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Chemistry is concerned with relations between structure and properties of

chemical compounds. Such connections cannot be found by investigating just

some single compounds but only by systematic comparison, involving compounds
of appropriate classes. Appropriate means that within such a class the struc-

ture of compounds varies in a well-defined and lucid fashion. Mappings be-

tween finite sets are particularly suitable for defining and parametrizing
variations of chemical structure.

In somewhat more general terms, consider a system composed of subsystems

1, 2, ..., p each with a finite state space L^ , Ly, .... L (finite space =
p

finite set). Let the composite system be such that each of its states is

completely characterized by specifying the states of all the subsystems. Then

its state space is the cartesian product L^ x L-> x . . .XL_ of the state spaces
p

of its components.

Let us further assume that for any state of a subsystem there is an ana-

logous state of each other subsystem. Then all the state spaces L. can be

mutually identified. Hence the state space of the composite system takes

the particular form of a cartesian product LxLx ... xLofp copies of

the same state space L, common to all the subsystems 1, 2, ..., p. This,
p

however, is nothing else but the set L" of all mappings from the set

P =^1» ... p} of subsystems into the set L.

Example : derivatives of a common parent compound with ligands from a

specified assortment

subsystems: the positions where substitution may take place

their states: the various kinds of ligands (substituents). Ligands of the same

kind at different positions are analogous states of the subsystems

concerned.

The states of the composite system represent distributions of ligands over the

substitution positions of the parent compound, i. e. derivatives.
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Frequently, it is not the individual states (mappings), that correspond to

the various compounds or structures to be described, but classes of equi-

valent states. This equivalence mostly has symmetry reasons. If e. g. the

parent compound posesses some spatial symmetry, then there are symmetry

equivalent substitutions. They result in distributions of ligands over the

positions of the corresponding (spatially fixed) molecular skeleton, which

can be mutually transformed by rigid rotations from its symmetry group.

Hence they represent merely different spatial orientations of the same mole-

cule, i. e. the same molecular structure.

Occasionally other types of equivalence occur, but we shall stay with the

case of symmetry equivalence. Then the structures of interest are para-

metrized by equivalence classes of states (mappings) which arise as orbits
p

of a group, acting as a permutation group on the state space L . With re-

gard to our main example we call these orbits substitution

patterns. The group in question is a symmetry group i. e. a group

of automorphisms of a common basic structure from which the composite

structures derive. For chemical der^tives this is the point symmetry group

of the parent compound, more precisely its subgroup of proper rotations.

In case one does not distinguish mirror image compounds (enantiomers), the

full point symmetry group takes its place.

Within this setting quite different problems can be stated and treated. We

are going to consider

(i) the symmetry of substitution patterns

(ii) a cluster expansion of properties of composite systems.

Substitution symmetry

On passing over from the basic structure to composite structures, the sym-

metry of the basic structure is partially destroyed. The surviving part is

the symmetry of the composite structure. Let e. g. ligands of different kinds

be distributed over the positions of a symmetric molecular skeleton (e. g. the

corners of a regular polyhedron). If the ligands themselves are sufficiently

symmetric (e. g. coloured balls), then covering operations of the skeleton act

on such distributions just by transporting ligands to other positions, equi-

valently by permuting the positions of the ligands. Therefore, exactly those

covering operations survive as covering operations of a distribution which
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mutually permute equally substituted positions exclusively. Symmetry equi-
valent distributions have the same symmetry, i. e. their symmetry groups
are conjugated subgroups of the skeleton symmetry group. The symmetry
of a substitution pattern then is a conjugacy class of subgroups of the
group in question. As a typical enumeration problem in this context we ask

for the number of patterns with prescribed symmetry. This problem can be
formulated quite generally for an arbitrary finite group acting on an arbi-
trary finite set. So let us begin by fixing some notation.

A permutation representation of a group G on a set M is a homomorphism of
G into the symmetric group S^, of M

/?r; 'M

^wg

Synonymously, G acts on MorM is a G-set.

Example: Any covering operation of a symmetric polyhedron induces a per-
mutation of its corners, of its edges etc.

An action of G induces an equivalence relation on M:

m'^ m ^y Bg -G: m'=Tr_(m).

The corresponding equivalence classes are called the orbits of M under the
action of G. With gm as a short form of Tr_(m), the orbit which contains
m ? M is given by

0(m) = [gm|g e- G] .

The last concept we need is that of the stabilizer. The stabilizer of an element
m  . M is the set of all those group elements which fix m

Gm = lg & Glgm = m\-
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G__ is a subgroup of G. Elements in the same orbit have conjugate stabilizers

Ggm = SGme
-1

Running through the elements of an orbit, their stabilizers run through a
complete class of conjugated subgroups of G (possibly several times). Hence
any orbit is associated with a conjugacy class of subgroups. In view of the
previous discussion we call it the symmetry of the orbit.

