_1}{(J-\text{trivial})}$

Boolean algebra generated by languages of the form

 $\begin{array}{c} A_{o}^{*} a_{1} & A_{1}^{*} & a_{2} \cdots a_{n} & A_{n}^{*} \\ A_{i} \subseteq A , a_{i} \in A \end{array}$

 $\underline{V}_2 = \underline{PJ}$ (Power monoids of monoids in <u>J</u>)

$$\underline{v}_{n+1} = \mathcal{O}(\underline{v}_n)$$

• • • • • infinite hierarchy

BRZOZOWSKI'S HIERARCHY

Level

Languages B

arieties of semigroups
$$\underline{B}_n$$

0

1

2

XA^{*}Y U Z ,

X,Y,Z finite subsets of A^+ $\underline{B}_0 = \underline{LI}$ (= locally trivial semigroups. (eSe = e)).

Boolean algebra generated by language of the form $w_0 A^* w_1 A^*, \dots, w_n A^* w_{n+1} = semigroups$ $w_i \in A^+$ satisfying (K)

 $\underline{B}_{n+1} = \Diamond(\underline{B}_n)$

infinite hierarchy

Definition: Let T be a semigroup (written multiplicatively) and S be a semigroup (written additively, without being commutative in general) and $T \times S \longrightarrow S$

satisfying

1)
$$t \cdot (s_1 + s_2) = t \cdot s_1 + t \cdot s_2$$

2)
$$(t_1, t_2) = t_1(t_2s)$$
.

The semidirect product S * T is defined on $S \times T$ by

(s,t)(s',t') = (s+ts,tt').

For two varieties \underline{V} , \underline{W} :

 $\underline{V} * \underline{W}$ = variety generated by all semidirect products S * T , $S \in \underline{V}$, $T \in \underline{W}$.

Theorem (Straubing 1982):

 $\underline{B}_n = \underline{V}_n * \underline{LI}$ for all $n \ge o$.

Theorem (Margolis-Straubing, 1982):

 \underline{B}_n is decidable iff \underline{V}_n is decidable.

Bibliographie:

- J. A. Brzozowski: Hierarchies of aperiodic languages, RAIRO, Informatique Théorique, vol. 10, 1976, 33-49
- J. A. Brzozowski et R. Knast: The dot-depth hierarchy of star-free languages is infinite, J. Computer and System Sciences, vol. 16, 1978, 37-55
- J.A. Brzozowski et I. Simon: Characterizations of locally testable events, Discrete Mathematics, vol. 4, 1973, 243-271.
- S. Eilenberg: Automata, languages and machines, vol. B, Academic Press, New York (1976)
- R. Knast: Some theorems on graph congruences.A paraître dans la RAIRO, Informatique Théoretiqe
- R. Knast: A semigroup characterization of dot-depth one languages. A paraître dans la RAIRO, Informatique Théorique.
- G. Lallement: Semigroups and Combinatorial applications, Wiley, N.Y., 1979
- J.E. Pin: Variétés de langages et variétés de semigroups, Thése, Paris, 1981
- J.E. Pin et J. Sakarovitch: Une application de la représentation matricielle des transductions. A paraître.
- J.E. Pin et H. Straubing: Monoids of upper-triangular matrices, à paraître.
- C. Reutenauer: Sur les variétés de langages et de monoïdes, Lect. Notes in Computer Sc. no. 67, Springer Berlin (1979) 260-265
- I. Simon: Hierarchies of events with dop-depth one, These, Université de Waterloo (1972)
- I. Simon: Piecewise testable events, Lect. Notes in Computer Science no. 33, Springer Berlin (1975), 214-222
- H. Straubing: A generalization of the Schützenberger product of finite monoids, Theor. Comp. Sc. 13 (1981), 137-150
- H. Straubing: A study of the dot-depth hierarchy (à paraître).