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Klaus Leeb allows himself to speak and wirte for all of us: It is well-known that

each permutation is a product of two involutions f = ab (to mean first a than b)
2 .2

with a"= 1 , b"" =1 . As in finite fields, the singular elements cannot satisfy

X'1 ' =1 , hence one multiplies by x to also accommodate the singular ones.
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Thus Leeb conjectured: Any function f : X-*X isof the form f = ab with a" = a

g
and b" = b . His interest was basically in finite combinatorics. H. Sperber though

made it quite clear that "finite" was essential in this statement and sharpened:
2 . . 3

f= ab , a"= 1, b" =b iff x is finite. Leeb proved - angry of this jack of
3 2

symmetry - also f= ab , a''=a, b~ = 1 .

But then he looked also for a way out of the unpleasant features of such conditions:

They do not allow proper injections. It turned out that in the impossibility proof

sometimes some tricky non-commutative algebra is involved, worthy of an exercise

book. Leeb-Pirillo checked all the possibilities of adding up to 2 symbols, Leeb in

the Brenner Express between 20'" and 31"" checked all possibilites of adding up
2

to 3 symbols, of course to the original a^ = 1

ting system is self-dual.

1 = b' and such that the resul-

We present just two examples for the line of argument which shows that an

injection satisfying the condition would have to be a permutation:

D aba'-b =

= aba2b =
abb aab=ab~~ab

2
a a = ab'

= abaabbaab = abaaaab = abaabaabaab
2 . . 2,

abaaba = 1 a bijective b- = 1 ba~b = 1

2)
2. 2 2

a"ba'" = a"b
2 . 2.2

ab" = b"ab'
2 . . .. .2

ab~ injective b"~ = 1a" ba'~b = ab^ab'
2. 2

a"ba"b = a'
2. 2. . 2. 2. 2. 2. 2. 2

a"'ba"bba^b = a"'baaaab = a~~ba^ba^ba~~b
2. 2.

a"ba"b = 1
2. .. 2

a*"b surjective a" = 1

a2=1

b2=1

Eventually we hope to find a set of conditions satisfied by all functions, which

for permutations reduces to au = 1

Reference: The work of Silberger
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