In the case of substitution patterns, in particular for derivatives of a sym-

metric parent compound we have

P = set of positions of a molecular skeleton, e. g. the corners of a poly-
hedron

L = set of ligand sorts, e. g. colours of balls

Lp = set of all distributions of ligands of sorts from L over the positions in P.

G = group of covering operations of the skeleton

p

We already described the most simple type of action ofG on M =L' : covering
operations act on distributions by permuting the positions of the ligands, i. e.
G acts naturally on P,

g »-> Tr^e Sp

and this operation, in turn, induces an action on L

g: Cyi-5^ gC^ : = ^o-^g ^ .

The stabilizer G<M is the symmetry group of the distribution (^ , and the

conjugacy class of Gy represents the symmetry of the corresponding substi-
tution pattern (derivative, molecular structure). Asking for the number of
patterns with prescribed symmetry thus means asking for the number of
orbits the elements of which have stabilizers in a prescribed class of con-

jugated subgroups. More generally, for a G-set M and a subgroup H < G,
which is the number

x.. =: # of orbits with stabilizers in } gHg |g  - G ^ ?
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If Gm = H' then among the Gmi with m'e0(m)the conjugates gHg-l
all occur equally often. Hence x^ is proportional to the number s of
elements of M with H as their stabilizer

H

SH = l[m^MIGm = H}l .

As a rule, this number is much harder to calculate than a related number,
namely the number of H-invariant elements of M

IH = |{meM|G^? H}| .

As we shall see, given all the i we can (at least in principle) calculate the
s^ and from them we get the numbers x^ just by multiplication with an
(irrelevant) factor. The following equation is obvious

1H = 'K

H<K^G

We rewrite it in the form

iH = -^(H, K) s K

K$G

where ^(H, K)= {^ ^.[«K
otherwise

With a suitable numbering of the subgroups of G, e. g. according to their
cardinality, the matrix of the coefficients -^ (H, K) is triangular with diag-
onal elements all ones. Such a matrix is invertible, so there are coefficients

(H, K) that

s,, =SH= 2. ^(HI K) 1K .

K^G

In more advanced terms, -^ is the Zeta-function of the subgroup lattice of
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G, M its Mobius-function, and the numbers s,, are obtained from the i,

by Mobius-inversion. -

The size of the problem can be boiled down from # of subgroups of G to

# of conjugacy classes of subgroups of G using the fact that both s,

and the i^ are constant on classes of conjugate subgroups. The matrix as-

sociated with the Zeta-function, reduced to conjugacy classes of subgroups

by partial summation, then yields the so-called table of marks

of G.

Besides the table of marks the numbers i,, of H-invariant elements have to

be known for all subgroups H of G ora transversal of conjugacy classes
p

of subgroups, respectively. If G acts on M = L* via permutations of the

positions as described above, then a mapping is H-invariant if and only if

it is constant on the H-orbits of P. From that we get immediately

.H= ILI IP/HI

where |P/H denotes the number of H-orbits of P.

Cluster Expansion

p
Again we consider a composite system with state space L" , where P is the

collection of subsystems and L their common state space. Let us define a

(real number valued) property of the system as a function f: L ->"^ in the
p

sense that for <p - L the number f(Cp) is the value of the property f for

the system in its state Cp . We may e. g. consider f to represent a measuring

device and f(cy) as the result of the corresponding measurement performed

on the system in its state <? . Cluster in this context means an aggregate
of subsystems, i. e. a subset of P. The cluster expansion of a property is an

expansion into a sum of contributions from clusters of increasing size. For

three subsystems e. g., this amounts to an expansion of a real function of

three variables that run through the same finite set, as follows

f(x, y, z) = a^ + b^(x) + b^(y) + b^(z)
+ c, ^(x, y) + c^(x, z) + c-,,, (y, z)'12 '13 23'

+ d^ ^(x, y, z).

There, a^ is the best approximation of f by a constant, b-, , b->, b-^ are func-
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tions of one variable such that b^(x) + b^(y) + b (z) is the best approx-
imation of f(x, y, z, ) - a^ . Similarly, c^, c^ and c^ are functions of two
variables such that their superposition is the best approximation of the re-
mainder of the foregoing approximation step. Finally, d^., is the ultimate

remainder. Using the least squares criterion, all these approximation problems
can be solved in closed form. One obtains

a^ = <f(x. y, z)>,^^ ,

b^(x) = <f(x, y, z)>^^ - a^ , b^, b^ analogous ,

C12(x>y) = <'f<x»y. z)>^ - b^(x) - b^(y) - a^ , ... ,

where the brackets denote averaging, and the subscripts indicate the variables
over which to average.

In the case of a property that is additive for non-interacting subsystems (as
e. g. the energy is) the cluster expansion is similar to a perturbation expan-
sion with the interactions between the subsystems taking the part of the per-
turbation. It starts with the sum of the contributions of the single subsystems
as the zero-order term, followed by corrections due to interactions of in-

creasing complexity: interactions between pairs, triples etc.

As we are going to see, however, the final result is something better than
the expansion we had in mind with the motivation sketched above. It is in-

stead a decomposition

f =
c^

f/
Q

Q C p

of a property f into a sum of contributions f^ of all the clusters Q C P which

can each be calculated separately without any reference to a sequence of ap-
proximation steps.

In order to avoid a towering of superscripts, let us abbreviate

p
M = L , the state space of the system,

X =1KM, the set of its properties.
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With addition of functions and their multiplication by real numbers defined

pointwise in the usual fashion, the set X of properties becomes an ff^-vector-
p

space of dimension |M| = |L|1 '. Moreover, we may equip X with the custom-

ary scalar product, turning it into a euclidean vectorspace.

(f. g): =
/A

f (

 

-M
, ).

This puts at our disposition the following simple approximation theorem of

linear algebra: In a euclidean space, the best approximation of a given vector

by elements of a subspace is the orthogonal projection of that vector upon

the subspace in question. So the subsequent definitions and results will deal
with

(1) certain subspaces of X that are associated with the clusters,

i. e. aggregates of subsystems,

(2) the corresponding orthogonal projections.

We begin by associating with each cluster Q £ P the subspace of all those

properties which only depend on the state of this cluster (i. e. which are

independent of the state of the complementary cluster P\Q).

x0^f6-xl/*Q= SQ ̂  t^-t^^}

Here, the subscript Q denotes the restriction of a mapping P -y L to Q S-P

Clearly, each X^ is a subspace of X; in particular X^ is the subspace of

constant functions. Moreover those spaces have the properties

RCQ ^ X^^XQ.

XRnxQ=XRnQ

How can dependency on the state of a certain cluster be removed?

By averaging over its states! Hence we define an operator pp, for each Q c P
by (l, p, q denote the cardinalities of the sets L, P, Q)

'Q- [PQ^(^)= iP-q
f(9)

^e-M
?Q^Q
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One easily verifies that p is a linear map onto X^; moreover it is symmetric,
and the following relation holds

in particular

PQ PR= PQ^R ,

PQ 'PQ

This proves that p^ is the orthogonal projector onto X/^.

But these spaces and projectors are not yet what we are looking for. Consider
the following subspace

. Q of X0

z° : ° HZO x-< .
and its orthogonal complement X^. According to the decomposition of X

XO°XQ©2^
\

each pEQjection f^ = p^f of a pj -Qperty f decomposes uniquely as follows

fQ = f0 + fZ with'fQ^XQ' f^^Q

Since f^ is in turn a sum of contributions of smaller clusters, it is f^ that
remains as the specific contribution of the cluster Q to the property f.

From an equivalent characterization of the subspaces X^,

^
Q = [fCX I p^f=o for all Rc Q }

it follows immediately, that those spaces are orthogonal

X _L Xg for Q ^ S .
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In fact, a stronger relation holds:

XQ-LXS for Q ^. S.

From this result one concludes that X^ is the direct sum of the mutually
orthogonal cluster spaces Xp^ , R c Q.

xo=
^J
x

R

R £ Q

Still the orthogonal projectors ^ on the subspaces X^ have to be determined,
But since the ^ , R S Q add up to p^ ,

PQ= 2- ^R '
R S. Q

it follows by Mobius-inversion with the Mobius-function of the power set
lattice of P, that

ftj

PQ= <-1)IQI-IRI PR
RC Q

In particular, from X =Xand pp= 1. the identity operator of X, it follows
that

x =

Q c P

1 =

XQ .

^0 .
Q £ p

^ ~

!- ^ ^ »ith7^^f
Q c p
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X is the direct sum of mutually orthogonal subspaces, each associated with

a cluster Q C P ; the orthogonal projectors on these cluster spaces constitute
a resolution of unity. This leads to the explicit form of the cluster expansion
of a property f in the third line.

This decomposition provides an empirical definition of the contribution of an

aggregate of subsystems to a property of composite systems. A typical ap-
plication could be an analysis of large sets of experimental data of a molecu-
lar property, yielding empirical rules on how its numerical values depend on
molecular structure. As a further step such rules might be interpreted and
used as material for developing a theory of the property concerned.

Re fe re n c e s
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L2J A. Dress/M. Kiichler: unpublished manuscript (1971)
^3j D. Knutson: ^\. -Rings and the Representation Theory of the Symmetric

Group, Lecture Notes in Mathematics Vol. 308 (1973)

both for recent descriptions of this theory, and

[4\ A. Kerber/K. J. Thurlings: manuscript on Polya/Redfield-enumeration

theory to be published in Bayreuther Mathematische Schriften (1983)

for the combinatorial aspects.

The cluster expansion appears to be new, so my only reference is

^5J W. Hasselbarth: Habilitationsschrift (1982) which also refers to the first

part on substitution symmetry.
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The basic philosophy for this type of 'mathematical chemistry' is due to
Ernst Ruch, see e. g.

6 E. Ruch: Chiral Derivatives of Achiral Molecules, Angew. Chem. Int.

Edition 16, 65 (1977)
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